- .I | Apple ll

=3 Apple Pascal

= Operating System Reference Manual
|

L\

m W N K N

)

'\

7

a 7 7@

Va\

i”clpple computer Inc.

7a\

10260 Bandley Drive
Cupertino, California 95014
(408) 996-1010

o0 ow o e oW oW W W W N

7a

030-0100-00

NOTICE

Apple Computer Inc. reserves the right to make improvements in the
product described in this manual at any time and without notice.

wowm_

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE SOFTWARE DESCRIBED

IN THIS MANUAL, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS
FOR ANY PARTICULAR PURPOSE. APPLE COMPUTER INC. SOFTWARE IS SOLD OR

LICENSED "AS IS". THE ENTIRE RISK AS TO ITS QUALTITY AND PERFORMANCE IS

WITH THE BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR '1
PURCHASE, THE BUYER (AND NOT APPLE COMPUTER INC., ITS DISTRIBUTOR, OR

ITS RETAILER) ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR, OR CORRECTION AND ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES. 1IN ‘l
NO EVENT WILI APPLE COMPUTER INC. BE LIABLE FOR DIRECT, INDIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE
SOFTWARE, EVEN IF APPLE COMPUTER INC. HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMACES. SOME STATES DO NOT ALLOW THE EXCLUSION OR |
LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR INCIDENTAL OR

|EII

m__m

il iRl iR B B i W W W O W WE R

CONSEQUENTIAL DAMAGES, S0 THE ABOVE LIMITATION OR EXCLUSION MAY NOT
APPLY TO YOU.

This manual is copyrighted. All rights are reserved. This document
may not, in whole or part, be copied, photocopied, reproduced, ‘.
translated or reduced to any electronic medium or machine readable form
without prior consent, in writing, from Apple Computer Inc.

©198@ by APPLE COMPUTER INC. I
19260 Bandley Drive

Cupertino, California 95814 g |

(448) 996-1¢19 I

a

All rights reserved. I

The word Apple and the Apple Logo are registered trademarks of APPLE .

COMPUTER INC. l

APPLE Product #A2L@P28
(3@-9189-p3) | |

im/ iR iwl

Applell

Apple Pascal

Operating System Reference Manual

ACKNOWLEDGEMENTS

The AppleﬁjPaEcaI system incorporates UCSD Pascal™ and Apple

extensions for graphics and other functions. UCSD Pascal was

developed largely by the Imstitute for Information Science at the
University of California at San Diego, under the direction of Kenneth

L. Bowles.

"UCSD PASCAL" is a trademark of The Regents of The University of
California. Use thereof in conjunction with any goods or services is
authorized by specific license only and is an indication that the
associated product or service has met quality assurance standards

prescribed by the University.

Any unauthorized use thereof is

contrary to the laws of the State of California.

APPLE PASCAL OPERATING SYSTEM

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION

- - - .
I W W oW

1
2 How to Use This Manual
'I 4 Manual Organization Summary
CHAPTER 2
B 3 THE COMMAND LEVEL 5
n' E 6 The Operating System
9 Commands Usable at All Levels
11 Using the Command Level
16 The Command Level Options
ll 20 Command Option Summary
B
CHAPTER 3
E' E THE FILER 22
24 Introduction
EI E 24 Volumes
28 Files
33 Using the Filer
34 The Filer Commands
E_, E 67 Filer Command Summary
EJ E CHAPTER 4
B i THE EDITOR 70
72 Introduction

A Brief Scenario

77
EL E 83 A Little More Detail
89 The Editor Commands

124 Editor Command Summary

TABLE OF CONTENTS

CHAPTER 5 APPENDIX A
THE PASCAL COMPILER » Bi -3 ARCHITECTURE OF THE P-MACHINE 2
:ifl :J;i;;dl:;:zlggmpiler E-t . ;;g ;i;h:}-;:lhi:iﬂ;—:::iﬁzt ion Set

B sprenDix 8

CHAPTER 6 |
+ w OPERATION OF THE P-MACHINE 247
THE 6502 ASSEMBLER i B
248 Introduction
136 Introduction 248 The System Codefile
138 Using the Assembler E 1 ‘! 254 System Memory Use
151 Assembler Information 260 Overview
157 The Assembler Directives
172 Assembler Directive Summary ! - iE
L |

APPENDIX C

CHAPTER 7 B e FORMATS 268
THE LINKER 175 El 1 266 Text Files

w266 Data Files
176 Introduction 266 Code Files

178 Using the Linker . | @

! . ;a APPENDIX D

CHAPTER 8 -
TABLES 271

UTILITY PROGRAMS o

el 272 When to Use .TEXT and .CODE
185 Introduction 273 Language System Disketrte Files
185 Formatting New Diskettes 276 Pascal I/0 Device Volumes
187 The System Librarian E 1 ia 277 Apple I/0 Device Slots
195 Library Mapping 278 Execution Error Messages
200 System Reconfiguration 280 1/0 Error Messages
211 Changing GOTOXY Communication i.l ia 281 6502 Assembler Error Messages
215 Removing Linefeed from Return § 283 ASCI1 Character Codes
217 Calculator 284 P=Machine Op-Codes
219 Utilities Summary

B: 4

APPLE PASCAL OPERATING SYSTEM ! ' TABLE OF CONTENTS

APPENDIX E
OPERATING SYSTEM SUMMARY =~ INTRODUCTION

286 Operating System
286 Command Level
287 Filer

288 Editor

289 Compiler

289 Assembler
289 Linker
290 Utilities

INDEX

Inside Back Cover Apple Pascal Command Tree

|
APPLE PASCAL OPERATING SYSTEM - INTRODUCTION 1 ‘

HOW TO USE THIS MANUAL

The Apple Pascal system is intended to run on the Apple II and Apple Y1-
Plus computers. The system requires 48K bytes of installed mEMOTY,
or more Apple Disk IT disk drives and the Apple Language System.
Installation procedures and other instructions for the required
Language Card are covered in the small Apple Language System manual ,
which you should read before beginning this manual.

Ome

)

The above symbol appears throughout this manual. Tts purpose is to
alert you to an unusual feature of the Apple Pascal operating system.

GETTING STARTED

The Apple Pascal Uperating System Reference Manual and the language
reference manual for the programming language you will use with the
Appple Pascal operating system are most definitely not intended for
beginners at using computers and Pascal. However, each language
reference manual for use with the Apple Pascal operating system
includes easily followed chapters to help you begin using the operating
system with that programming language. Read these chapters in the
programming language reference manual FIRST. They will help introduce
you to the Apple Pascal operating system and help you get the "feel" of
things, after which the more technical material in the Apple Pascal
Uperating System Reference Manual will be easier to follow.

THE OPERATING SYSTEM

The Apple Pascal system includes a Filer for handling disk files, a
powerful text Editor for writing programs, a Pascal Compiler to convert
your propgrams into executable P-code, a 65@2 Assembler to convert
assembly-language routines into machine-lanpuage code, and a Linker to
combine other routines into your program. These make up the Apple
Pascal operating system: they are not part of the Pascal programming
languapge itself, but they help you to write, store, and execute your
programs. In Chapters 2 through 7 of this manual, you will find
detailed discussions of each portion of the operating system. The
"comnand tree" shown on the inside back cover will help you find your
way around in the various levels of the operating systems.

2 APPLE PASCAL OPERATING SYSTEM

m

=
B

-

In addition to the main cperating system, there are also various utility
programs which let you format new diskettes, put routines into a system
library, and configure your system to run with most external terminals.

These utility programs and others are discussed in Chapter B.

In each chapter about the operating system, a special "Diskfiles"
gection tells you which Language System diskette to put in each disk
drive before attempting to use that portion of the operating system.
These "Diskfiles" sections can be a great help, especially for one-disk-
drive systems, where use of the Language System diskettes may seem
confusing, at first.

In general, each chapter in this manual contains a detailed discussion
.- 0of a particular portion of the Apple Pascal operating system, followed
I by a summary of the information in that chapter. Read the main body
"™ of the chapter the first time, and whenever you need detailed
information about that topic. Use the summary for a quick reference,
“— when you just need to be reminded of information wyou already know.

An even briefer summary of all the operating system commands appears
in the last appendix, at the end of this manual.

THE LANGUAGE

This manual contains some information about using the Apple Pascal
operating system with the Apple Pascal programming language and with

. 65@2 assembly language. However, it does not attempt to describe or
1 explain the details of any programming language. For further

information about any of the programming languages used with the Apple

Pascal operating system, you should consult the reference manuals for
a the individual languages.

INTRODUCTION 3

B\

MANUAL ORGANIZATION SUMMARY

— THE COMMAND LEVEL

Chapter 1 INTRODUCTION

m m m

Chapter 2 COMMAND level: to select Filing, Editing, Compiling,
Assembling, Linking, Running, etc.

Chapter 3 FILER: handles disk and other files

Chapter & EDITOR: for writing and changing text files

Chapter 5 COMPILER: converts Pascal text into P-code

Chapter b ASSEMBLER: converts assembly-language text into 65@2
machine-language

Chapter 7 LIBKER: ties exterpal routines inte your programs

Chapter 8 UTILITIES: disk formatter, installing routines into a
system library, external terminal setup, etc.

Appendix A Architecture of the P-machine

Appendix B Operation of the P-machine

Appendix C File formats

Appendix D TAELES of useful information

Appendix E SUMMARY of all operating system commands

J!!H .!!i

4 APPLE PASCAL OPERATING SYSTEM

THE OPERATING SYSTEM

The Apple Pascal system described in this document is intended to run
on the Apple II and Apple I1-FPlus computers. The system requires &4BK
bytes of installed wemory, oné or mare Apple Disk II disk drives and

the Apple Language System.

While the system is primarily intended to use the Apple keyboard and the
usual TV or monitor, an external CRT terminal such as the Soroc 1Q 129
can act as the CONSOLE device, connected to the Apple through a
modified Apple Communications Interface Card. With such an external
terminal, it becomes possible to do text and program editing in upper
and lower case on a large (8¢ characters by 24 lines) screen. For most

programming purposes, an external terminal is completely unnecessary.

z

This manual is written specifically for using the Apple Pascal operating B

system with the Apple Pascal programming language and compiler. TIE you
are using the Apple Pascal operating system with any other programming
language, you must first read that language’s reference manual for
special instructions about using this operating system.

THE SCREEN DISPLAY

The Apple Pascal operating system always uses a display that is 8@
characters wide. The Apple’s 4f-character screen normally shows only

the leftmost 40 characters (the left '"page") of the Pascal display,
which is sufficient for most applications. To see the rightmost 40

characters (the right "page") of the display, type A while holding
down the CTRL key (we will usually call this "OTRL=-A"). Press CTRL-A
apain to go back to the left "page" of the display. When the white
square cursor is on the screen, you can make the Apple screen scroll
right and left to "follow" the cursor automatically, by pressing CTRL-
2. CTHEL-A (like many other commands) cancels CTRL-Z.

THE PROMPT LINE

At most times you will see a "prompt line" which shows the command
options available to you at the moment. Here are 2 examples:

COMMAND: E(DIT, R(UN, F(ILE, C{OMP, L(INK, ¥(ECUTE, A(SSEM, D(EBUG, ?
COMMAND: E(DIT, R{UN, F(ILE, C(OMF, L{IN
Note: In general, prompt lines throughout this manual are given in two

somewhat different forms. The longer, more complete form is the
prompt line as it might appear om an external terminal which ean

display an 8f-character line. The shorter form is the prompt line as

& APPLE PASCAL OPERATING SYSTEM

’

TR TR TR)

anl i/ iR &l &l ial

ARl AR ARl AR iRl

it will appear on the Apple’s é4@f-character monitor or TV screemn. In a
few cases, the order of the options shown in the long form differs
from that in the shorter form. Many prompt lines end in a series of
letters and numbers enclosed in square brackets. These indicate the
version number of the portion of the program with which you are
working.

In response to this prompt line, you can use the Editor, Run a
program, operate the Filer, or choose any of several other options,
just by typing a single letter. Typing E , for example, will invoke
the Editor.

When you do invoke the Editor (or exercise almost any of the other
options), you will usually be shown another prompt line that allows you
to choose command options appropriate to that activity. The "command
tree" shown on the inside back cover of this manual will help you find
your way around in the various levels of the operating system.

Sometimes the prompt line contains too many options to fit on the
screen’s two 4ff-character "pages". If this happens, a question
mark (?) may appear at the end of the prompt line. Whether or not
the ? appears in the prompt lime, typing 7 will cause any
remaining command options to be displayed.

On some occasions, you will have to type a name or other information
longer than a single character. These entries are terminated by
pressing the RETURN key. If you make a typing mistake before pressing
the RETURN key, you can backspace over the error by pressing the
backspace key (left-pointing arrow key) near the right side of the
keyboard. Typing a CTRL-X will erase all the characters you have just
typed. On a terminal such as the Soroc IQ 12¢, a RUB key (or another
key) may do this quick-erase. If you wish to get rid of the guestion
altogether, just press the RETURN key.

DISKFILES NEEDED FOR BOOTING

The following diskfile is needed for the first stage of a "cold boot"

of the system:
SYSTEM.APFLE (in the boot drive; required)

The system is "cold booted" every time the Apple’s power is turned on,

or when the H(alt option is selected from the COMMAND prompt line.

The file SYSTEM.APPLE contains the interpreter, which allows compiled

P-code to be executed by Apple’s 65@2 processor. The interpreter is

loaded into the Language Card’s memory, and write-protected there. It

does not have to be re-loaded until the next cold boot of the system.

This file is normally found on diskette APPLEl: and also on diskette

APPLE3:, so either of those diskettes may be placed in the boot drive
(volume #4:) to begin a cold boot.

COMMAND LEVEL 7

4___——

=

The following diskfiles are needed to complete a "cold boot" of the
system, or to effect a "warm boot" of the system:

(in the boot drive; required)
{in the boot drive; required)

SYSTEM.PASCAL
SYSTEM.MISCINFO

The system is "warm booted" when the Apple’s RESET key is pressed,
when the I(nitialize option is selected from the COMMAND prompt line,

or when any system error causes the system to be re-initialized (re-
booted). These two files are normally found on diskette APPLE@: and

also on diskette APPLEl:, so either of those diskettes may be placed

in the boot drive (volume #4:) to effect a warm boot, or to complete a
cold boot. The diskette which supplies these two files becomes the

system’s "boot diskette".

In general then, it is easiest to cold-boot any system with diskette
APPLEL: in the boot drive. Once this cold boot is complete, one-drive

users may wish to switch to APPLE@: as their system diskette, by
placing APPLE@: in the boot drive and pressing the RESET key. A warm

boot may be carried out if either diskette APPLE@: or diskette APPLEL:
is in the boot drive.

Kote: If APPLE3: is used to start a cold boot, no mesSage appears on
the screen. When all action ceases, put APPLE@: or APPLEl: in the
boot drive and press the RESET key to complete booting.

MAKING A TURNKEY SYSTEM

The Apple Pascal system allows you to set up a turnkey system, which
will automatically begin running a particular program when the Apple is
turned on. To set up your Apple as a turnkey system, Eirst make a copy
of diskette APPLEl: and use the Filer’s C(hange command to change the
copy’s name to something you will recognize. For example, you might
name this diskette TURNKEY: . Now T(ransfer a copy of your program
codefile onto the turnkey diskette, pgiving this new copy of your
program the filename SYSTEM.STARTUP . Make sure your turnkey diskette
contains the following files:

m

SYSTEM.APPLE
SYSTEM.PASCAL
SYSTEM.MISCINFO
SYSTEM.LIBRARY
SYSTEM.CHARSET
SYSTEM. STARTUP

=

{if needed by your STARTUP program)
(if needed by your STARTUF program)

L4

You may remove any other files (such as SYSTEM.FILER, SYSTEM.EDITOR,
and SYSTEM.SYNTAX) if you need more space on the diskette for your

program’s Elles.

e

To run your turnkey program, put the turnkey diskette in the boot drive

Soon, and with no further intervention,
SYSTEM. STARTUP will also be
or the RESET

and turn on the Apple’s power.
SYSTEM.STARTUP is executed. Thereafter,
executed each time the system is re-booted, re—initialized,

key is pressed.

= =

8 APPLE PASCAL OPERATING SYSTEM

e TR TR BBBBTTBBTTBBEEEEEEEEERR——S—————————

I

N

B
B
B

Al Rl A A

i ia

THE WORKFILE

The Apple Pascal system makes frequent use of a "workfile'". The
workfile is a special "default file" used during the development of a
program or a piece of text. You can Edit, Save and Update, Compile or
Assemble, Link and Run the workfile as often as you wish, without
having to specify the name of the workfile for each operation. These
operations automatically assume you are referring to the workfile on
the boot diskette, if there is a workfile currently stored on that
diskette, and 1f that diskette can be found in one of the disk drives.
The boot diskette 1s the diskette that was in the boot drive, volune
#4: (slot 6, drive 1), the last time the system was booted.

The system always stores the workfile on the boot diskette, using the
same Filename: SYSTEM.WHE . This is handy for you and the system, as
it makes it easy to find the current file on which you are working.
For text, the stored workfile’s full name is always SYSTEM.WRK.TEXT .
For programs, the stored workfile often consists of both the text
version (SYSTEM.WRK.TEXT) and the compiled or assembled version
{SYSTEM.WRK.CODE) which are saved and retrieved together. Individual
commands automatically use the correct version of the workfile.

1t is also possible to designate any other filename as the next

workfile, using the Filer’s G(et command. This command removes any
old files named SYSTEM.WRK from the boot diskette, but does NOT create

a new File named SYSTEM.WRE . Instead, the next time any command
(such as Edit, Compile, or Run) attempts to use the workfile, the file
designated by G(et is used.

Only one workfile is allowed at any one time. This is no limitation,
since it is easy to Save your current workfile under a filename of

your choosing, so that you can create another workfile. And it is

just as easy to bring a saved file back to be your new workfile.
These operations are covered in this manual®s chapter THE FILER.

COMMANDS USABLE AT ALL LEVELS

Certain system commands can be executed at ANY level of the operating
system, regardless of which option is in force at the moment. You
have already been introduced to those affecting the screen, but there
are others, as well. These omni-present commands are listed below; at
no time do these commands appear on any prompt line. Note that the
system will detect a typed command only when the next input or output
operation begins-

CTRL-A

Shows the other 40-character "page" of the Apple Pascal systen’s
80-character display, until the next CTRL-A.

COIAMAND LEVEL 9

CIRL-Z

Initiates "Auto-follow" mode: the screen scrolls right and left to
follow the cursor. Cancelled by CTRL-A and many other commands.

CIRL- @

Causes current program to be Iinterrupted and issues the message
"PROGRAM INTERRUPTED BY USER." Press spacebar to reinitialize the
system.

CTRL-F

Causes subsequent program output to be flushed. The program continues
to run, but its output is not sent to the screen or the printer.
Cancelled by the next CTRL-F .

CITRL-S

Stops any on-golng operating system process or program. When the next
CTRL-S is typed, the process continues.

POWER DOWN-AND-UP

Turning the Apple”s power switech off and then on again does a "ecold
boot" of the system, just as if the system were being turned on for the
first time. This command will stop any on-going process, at the
expense of losing whatever is in the Apple‘s memory. When the system
"hangs" (stops and does not respond to the keyboard, even when you
press the RESET key), this command will usually re-start the system.
After this command, you will have to repeat the entire normal startup
procedure. The P-code interpreter is loaded into the Language Card and
write-protected there, so0 the file SYSTEM.APPLE must be on the diskette
in the boot drive, volume #4:. To accomplish a cold boot, one-disk-
drive systems and multiple-disk-drive systems must both start with
diskette APPLEl: In the boot drive.

RESET

Pressing the Apple”s RESET key does a "warm boot" of the system. This
command will stop almost any onpgoing process, at the expense of losing

whatever is in the Apple’s memory. When the system "hangs" (stops and
does not respond to the keyboard), this command will usually re-start

the system. The P-code interpreter is not re-loaded Into the Language

10 APPLE PASCAL OPERATING SYSTEM

Card by a warm boot, so the diskette file SYSTEM.APPLE need not be
present. To accomplish a warm boot, either diskette APPLEl: or
diskette APPLEf: must be in the bhoot drive, volume #4 .

USING THE COMMAND LEVEL

The Command level of the Apple Fascal system 15 reached whenever you
boot or reset the system (by any means), when the system re-
initializes itself after a fatal run-time error, when you Q(uit the
Editor or the Filer, and when you finish C(ompiling, A(ssembling,

L{inking, X{ecuting, or R{unning any utility or other program. You
have already seen the COMMAND prompt line:

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L({INK, X(ECUTE, A(SSEM, D(EBUG,

w3

Use CTRL-A to see the rest of the prompt line. After typing a ?
the remaining Command options are shown:

COMMAND: U{SER RESTART, I(NITIALIZE, H(ALT

DISKFILES NEEDED

The Apple Pascal operating system is much too large a program to be
kept entirely in the Apple’s memory all the time. Besides, you use
only a small part of the operating system at any given time. For this
reason, the operating system is broken into several smaller portions,
and these program portions are stored in separate diskfiles on the
system diskettes, under filenames such as SYSTEM.FILER, SYSTEM.EDITOR,
and SYSTEM.COMPILER. Each option from the COMMAND prompt line uses
one or more of these special diskfiles.

Before you specify a particular Command option, you must first make
sure that the diskfiles needed by that portion of the operating system
are available. In most cases, the required diskfile is allowed to be
on ANY diskette in any of your system’s disk drives. The system just

goes through the diskettes in every drive until it finds a file with
the necessary filenanme.

The workfile (SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE)} and the Compiler‘s
error-message file (SYSTEM.SYNTAX) will be found by the system ONLY if
they are on the boot diskette. The boor diskette Is the diskette that
was in the boot drive, volume #4: (slot 6, drive 1), the last time the
system was booted. The system will usually look for rthe boor diskette
in the boot drive first, but will also look in the other drives if
Necessarys

The diskfiles SYSTEM.PASCAL and SYSTEM.LIBRARY are usually accessed by
going directly to their positions on the diskette in the boot drive.
During the booting process, the system notes the positions of these
two files on the boot diskette. Thereafter, whenever the system needs
elther of those files, it assumes that the diskette in the boot drive

COMMAND LEVEL #

——— -

still contains the needed files in exactly the same diskette posirions
occupied by those files during the last boot. If the system does not
find the correct information at those diskette locations, the system
may "hang" (stop responding to the keyboard), and you will have to re-
boot. If you change the contents or the position of either of these

files, you should RESET or I{nitialize the system to let it discover
the change.

During program execution, the information in SYSTEM.LIBRARY is
accessed by its boot-time position in the boot drive. During linking,
however, the Linker searches for *5YSTEM.LIBRARY by name, and will
find it on the boot diskette in any drive.

For information about entering the Command level wia a "cold boot" or
wvia a "warm boot", see the section DISKFILES NEEDED FOR BOOTING,
earlier in this chapter. The system is "cold booted" when the
Apple’s power is turned on, or when the Command option H(alt is
selected. The system is "warm booted" when the Apple”s RESET key is
pressed, when the Command option I(nitialize is selected, or when any
system error causes the system to be re-initialized (re-booted).

The following diskfile is needed each time the system returns to the
Command level following the termination of any option or program:
SYSTEM.PASCAL (boot diskette, in boot drive;
This file contains the Command level portion of the operating system.
The system tries to re—enter the Command level after any program is
terminated by Q(uitting any portion of the operating system, by

reaching the END. of any option or any program that you are executing,
or by any non-fatal execution error.

When the system attempts to return to Command level it first checks to
be sure the diskette in the boot drive is the correct boot diskette.
1f the diskette is in the boot drive, but does not have SYSTEM.PASCAL
in the expected diskette locations, the system may "hang", and may not
respond even to the RESET key. In this case, you will have to cold
boot the system by turning the power off and then on again, with
diskette APPLEL: in the boot drive.

Each return
drive. The
diskette is
terminated.
in the boot

to Command level must find the boot diskette in the boot
easiest way to accomplish this is to make sure your boot
in the boot drive whenever a Command option or program is
If a return to Command level finds the wronpg diskette
drive, you will be prompted

PUT IN APPLEIL:

{(if APPLEl: is your boot diskette). The boot drive will start again

and again, until you press RESET or put the correct boot diskette in
the boot drive.

12 APPLE PASCAL OPERATING SYSTEM

required)

™

"
ik

AR R

A=

The file SYSTEM.PASCAL is normally found on diskette APPLEf: and also
on diskette APPLEl: . However, you must stick with ome or the other

ﬂthe one which is your boot diskette) when leaving the Command level

nd returning to it. To change from using one of these diskettes to
using the other as your boot diskette, you should place the new

oot. You should also re-boot the system any time you move the file
YSTEM.PASCAL on your system diskette. Re-booting lets the system i
discover a new boot-diskette”s name, and also discover SYSTEM.PASCAL s

iisk&tte in the boot drive and press the Apple’s RESET key to re-
L

ﬁnew diskette location.

The following table summarizes the diskfiles needed by wvarious

- qcommand options:
L

COMMAND FILES NEEDED WHERE FILES MUST BE FOURD
EF(ile SYSTEM.FILER (any disk, any drive; needed only at start)
Files to be (any disks, any drives; T{ransfer
moved requires source file to be present;
E can prompt for destination file)
E(dit SYSTEM.EDITOR (any disk, any drive)
Textfile to be (any disk, any drive; optional; default
a Edited boot disk’s SYSTEM.WRK.TEXT, any drive)
C({ompile SYSTEM.COMPILER (any disk, any drive)
Textfile to be {any disk, any drive; default is boot
E Compiled disk®s SYSTEM.WRK.TEXT, any drive)
SYSTEM.LIBRARY (boot disk, boot drive; required only
if program USES Intrinsic Units)
{! SYSTEM.EDITOR {any disk, any drive; optional; to fix
errors found by Compiler)
SYSTEM.SYNTAX (boot disk, any drive; optional; provides
= error messages on entering Editor)
i
A(ssemble SYSTEM.ASSMBLER (any disk, any drive)
650@.0PCODES (any disk, any drive; required)
650¢.ERRORS (any disk, any drive; optiomal; pro-

vides error messages in Assembler)

Textfile to be {any disk, any drive; default is boot

Assembled disk’s SYSTEM.WRK.TEXT, any drive)
SYSTEM.EDITOR (any disk, any drive; optional; to fix
errors found by Assembler)
L(ink SYSTEM.LINKEER (any disk, any drive; needed only to start)

Host codefile {any disk, any drive; default is boot
disk’s SYSTEM.WRK.CODE, any drive)
{any disk, any drive; default is boot

disk”s SYSTEM.LIBRARY in any drive)

Library codefile

COMMAND LEVEL 13

¥(ecute Codefile to be {any disk, any drive; required only
eXecuted vwhen loading, if no segment overlays)
SYSTEM.LIBRARY (boot disk, boot drive; required if the
program uses long integers, does file
1/0 using reals or SEEK, or USES
Intrinsiec Units)
SYSTEM.CHARSET (any disk, any drive; required if WCHAR
or WSTRING called from TURTLEGRAPHICS)
R(un Text or Codefile (any disk, any drive; default is boot

to be Run disk’s SYSTEM.WRK.CODE or .TEXT)
SYSTEM.COMPILER {any disk, any drive; required only if
file being Run is a textfile)
SYSTEM.EDITOR (any disk, any drive; optiomal; to fix
errors found by Compiler)
SYSTEM. SYNTAX {boot disk, any drive; optional; provides
error messages on entering Editor)
SYSTEM.LINKER (any disk, any drive; required only if
other routines need to be Linked in)
(no Link needed to USE Intrinsic Units)
SYSTEM. LIBRARY (boot disk, any drive; required to hold
needed routines If Linker called)
SYSTEM.LIBRARY (boot disk, boot drive; required if
program uses long integers, does file
1/0 using reals or SEEK, or USES
Intrinsic Units)
SYSTEM.PASCAL {boot disk, boot drive; required between
Compiling, Linking, and eXecuting.
SYSTEM.CHARSET {any disk, any drive; required only if
program uses WCHAR or WSTRING from
TURTLEGRAPHICS)
U(ser restart All files (same file locations required by last

needed by last program or option)

program or option

I(nitialize SYSTEM.PASCAL (any disk, boot drive; this disk
SYSTEM.MISCINFO becomes the new boot disk)

H{alt SYSTEM. APPLE {any disk, boot drive; first stage hoot)
SYSTEM.PASCAL (any disk, boot drive; this disk
SYSTEM.MISCINFO becomes the new boot disk)

Return to SYSTEM. PASCAL (boot disk, boot drive)

Comnmand
Level

The "boot drive" is volume #4: (slot 6, drive 1). The "boot disk" is
the diskette that was in the boot drive the last time the system was
booted (usually APPLE@: on one-drive systems, and APPLEl: on larger
Systems).

14 APPLE PASCAL OPERATING SYSTEM

:

B

B

| T

Here is where the system files needed by the Command level are
normally found:

Diskette
APPLEL:

Diskette
APPLEf:

Diskette
APPLE2:

SYSTEM. APPLE SYSTEM. COMPILER

SYSTEM- PASCAL SYSTEM. PASCAL

SYSTEM-MISCINFO SYSTEM.MISCINFOD SYSTEM.LINKER
SYSTEM- COMPILER SYSTEM. ASSMBLER
SYSTEM.EDITOR SYSTEM-EDITOR 65@@ . OPCODES

SYSTEM- FILER
SYSTEM.LIBRARY
SYSTEM.CHARSET
SYSTEM . SYNTAX

SYSTEM FILER

SYSTEM.LIBRARY
SYSTEM- CHARSET
SYSTEM-SYNTAX

&£5@p. ERRORS

As you can see, there is little difference between diskettes APPLEf:
and APPLEl: . Diskette APPLE@: is more convenient for editing and

running Pascal programs, especially on one-drive systems, because it
contains the file SYSTEM.COMPILER . However, APPLEP: cannot be used

to cold-boot the system, as it is lacking the file SYSTEM.APPLE .
Diskette APPLEl: contains all the files you need for editing text, and

for cold-booting the system. However, APPLEL: cannot be used to R{un
or C{ompile your text, as it is lacking the file SYSTFM.COMPILER .

On multiple~-drive systems, APPLEl: is often kept in the boot drive and
APPLE2: in another drive, thus making all of the operating system
available at all times.

Most system files must be available in one of the disk drives
constantly, from the moment you select the Command option using that
file until you Quit that option or until it terminates. This is true
of the E(dit, C{ompile, and A(ssemble options. These programs

are "overlaid", using segment procedures, so that different portions
of the program are called in from disk as they are needed, to

conserve memory. In such cases, if your system has only one disk
drive you should use the Filer to T(ransfer all the necessary files to
one diskette (usually the system diskette, APPLEP: or APPLEl:) before
you select that option.

Files containing non-overlayed programs are needed only at the moment
the program is loaded into the Apple’s memory. Once they have begun
execution, the source diskette may be removed from its drive.

The F(ile Command and L({ink Command options have been purposely written

without overlaying. The file SYSTEM.FILER is needed at the moment you
select the F(ile option, but not subsequently. You should make sure a
diskette containing SYSTEM.FILER is in one of the disk drives when you

select the F(ile option, but as soon as the new FILER prompt line
appears you may remove that diskette and put in any other.

COMMAND LEVEL 15

Any time the Linker is invoked, SYSTEM.LINKER must be available.

and the diskette containing SYSTEM.LINKER may be removed from the System
to make room for other diskettes.

More details about using the disks with various commands are given in
the chapters on the Filer, Editor, Compiler, Assembler, and Linker.

THE COMMAND LEVEL OPTIONS

However,
when the LINKER prompt line appears, SYSTEM.LINKER is no longer necessary

Many of the Command options are explained only briefly below.

This manuzl’s chapters on the Filer, the Editor, the Compiler, the
Assembler, and the Linker discuss individual Command options in much
greater detail.

F(ILE

Typing F from Command level places you in a level of the system called
the Filer. The Filer contains commands for saving, reading, moving
and deleting the workfile and other disk files. Other commands tell
you what peripheral devices and diskettes are currently available to
the system, and what files are saved on each diskette. Still other
commands let you check diskettes for damage or recording errors, and
let you set the system”s current date and the default volume name.

For more documentation, see this manual®s chapter THE FILER.

E(DIT

Typing E while atr the Command level invokes the Editor program. 1If a
workfile is available, that file is automatically read into the
computer for editing. Otherwise, the Editor asks you to specify a
textfile or begin creating a new one. While in the Editor, you may
create or alter text in the workfile or in any textfile. Various
commands allow you te insert and delete information, find and replace
specified character strings, change the text format, combine files,
etc. On leaving the Editor, you may save your edited text in the
updated workfile or in another specified file. See this manual®s
chapter THE EDITOR for details.

C(OMPILE

Typing C while at the Command level invokes the system Compiler. If a
text workfile is available, that file is automatically read into the
computer for compiling. Otherwise, the Compiler asks you to specify a
source textfile and an object codefile. During compilation, if the
Compiler detects a syntax error, it pgives you the option of calling
the Editor, which points out the error and lets you correct it. After
a successful compilation, the resulting P-code is saved in the code
workfile unless you have previously specified another object codefile.
For more details, see this manual®s chapter THE FASCAL COMPILER.

46 APPLE PASCAL OPERATING SYSTEM

1)

R

i

A(SSEMBLE

Typing A from the Command level invokes the 65(2 Assembler program.

If a text workfile is available, that file is automatically read into
the computer for assembling. Otherwise, the Assembler asks you to
specify a source textfile and an object codefile. During assembly, if
the Assembler detects a syntax error, it gives you the option of
calling the Editor, which points out the error and lets you correct
it. After a successful assembly, the resulting machine code is saved
in the code workfile unless you have previously specified another
object codefile. For more information, see this manual®s chapter

THE 65@2 ASSEMBLER.

L(INK

Typing L from the Command level starts the system Linker program
explicitly. Unlike the automatic linking initiated by the R(un
command (see description below), this option allows you to link
previously compiled or assembled routines into your program, taking
those routines from SYSTEM.LIBRARY or any other specified library
file. For more Iinformation, see this manual’s chapter THE LINKER.

X(ECUTE

After typing X from the Command level, the system asks you to specify
a previously compiled codefile:

EXECUTE WHAT FILE?

You should respond by typing the filename of the compiled P-code
program that you wish to be executed.

It is not necessary to type the suffix .CODE ; that suffix is
automatically supplied by the system if you don“t type it. If you wish
to defeat this feature, In order to execute a program whose filename
does not have a .CODE suffix, type a period (.) after the last
character of the desired filename.

When you have specified a codefile, that file is executed if it is
available, except in the following cases:

1) If all code necessary to execute the Pascal codefile has not yet
been linked in, or if the file is an unlinked assembly codefile, the
message

MUST L{INK FIRST
is displayed (see L(ink, above). You are immediately returned to the

Command level, where you may carry out the necessary linking process
before executing the linked file.

COMMAND LEVEL 17

2) 1f the specified file contains anything other than the expected
compiled P-code, (for example, text or linked assembly code) you will
get a message slmilar to this:

MYDISK MYFILE.CODE NOT CODE

3) If the file SYSTEM.LIBRARY is not available in the expected
diskette locations in the boot drive (#4:)}, or if that file 1is not
complete, you may be shown the message

REQUIRED INTRINSIC(S) NOT AVAILARLE

This indicates that the program you are executing uses Units or
routines normally found in the file SYSTEM.LIBRARY . These include
routines for long integers, random numbers, transcendental functions,

game paddles, graphics, and file input and output using real numbers
or SEEK.

4) If the file SYSTEM.CHARSET is not available on the boot diskette, a
program using WCHAR or WSTRING from the Unit TURTLEGRAPHICS will be

executed, but no characters will appear on the screen.

It is convenient to X(ecute programs which have already been compiled,
but which are not currently in the workfile. Otherwise, you would

have to enter the Filer, G{et the file (this identifies it as the next
workfile), Q(uit the Filer, and then R{un the program.

The most common operating system functions can be selected directly
from the prompt lines. Functions used more rarely are supplied as
utility programs, which are available through the X(ecute command. By
X(ecuting these utilities, you can format new diskettes, place
compiled or assembled routines in the system library, configure your
system to run with an external terminal, etc. For a complete
discussion of these abilities, see this manual’s chapter UTILITY
PROGRAMS .

R(UN

Typing B from the Command lewvel initiates the R(un sequence, which
combines the Command options C{ompile, L(ink, and X(ecute, as needed.
If a code workfile is available, that file is automatically executed.
Otherwise, the Compiler is automatically called as described above.

If the compilation requires linkage to other routines, the Linker is
automatically Invoked and looks for the routines only in the file
SYSTEM.LIBRARY on the boot diskette. After successful compilation and
linking (if those were necessary), the program is executed. See the

descriptions of the options C(ompile, L{ink, and X{ecute for more
details.

Note: Between any two portions of the R{un sequence, the system

returns for an instant to the Command level. Thus the boot diskette
must normally remain in the hoot drive throughout the R{un sequence.

18 APPLE PASCAL OPERATING SYSTEM

The R(un option is one part of the normal program-development process.
Initially, the E(dit option 1s used to create the first ewecutable
portion of a new program. When this portion seems complete, it is
saved in the workfile. Then, the R(un option attempts to compile the
workfile and, if successful, to execute the compiled program. To
expand the program or to correct compilation errors, you go back to
the E(dit option. Then the workfile is U(pdated to contain this new
version, and you can R{un the workfile again. And so on.

ﬁgg;

D(EBUG

The D(ebug prompt does not correspond to a currently implemented
command. The Compiler is called, but no debugging routines are
available. Do not use this command.

U(SER RESTART

Typing U from the Command level tells the system to begin executing
again the last program or option which was executed. For example, if
you have just Quit the Editor the U(ser restart option will re-invoke
the Editor; if you have just finished executing a Pascal program, that
program will be executed again.

I(NITIALIZE

Typing I from the Command level has nearly the same effect as pressing
the Apple’s RESET key. The system is re-started, and everything in
memory is lost, but the P-code interpreter is not re-loaded into the
Language Card, so the diskette file SYSTEM.APPLE need not be present.
Either diskette APPLEl: or diskette APPLE@: must be in the bhoot drive,
volume #4: . I(nitializing is a little faster than the "warm boot"
caused by RESET and the P(refix diskette name is not forgotten as it is
when RESET is pressed.

H(ALT

Typing H from the Command level does a "cold hoot" of the system, just
as if the system were being turned on for the first time. The P-code
interpreter is loaded into the Language Card and write-protected
there, so the file SYSTEM-.APPLE must be on the diskette in the boot
drive, volume #4: . To accomplish this, one-disk-drive systems and

multiple-disk-drive systems must both have the diskette APPLEl: in the
boot drive. After the H(alt command, you will have to repeat the
entire normal startup procedure.

COMMAND LEVEL 19

COMMAND OPTION SUMMARY

Many of these options use the "workfile". The text portion of the
workfile is SYSTEM.WRK.TEXT, created on the boot diskette by the
Editor“s U(pdate command. The code portion of the workfile is
SYSTEM.WRK.CODE, created on the boot diskette by the R{un or C{ompile
options. In addition, the Filer’s G(et command can be used to
designate any other text and/or code file as the workfile for the next

option to uses

F(ile

E({dit

C{ompile

A(ssemble

L{ink

X({ecute

R{un

D{ebug

U(ser restart

I(nitialize

H(alt

Invokes the Filer, which is used to save, move, and
retrieve information stored on diskettes.

Invokes the Editor, which is used to create and modify
text. Reads the workfile or other specified textfile
into the Apple for editing.

Invokes the Pascal Compiler, which converts the text of a
Pascal program (Eound in the workfile or other specified
textfile) into executable P-code.

Invokes the Assembler, which converts the text of an
assenbly=-language subroutine (found in the workfile or
other specified textfile) into 65P2 machine language.

Combhines external P-code and machine-language
subroutines (found in SYSTEM.LIBRARY or other specified
library codefile) into a Pascal host program (found in
the code workfile or other specified host codefile).

Loads and runs the specified Pascal program codefile.

Executes the current workfile, automatically compiling
and linking (from SYSTEM.LIBRARY) first, if necessary.

Not implemented; do not use this option.

Attempts to execute again the last program or option
that was executed.

Does a "warm boot" of the system, similar to pressing the
RESET key, but faster.

Does a "eold boot" of the system, like turning the
Apple®s power off and then on again.

20 APPLE PASCAL OPERATING SYSTEM

manmqmwu

o &

=

=

- —

iR

-5

=

hm

LA

le

[V &

-

-

bl

COMMAND LEVEL 24

al
e

THE FILER

=\

ISR SIS

s .r.l

18 &

-

11

i

g

T

22 APPLE PASCAL OPERATING SYSTEM ’ FILER 23

INTRODUCTION

The Filer portion of the Apple Pascal operating system handles most of
the tasks of transferring information from one place to another. Saving
information on disk, moving and deleting disk files, sending informatiaon
to the computer or to the printer -- these are some of the functions of
the Apple Pascal Filer. The Filer is also responsible for telling you
where files have been placed on the diskettes, and what devices and
diskettes are available for your system’s use.

DISKFILES NEEDED

The following diskfile is needed when you type F
Filer, from the Command level:

to select the

SYSTEM.FILER (any diskette, any drive; required)
When the FILER prompt line appears, SYSTEM.FILER is no longer
necessary, and the diskette containing SYSTEM.FILER may be removed
from the system to make room for other diskettes. The file
SYSTEM.FILER is normally found on diskette APPLE@: and also on
diskette APFLEl: , so one of those should be in any available disk
drive when you type F from the Command level.

When you use the Filer’s T({ransfer command to transfer information
from one diskette to another, the source diskette for the transfer
must be available in any disk drive before you answer the question
TRANSFER? When you have specified the destination for the transfer,
you will be prompted to insert the destination diskette if it is not
already in a disk drive. This is not a problem with systems that
have two or more disk drives, as both source and destinatien
diskettes can be placed in available drives at the same time.

The following diskfile i5 needed when you type Q to Quit the Filer:

SYSTEM. PASCAL {on boot diskette, in boot drive; requirad)
This file must be on the boot diskette, in the boot drive, and must
oceupy the same diskette locations that it occupied when the system was
last booted. This means you should place APPLE@: or APPLEl: (whichever
became your boot diskette when you last booted the system) back inte
drive #4: before you type Q to Quit the Filer. 1If you forget to do
this, the system will tell you to

PUT IN APPLEL:

(if APPLEl: is your boot diskette). The boot drive will start again and
again, until you press RESET or put the correct boot diskette in the boot
drive.

24 APPLE PASCAL OPERATING SYSTEM

gn
E'
‘I
!l
!.
!I
!I
!:

TECHNICAL INFORMATION

The Apple Pascal operating system stores information on a diskette in
35 concentric zones or bands, called "tracks". The disk drive’s

recording and reading head can be moved in and out, to stop and hover
over each of these 35 different zones of the spinning diskette.

The length of each track on the diskette is divided into 16 segments,
called "sectors". Once the disk drive’s recording and reading head is
positioned over a given track, that track’s 16 sectors will pass under

the head, one after the other, each time the diskette spins arcund.

Each sector consists of an "address field" and a "data field". The
address field tells the system exactly which sector of which track is
about to be read from or written onto by the disk‘s read/record head.
The address fields are written on a diskette just once, when the
diskette is formatted for first use. The data field is the portion of
each sector used for storing your data, code, or text information. Up
to 2536 bytes of information can be stored in each sector’s data field.

The Apple Pascal system always stores information in two-sector units
called "blocks'", each containing 512 bytes (also called "1/2 K" bytes)
of information. Each of a diskette’s 35 tracks can thus store eight
blocks of information, for a total diskette gtorage capacity of 280
blocks (l4@ K bytes). While the Filer handles all of this for you
automatically; the lowest-level Pascal routines for storing and
retrieving diskette information are also available, through the system
intrinsics UNITWRITE and UNITREAD (see the Apple Pascal Language
Reference Manual for detalfls).

The 28 blocks on a diskette are not all available for storing your
programs or other files. Blocks ¥ and | are reserved for the
bootstrap program. In addition, every diskette must contain a
"directory", which is the system’s only way to recover the other
information stored on that diskette. The directory occupies blocks
Z through 5 on the diskette and may store information for up to 77
different files.

A file is stored on the diskette only in contiguous blocks of
contiguous tracks. Free blocks which are scattered here and there on
the diskette may not be usable to store a large file, but yOu can use
the K{runch command to combine scattered free blocks into one
contiguous area that can be usad.

If the W(rite or U(pdate Editor option is chosen to save a file, the
new version is saved; THEN the old version is deleted. This uses more
space on the diskette, but also insures that at all times during the
saving process at least one version of your file is intact on the
diskette. When the Editor’s S(ave option is chosen, the original file
is destroyed while the new file is being created. This command asks
your permission before it overwrites the old file with the new one.

HLER 25

- —

VOLUMES

"

INPUT AND OUTPUT DEVICES

A "volume" is any input or output device, such as the screen, the
keyboard, or a disk. A "block-structured" device is one that can have
4 directory and files. In the Apple Pascal sytem, the only block=-
structured devices are the Disk II floppy disk drives. A non-block-
structured device does not have any internal structure; it simply
produces or consumes a stream of data. The screen and the keyboard,
for example, are non-block-structured.

(=1
an/ am am aml aml wml m em es el el e

A device may be referred to by its volume number or by its wvelume
name. The volume name of a disk drive is the name of the diskette
currently in that disk drive. The following table shows the reserved
volume numbers and volume names that Apple Pascal uses to refer to
various input and output devices.

Volume Volume Description of E !
Number Name Input/Output Device
s (not used) E i
#l: CORSOLE: Screen and keyboard with echo
#2: SYSTERM: Reads keyboard without echoing it
#3: (not used)
#a: <diskette name>: Boot disk drive (slot 6, drive 1) El
#5: <diskette name>: 2nd disk drive (slot 6, drive 2)
th: PRINTER: Printer (card in slot 1)
#7: REMIN: Remote input (card in
#8: HEMOUT : Remote output slot 2) El
#9: <diskette name>: 5th disk drive (slot &4, drive 1)
#10@; <diskette name>: 6th disk drive (slot &4, drive 2)
#11z <diskette name>: 3rd disk drive (slot 5, drive 1)
f#12: <diskette name>: 4th disk drive (slot 5, drive 2) EI

VOLUME KAMES AND NUMBERS

- —

SPECIFYING A VOLUME

Many Apple Pascal operating system commands require you to specify at
least one volume. A complete volume specification consists of the
volume name or the volume number for the desired device, followed

by a colon (:). The colon Iis very important: it tells the system that
the name or number preceding the colon is a volume specification, and
not a diskfile’s filename. A stand-alone diskette volume name or number
(not followed by a filename) tells the Filer that it is to act in some

. M

3
im/

26 APPLE PASCAL OPERATING SYSTEM

appropriate way on the diskette AS A WHOLE, and not merely on a certain
file on that diskette. If a volume number is specified that is not
followed by a filename, the colon following the wolume number is
optional. The following diagram defines the syntax of volume
specification:

VOLUME
NAME

)

VOLUME
NIMBER

VOLUME-SPECIFLCATION SYNTAX

The table of VOLUME NAMES AND NUMBERS, given earlier, shows the volume
numbers used to specify warious input and output devices, and the
reserved volume names used to specify non-block-structured devices such
as a printer. The volume name for a block-structured volume (a disk
drive) 15 the name that you have assigned to the diskette in that
drive. If you specify the volume number of a disk drive, the Filer
automatically converts that specification to the volume name of the
diskette found in that drive. A diskette’s volume name must be seven
or fewer characters long and may not contain an equals sign (=),
dollar sign (5), question mark (? } or comma (,).

o

Note: Never issue operating system commands when two diskettes with
the same volume name are in the system. Even if you specify the
correct drives by their volume numbers, the system will often operate
on the wrong diskette (usually the diskette in the higher-numbered
drive). If the operation involves updating the diskette’s directory,
the system may store the wrong diskette®s directory onto your diskette,
making the files origipally on that diskette unavailable. The same
problem may occur if you replace the diskette in a drive with another
diskette with the same volume name.

Moral: Make SURE the diskettes you use have DIFFERENT volume names.

Am aAam am

FILER 27

41—_—‘

SHORTHAND VOLUME NAMES

An asterisk (*) can be used to specify the volume name of the
"System" or "Boot" diskette, the diskette which was in the boot drive
{volume #4:) when the Apple Pascal system was last booted. The
Filer*s V(olumes command reports the asterisk default volume name as
the "ROOT VOLUME".

If a filename is specified with no
if a volume is specified with only
system supplies the volume name of
system sets the Prefix to the name
the Prefix defaulr volume name can
Filer’s P(refix command. Usually,
of the diskette with which you are
typing. However,
the PRINTER: .

FILES

preceding volume name or number, or
a colon (:), the Apple Pascal

the "Prefix" volume. Booting the

of the boot diskette. Thereafter,
be changed at any time by using the
you will set this to the volume name
currently working, to save much

the Prefix can also be set to other devices, such as

|

DISKETTE FILE TYPES

A "file" is a collection of information which is stored on the
diskette and which may be referred to by a filename. Each diskette
has a "directory" which contains the filenames and locations of each
file on the diskette. The File handler, or Filer, uses the
information contained in the diskette directory to manipulate files.

The use of a file is determined by the file’s "type", which specifies
the kind of information stored in the file. You and the computer can
both tell the file’s type when the file is created by looking at a
portion of the filename called the "suffix". Here are the filename
suffixes normally recognized by the computer, and the associated file

types as shown in the rightmost column of an E(xtended directory listing:

Suffix File Type E{xtended directory
listing

. TEXT Human-readable text TEXTFILE
.CODE Hachine-executable code CODEFILE
<DATA Data DATAFILE
«BAD When created by E(xamine BAD FILE

command, an immmovable £ile

covering a physically

damaged area of a diskette
< INFO (not used) INFOFILE
<GRAF {not used) GRAFFILE
+FOTO (not used) FOTCFILE

28 APPLE PASCAL CPERATING SYSTEM

LN

"

e

eSS
ﬁ-———-hi--l.

A b R ae asl mel wd i o o Gl e

™ w
b |
AR AR

re

vz
4
Al

Am

For instance, a file named MYFILE.TEXT would be treated by the
computer as a file containing human-readable text. For more
information concerning the internal format of the information

contained in different types of files, see Appendix C.

Under some circumstances (after C(hanging the file’s npame, for example)
the file”s actual type may not agree with it”s filename suffix. The
actual type of the file may be determined by examining the rightmost
column of the E(xtended directory listing for the file.

THE WORKFILE

The workfile is a scratch-pad diskette copy of the file currently being
worked with.: It is automatically taken as the default file by the
Command=level options R{un, E(dit, C(ompile, A(ssemble, and L{ink. The
workfile can be a single diskette file, or it can consist of two or more
diskette files with the same basic filename but different suffixes.
Typically, the version with the .CODE suffix is the compiled or
assembled wversion of the file with the TEXT suffix. Operating system
comuands for dealing with the workfile automatically choose the correct
version of the file.

When a workfile is Edited and Updated, the system stores the new text
version on the boot diskette, under the filename S5YSTEM.WRK.TEXT . When
this new text workfile is compiled or assembled, the resulting code
version of the workfile is stored on the boot diskette under the
filename SYSTEM.WRK.CODE . If you create (by Edit and Update) a new
text version SYSTEM.WRK.TEXT , the old code version SYSTEM.WREK.CODE is
automatically erased . You may then create a new code version

corresponding to the new text version, by compiling or assembling the
workfile.

From the Filer, you can erase the workfile (you must do this before you
can Edit, Run, Compile, or Assemble any new file), save the workfile,
or designate the next file to he the workfile. These Filer commands
automatically operate on all available wversions of the workfile.

SPECIFYING A FILE

Many Apple Pascal operating system commands require you to specify at
least one file. A complete file specification consists of the volume
name or number for the desired device, fellowed by a colon, followed —-
if you are specifying a disk file —-- by the filename of the particular
disk file desired. This diagram defines file specification syntax:

{4 FILE MAMT [

O ITME
ICATTON

AUBSET
SPECTFYINC
STRING 2

S

FILER 29

GURSET
SPECIFYING
STRING |

Filenames

Once a disk device is specified, by its volume number or by the name

of the diskette in that drive, any file on that diskette may be
specified by its filename. A legal diskette filename can consist of

up to 15 characters. In order for the file to be Run, the last Ffive
characters must be TEXT or «CODE « Without a TEXT or a .CODE suffix,
the file may be executed but it may not be put in the workfile. Lower-
case letters typed into a filename are translated to upper-case, and
spaces and non-printing characters are removed from the filename.

All characters are legal in filenames. However, from the keyboard you
should not type filenames that include the following characters:

dollar sign (%), left square bracket ([}, equals sign (=), question mark
(?), RETURN, and the CTRL characters C, F, M, 8, U, and @.

WARNING: The Filer will not be able to access filenames containing the

characters dollar sign ($), equals sign (=), question mark
(7)), or comma (,).

File Size Specification

It is sometimes possible to specify the size of a disk file immediately
after the filename, by enclosing in square brackets [like this] the
number of diskette blocks the file is to occcupy. There are also two
shorthand file size specifications: [@] says the file is to occupy all
of the largest unused area, while [*] says the file is to occupy all of
the second-largest area or half of the largest area, whichever is
larger. If no file size specification is given, the usual default is
[$]. The file size specification is primarily useful in the Filer
commands T(ransfer and M{ake. However, it can also be used in the
Assembler when specifying the output codefile, where [*] is the file-
size default.

Shorthand Filename

The T(ransfer command will accept the dollar sign (§) as its SECOND
specified filename. This means that the transferred copy of the file
is to have the same filename as the original file.

Wildcards

The wildeard characters, equals sign (=) and question mark (T),
are used to specify a subset of the filenames on a diskette, by
indicating the portion of a filename which may be {gnored or which
remains unchanged. The Filer performs the requested action on all
files whose filenames meet the subset specification. The form of a
wildcard filename specification is as follows:

<stringl>=<string2>

or <stringl>?<stringl>

30 APPLE PASCAL OPERATING SYSTEM

(TR~

iml

LI TN

im

where <stringl> and <string2> are sometimes called the "subset-
specifying strings". The subset-specifying strings indicate the
portion of a filename which may NOT be ignored or which is to be
changed. For example, the filename subset specification

MYDISK:DOC=TEXT

tells the Filer to perform the requested action on all of MYDISK:’s
files whose filenames begin with the string DOC and end with the
string TEXT . 1If a question mark is used instead of an equals sign

MYDISK:DOC?TEXT

the effect is identical except that the Filer requests verification
before affecting each file in the specified subset.
an "N" response, you may press the ESC key.
the outer level of the Filer.

Instead of a "Y" or
This will return you to

Only one wildcard may be used in a filename specification:

MYDISK:DOTTE?T or MYDISK:=TE=

are NOT
strings
attempt
message

legal specifications, because one of the subset-specifying
contains the forbidden filename character 7 or = . An
to use the first specification shown above will cause the

TE?T SCAN STRING - ILLEGAL FORMAT

The Filer commands T(ransfer and C(hange both require two file

specifications. 1If the first specification contains a wildcard (and

the second specification is for a disk wvolume), the second
specification must also contain a wildecard. If you forget, you will
be given the message

BAD FORM (WILD <TO> NON-WILD) CARD

The only legal exception to this rule occurs when T(ransfer is given the
$ as the second filename specification.

Either or both of the subset-specifying strings may be empty. For
example, a filename subset specification such as =TEXT or DOC= or
even just = dis valid. This last case, where both subset-specifying
strings are empty, is interpreted by the Filer to specify every
filename, so typing = or 7?7 alone causes the Filer to perform the
appropriate action on every file in the specified diskette’s
directory. This feature can sometimes be used to act on a file whose
filename is not "recognized" by Filer commands (because of {llegal
characters in the filename, or a slightly damaged directory, say).

The subset-specifying strings may not "everlap". For example, the
filename subset specified by GOON=NS would not include the filename
GOONS, whereas GOON=S5 would be a wvalid (although pointless)
specification for the filename GOONS .

FILER 31

EXAMPLE:

Suppose you are given this directory for the diskette volume named MYDISK:
NAUGHTYBEITS 6 23-JUN-T76
MOLD. TEXT L 29-JAN=-57
USELESS .CODE 19 12-MAY-78
MOLD.CODE 4 29-JAN-57
NEVERMORE . TEXT 12 5-APR=-T74
GOONS 5 1¢-SEP-52

After typing R for R(emove, you will see this message:
REMOVE WHAT FILE ? or REMOVE ?

Response 1: MYDISK:N=

Typing the above response generates the message:
MYDISK:NAUGHTYBITS ——> REMOVED
MYDISK: NEVERMORE . TEXT =—> REMOVED

UPDATE DIRECTORY ?

At this point you can type Y to remove all the files marked REMOVED,
or you can type N , in which case the files will not be removed. The

Filer always requests verification before completing any wildcard r&moves.l

Response 2: MYDISK:N?

Typing this response generates the message:
REMOVE NAUGHTYBITS ?

After you type a response (Y or N), the Filer asks:
REMOVE NEVERMORE.TEXT ?

Again you may type a response (Y or N), and i{f you have given any Y
responses, the Filer asks:

UPDATE DIRECTORY 7

As with the previous pattern, this gives you one last chance to change
yvour mind before the files are finally removed.

EXAMPLE:

Again, suppose you have a diskette MYDISK: with the same directory as
in the previous example. After typing L for L(dir (which means List
the diskette’s Directory), vou will see this message:

DIR LISTIKG OF WHAT VOL ? or DIR LISTING OF ?

Response: MYDISK:=TEXT

32 APPLE PASCAL OPERATING SYSTEM

N

TR T VT TR T TR T TR T TR T TR T TR T TR T)

ik
B
I8
T
B
B

"

|
-
-
-

4

Typing this response causes the Filer to list

MOLD .« TEXT 4 29-JAN-57
NEVERMORE.TEXT 12 5=APR=T74

USING THE FILER

Type F at the Command level to enter the Filer and the following
prompt is displayed:

Filer: G(ET, S(AVE, W(HAT, N(EW, L(DIR, R(EM, C(HNG, T(RANS, D(ATE, OQ{UIT

or
FILER: G, §, N, L, R, C, T, D, Q

Typing 7?7 1in response to this prompt displays more Filer commands:

FILER: B(AD-BLKS, E(XT-DIR, K(RNCH, M{AKE, P{REFIX, V(OLS, X(AMINE, Z(ERD

or
FILER: W, B, E, K, M, P, V, X, Z

The letters and numbers enclosed in brackets which frequently appear at
the end of prompt lines indicate the version number of the portion of
the program with which you are working.

An individual Filer command is invoked by typing the first letter of

the command option as it appears in the prompt line. For example,
typing 5 would invoke the Save command.

In the Filer, answering a Yes/No question with any character other
than Y constitutes a "No" answer. With most questions, pressing the
RETURN key as your only response will terminate that command and
return you to the outer level of the Filer.

For each command requiring a file specification, refer to the file
specification diagram earlier in this chapter. 1In many cases, the
entire file specification is not necessary, and in some cases, certain
parte of the file specification are not valid. Terminate the
specification by pressing the RETURN key. See the required command in
the following section for more details.

Whenever a Filer command requests a file specification, you may
gpecify as many files as desired, by separating the file
specifications with commas, and terminating this "file list" by
pressing the RETURN key. Commands operating on single filenames will
keep reading filenames from the file list and operating on them until
there are none left. Commands operating on two filenames (such as
L{ist-directory, C(hange, and T{(ransfer)} will take file
specifications in pairs and operate on each pair until only one or
none remains. If one filename remains, the Filer will prompt for the
second member of the pair. If an error is detected at any point in
the list, the remainder of the list will be discarded.

FILER 33

Al am i 1= ops/ 1® e o2 Bd o o

THE FILER COMMANDS

Note: Do not attempt to transfer information between different diskettes

having the same volume name. Instead, C{hange the name of one of the
diskettes, at least for the duration of the transfer.

34 GENERAL FILE-MOVING COMMAND
34 T{ransfer

42 copying a diskette i
EXAMPLE:
44 GENERAL DISKFILE COMMANDS
b M(ake I Suppose you wish to transfer the file FARKLE.TEXT from the diskette
43 C(hange named MYDISK: to the diskette named BACKUP: .
48 R(emove
49 K{runch Prompt: TRANSFER WHAT FILE 7 or THANSFER 7
50 Z{ero

Response: MYDISK:FARKLE.TEXT
51 WORKFILE COMMANDS

51 Glet When you press the RETURN key, the system checks to be sure that the
53 S{ave specified source diskette is in one of the disk drives. If MYDISK: is
E; ﬂgf“t not in any drive, you will see the message

3 na

MYDISK:FARKLE . TEXT
NO SUCH VOL ON-LINE <SOURCE:>

35 INFORMATION COMMANDS
55 V(olumes
56 L{ist directory

If the source diskette is found in a drive, the system then checks to
59 E(xtended directory list

be sure the specified file is on that diskette. If the diskette
MYDISK: is in a drive, but it has no file named FARKLE.TEXT , you will

61 DISK UPKEEP COMMANDS see the message

61 B(ad blocks
62 X(amine

MYDISK:FARKLE .TEXT
FILE NOT FOUND <SOURCE>

65 MISCELLANEOUS COMMANDS
65 Pirefix

65 Diate

66 Qluit

In either case, you will be returned to the outer Filer level. .Just
insert the correct source diskette in any drive and type T again.

However, let’s assume the system succeeds in finding the scurce
diskette and file. The dialogue continues, asking you to specify the
destination for the transfer:

GENERAL FILE-MOVING COMMAND

Prompt: TO WHERE ?

T(ransfer Response: BACKUP :NAME.TEXT

i destination. B
Copies the specified file:to: theigiven: de (Note: The file’s source and destination specifications could also
have been given both in the first response, separated by a comma.)

This command requires that you type two file specificarions, one for
the source file and one for the destination file, separated with
either a comma or a RETURN . Wildcards are permitted, and size
specification information is recognized for the destination file-

When you press the RETURN key, the system checks to be sure the
destination diskette is in a disk drive. TIf it is, the transfer
begins. If it is not, there is a pause, and then you will he

The source device or diskette must be available (the source diskette prompted
must be in one of the disk drives) when the Filer reads your soutce-
file specification, but a destination diskette may be inserted later,

in response to a prompting messape.

E_IE

'l
=
]

34 APPLE PASCAL OPERATING SYSTEM

FILER 35

—_—_—‘

PUT IN BACKUP:
TYPE <SPACE> TO CONTINUE

Put the correct destination diskette in any available drive and press
the spacebar. On two-drive systems, you will normal ly put the source
diskette in one drive and the destination diskette in the other
drive. On one-drive systems, you will have to remove the source

diskette from the disk drive, and then put the destination diskerte in
the drive.

IMPOKTANT: On a single-drive system, D0 NOT remove your source
diskette until you are prompted to insert the destination diskette.
You will be given the following message when it is time to exchange
diskettes in the drive:

Prompt: PUT IN BACKUP:
TYPE <SPACE> TO CONTINUE

When you see that message, you should remove the source diskette from

the drive, insert the correct destination diskette, and press the
spacebar. If the specified file is large, you may have to switch

the source and destination diskettes several times, until the transfer
is completed. Just follow the prompting messages.

Switching the diskettes is not usually necessary on systems with two
or more disk drives, as the source and destination diskettes can be in
different drives at the same time. However, the one-drive procedure
will also work on multiple-drive systems.

When the transfer is complete, the Filer will give you the message

MYDISK:FARKLE.TEXT
~~> BACKUP : NAME.TEXT

The Filer has made a copy of FARKLE.TEXT as found on the diskette
named MYDISK: , and has stored that copy on the diskette BACKUP: under
the filename NAME.TEXT .

hNote: Unce the Filer has been summoned, it resides entirely in the

computer’s memory. On a one-drive system, you can summon the Filer
and then remove the system diskette from the drive in order to insert
the source diskette for the Transfer. On a two-drive system, you can
summon the Filer, and then remove all system diskettes from the drives
in order to use both drives for source and destination diskettes
during a transfer. This will save you much unnecessary switching of
diskettes when copying a large file. Just remember to replace the

system diskette in the boot drive (volume #4:) before Quitting the
Filer.

It is often convenient to transfer a file to another diskette without
changing its filename. To make this easier, the Filer lets you use
the dollar-sign character (§) as a shorthand for "same name", to
replace the filename in the destination file specification. In the

36 APPLE PASCAL OPERATING SYSTEM

w_w
AR

i=
am

im]

above example, if you had wished to save the file FARKLE.TEXT on
diskette BACKUP: under the same filename FARKLE.TEXT, you could have
typed:

MYDISK: FARKLE.TEXT ,BACKUP: §

WARNING: Avoid typing the secoad file specification with the filename

completely omitted! For example, a response to the Transfer prompt of
the form:

MYDISK: FARKLE.TEXT ,BACKUF :

generates the message:
DESTROY BACKUP: 7

Typing the response Y causes the directory of BACKUP to be wiped out!

A file can be transferred from a diskette to a different place on the
same diskette by giving the same volume name for both source and
destination file specifications. This is frequently useful when the
you wish to relocate a file on the diskette. Specifying the number of
blocks desired will cause the Filer to copy the file in the first
(lowest block numbers) unused diskette area of at least that size. If
no size specification is given, the file is always written in the
largest unused area.

If you specify the same filename for both scurce and destination on a
same-diskette transfer, then the Filer rewrites the file to the size-

specified area (the largest unused area, if not specified), and
removes the original file.

EXAMPLE:

Prompt: TRANSFER WHAT FILE ? or TRANSFER ?

Response: MYDISK:QUIZZES.TEXT,MYDISK:S[2¢)

Typing this response would cause the Filer to rewrite QUIZZES.TEXT
on MYDISK: in the first area of at least 2§ blocks (looking from
block @) and then to remove the previous version of QUIZZES.TEXT .

Note: do not use this feature for re-naming a file. The C(hange
command is designed for that purpose, and is less risky.

If you give the same volume NUMBER for both source and destination
file specification, the system assumes you are going to change
diskettes in that drive. You will see the message

INSERT DESTINATION DISK
TYPE <SPACE> TO CONTINUE

FILER 37

The same assumption is made any time you give a volume number, in the
destination file specification, that specifies the same drive oceupied
by the source diskette.

Files may be transferred to such volumes as CONSOLE: (for a quick
screen listing of a file) and PRINTER: (to print a file), as well as
to a disk, by specifying the appropriate volume name or number (see
VOLUMES, earlier in this chapter) in the destination file
specifications. A filename on a device other than a disk is ignored.

It is generally a pood idea to make certain that a non-disk device is
on-line (actively connected to the system and turned on) when you
dttempt a Transfer to that device. If it isn’t, the system may
"hang", and you will have to press the RESET key to recover.

EXAMPLE:

Prompt: TRANSFER WHAT FILE ? or TRANSFER ?
Response: FARKLE.TEXT

Prompt: TO WHERE ?

Response: PRINTER:

Typing the above responses will cause the file FARKLE.TEXT , as found
on the Prefix diskette volume, to be printed (assuming a printer is
properly connected to your system).

You may also transfer from input devices other than disks, such as the

keyboard. Filenames accompanying a non-disk volume name or number are
ignored.

EXAMPLE:

Prompt: TRANSFER WHAT FILE ? or TRANSFER 7

Response: CONSOLE:

Prompt: TO WHERE ?

Response: PRINTER:

After these responses, you can use your keyboard as a typewriter.
Nothing will appear on the printer until you type the "End-0f-File"
character, CTRL-C (Note some printers require you to press the
RETURN key before pressing CTRL=C). Then all your typing will be
sent to the printer.

38 APPLE PASCAL OPERATING SYSTEM

The wildcard capability is allowed in the T(ransfer command. When
using wildcards, the subset-specifying strings in the source filenames
will be replaced by the analogous strings (called "replacement
strings") in the destination filenames. Any of the subset-specifying
or replacement strings may be empty. The portion of each source
filename accounted for by the = or ? wildcard character is
reproduced unchanged in the corresponding destination filename.
Remember that the Filer considers the one-character, wild-card-alone
file specification (= or ?) to specify every file on the volume.

EXAMPLE:
Suppose the Prefix diskette volume MYDISK: contains these files:

PAUCTTY
PARITY
PENALTY

Further, suppose the destination diskette is named ODDNAMZ:
Prompt: TRANSFER WHAT FILE 7 or TRANSFER 7
Response: P=TY ODDNAMZ:V=3

Typing this response would cause the Filer to reply:

MYDISK:PAUCITY

——> ODDNAMZ:VAUCIS
MYDISK:PARITY

-=> ODDNAMZ : VARIS
MYDISK: PENALTY

—=> ODDNAMZ : VENALS

EXAMPLE:

Suppose the Prefix diskette volume MYDISK: contains these files:

CHAPL.TEXT
CHAP2.TEXT
CHAPTER-3.TEXT
CHAP4.TEXT

Further, suppose the destination diskette is named BACKUP:
Prompt: TRANSFER WHAT FILE 7 or TRANSFER ?
Response: C=XT

Prompt: TO WHERE 7

Response: BACKUP:OLDC=XT

FILER 3¢

Typing these responses would cause the Filer to reply:

MYDISK:CHAP1.TEXT

——> BACKUP:OLDCHAP1.TEXT
MYDISK: CHAP2.TEXT

—=> BACKUP:OLDCHAF2.TEXT
MYDISK:CHAPTER=3.TEXT

==> NOT PROCESSED
MYDISK:CHAPS . TEXT

—=> BACKUP:OLDCHAP4.TEXT

On the third attempted transfer, the destination filename would have
been OLDCHAPTER-3.TEXT, which exceeds the 15-character limit for
filenames. Therefore, that file was "MOT PROCESSED" . If all of the
destination filenames exceed 15 characters, each source file is marked
"NOT PROCESSED" and this additional message is given:

BAD DEST FOR FILES FOUND

Using the single character = as the source filename specification
will cause the Filer to attempt to transfer every file on the source
diskette, adding these files to the information that was already
stored on the destination diskette. You can use this feature to
transfer all the information on one diskette to another diskette,
withOUT destroying any information already on the destination
diskette. (If you wish to make an exact copy of the source diskette,
completely erasing any information that was formerly stored on the
destination diskette, please refer to the material later in this
section on volume-to-volume transfers: COPYING A DISKETTE .)

Using the single character = as the destination filename
specification will have the effect of replacing any subset-specifying
strings in the source specification with nothing.

A brief reminder: in any wildcard specification, the single character
7 may be used in place of = . The only difference 1s that a ? in
either specification (or both) causes the Filer to ask you for

verification before each file Is transferred. This takes somewhat
longer, but you are more certain of transferring only the files you

intended to transfer.

A source or a destination file specification must contain only one

wildcard character. A specification such as
MYDISK: PUGH?

is NOT a legal specification. An attempt to use such a specificacionm
as either the source or the destination of a transfer will cause the
jargon message

SCAN STRING - ILLEGAL FORMAT

40 APPLE PASCAL OPERATING SYSTEM

I e ——

e b EE———

-7V

7=
am| am

- . =

am aml

amm

If the source file specification contains a wildcard character, and
the destination device is a disk, then the destination file
specification must also contain a wildeard character. If you fail to

have a wildcard character in both source and destination specification
(it need not be the same wildecard), you are given the message

BAD FORM (WILD <TO> NON-WILD) CARD

and your transfer is terminated. The only exception to this occurs
when you use the dollar sign (§) shorthand for the destination file
specification.

EXAMPLE:
Suppose the diskette MYDISK: contains the following files: |

CHAPTER1.TEXT
CHAPTER14B.TEXT
INTRO.TEXT

Further, suppose you wish to transfer the files CHAPTER!.TEXT and
INTRO.TEXT to the diskette BACKUP: , retaining the same file names on
the backup diskette.

Prompt: TRANSFER ?

Response: MYDISK:?.TEXT,BACKUP:$

Typing this response would cause the screen to clear, and then the
following message would appear:

TRANSFER CHAPTERL.TEXT ?

Since you wish to transfer CHAPTERL.TEXT , type a Y for "Yes". &
copy of the file CHAPTER1.TEXT would then be transferred from MYDISK:
to BACKUP: , and the Filer would proceed to ask if you wish to
transfer the next file whose name ends in .TEXT . The complete
dialogue might appear as follows:

TRANSFER CHAPTERL.TEXT 7 Y
MYDISK: CHAPTERL.TEXT
—=> BACKUP;:CHAPTER].TEXT

TRANSFER CHAPTERI4B.TEXT 7 N
TRANSFER INTRO.TEXT 7 Y

MYDISKE:INTRO.TEXT
—-=> BACKUP:INTRO.TEXT

Instead of a "Y" or "N" response, you may press the ESC key. This

will return you to the outer level of the Filer.

FILER 44

Copying a Diskette

You can copy an entire diskette. The file specifications for the
source and for the destination should each consist of a disk volume
name or number only. This method of transferring the contents of a
source diskette volume onto a destination diskette volume erases any
previous contents that were on the destination diskette so that it
becomes an exact, literal copy of the source diskette. After copying,

the destination diskette has the same volume name as the source
diskette.

EXAMPLE:

Suppose you desire an extra copy of the diskette MYDISK: and you are
willing to sacrifice diskette EXTRA:

Prompt : TRANSFER WHAT FILE ? or TRANSFER ?

Response: MYDISK:,EXTRA:

Prompt: TRANSFER 28@ HLOCKS ? (Y/N)

Response: Y

Note: To copy an entire diskette (each diskette used by the Apple
Pascal system contains 280 blocks), you will always type the response
¥ . Each diskette’s directory tells your computer how many blocks are
on that diskette. If your system ever gives a message such as

TRANSFER 11@@ BLOCKS? (Y/N)

(or any number other than 28@ blocks), the diskette’s directory is
probably damaged.

Prompt: DESTROY EXTRA: ?

WARNING: If you type Y , the directory (and therefore, your access to
the contents) of EXTRA: will be destroyed! The diskette named EXTRA!
will then become an exact copy of MYDISK: , even having the same
volume names Often this is desirable for backup purposes, since it is
relatively easy to copy a diskette this way, and the volume name can

be changed (see the C(hange command) if desired. An N response will
return you to the outer level of the Filer.

Although it is certainly possible to transfer one diskette volume to
another using a single-disk-drive system, it is a fairly tedious
process, since a great deal of diskette exchanging is necessary for
the complete transfer to take place.

42 APPLE PASCAL OPERATING SYSTEM

——J

o
am! el el am aml aml wml mm iml aa

. - - .

A

[.
Ak AR

IMPORTANT: On a single=drive system, DO NOT remove your source
diskette until you are prompted to imsert the destination diskette.

You will be given the following message when it is time to exchange
diskettes in the drive:

PUT IN EXTRA:
TYPE <SPACE> TO CONTINUE

Prompt:

You should now remove the source diskette from the drive, insert the
correct destination diskette, and press the spacebar. The Filer will
soon tell you

PUT IN MYDISK:
TYPE <SPACE> TO CONTINUE

Prompt:

and so on, back and forth, until you have exchanged the source and
destination diskettes in the drive about 20 times. Finally, the
Filer will give you the welcome message:

MYDISK: ==> EXTRA:

to tell you the transfer is completed.

Note: Once the Filer has been summoned, it resides entirely in the
computer’s memory.

Une-drive note: Un a one-drive system, you can summon the Filer and
then remove the system diskette from the drive in order to insert the

source diskette for the transfer. Just remember to replace the system
diskette in the boot drive (volume #4:;) before Quitting the Filer.

Two-drive note: On a two-drive system, you can summon the Filer, and
then remove all system diskettes from the drives in order to use both
drives for source and destination diskettes during a transfer. This
will save you much unnecessary switching of diskettes when copying an
entire diskette. Again, remember to replace the system diskette in
the boot drive (volume #4:) before Quitting the Filer.

Another one-drive note: One=drive users cannot make a volume-to=-volume
copy onto a destination diskette that has the same volume name as the

source diskette. Instead, before trying to make the copy, use the
Filer’s C(hange command to change the volume name of either diskette,

or use the Z({ero command to rename the destination diskette while
erasing its directory.

Another multi-drive note: In multiple~drive systems, the source and

destination diskettes are usually placed in different drives. If the
two diskettes have the same volume name, you can refer to each

diskette by its drive volume number, instead of by name. By their

different drive numbers shall the Filer know them. Note that this full-
disk copy is an exception to the rule which forbids two diskettes with

the same name in the system.

FILER 43

GENERAL DISKFILE COMMANDS

M(ake

Creates a diskette directory entry with the specified filename.

This command requires you to type a file specification. Wildcard
characters are not allowed. The file size specification option is
extremely helpful, since, if it is omitted, the Filer creates the
specified file by consuming the largest unused area of the disk.
file size is determined by following the filename with the desired
number of blocks, enclosed in square brackets [and] . Some special
cases are:

The

{#] = Equivalent to omitting the size specification.
is created using all of the largest unused area.

The file

[*¥] = The file is created using all of the second largest area,
or half of the largest area, whichever is larger.

Files with filenames ending in .TEXT must occupy at least four blocks,
and must occupy an even number of blocks (see this manual”s appendix
FILE FORMATS for details). An attempt to M{ake a .TEXT file with fewer

than four blocks results in the message NO ROOM ON VOL. If you M(ake a
+TEXT file specifying an odd number of blocks, the file will actually be

made with one fewer block.
EXAMPLE:

Prompt: MAKE WHAT FILE?

Response: MYDISK:FARKLE.TEXT[28]

This response creates the dummy file FARKLE.TEXT on the wvolume MYDISK:
in the first unused 28-block area encountered.

The M(ake command is commonly used to reserve an area on the disk for
some future use. The created file's name may serve as a reminder that

you need to write a section by that name, and save you some space on the
diskette to do so. It also prevents use of that space by other files.

When you make a file, you simply create a diskette directory entry,
without in any way changing the actual information stored on the
portion of the diskette to which that directory entry refers. If you
forget that the file is a "dummy" file, you can G(et the file (if it
ends in .TEXT) and attempt to read into the Editor whatever information
may have been stored on the diskette in that location. Usually, this
will just be nonsense, or part of some file you never wanted to see
again, but occasionally it can be useful.

Suppose you have just R{emoved a 19 block file, which started at blﬂﬁk
134. An E(xtended directory list of the diskette may show the "hole

44 APPLE PASCAL OPERATING SYSTEM

—
|
d I

(ai

.
LA

TTRTT

LR VR TRT VR T TIT TR T

where that file used to be, as a 19 block <unused> area starting at
block 134+ If you can now M(ake a file (of any name) that exactly
occupies the blocks the R(emoved file occupied, the new file will
contain exactly the same information the Removed file contained. Thus,
if you know enough information about the location of a file before it
was Removed, and if nothing has been written over that area of the
diskette since the removal, you can sometimes use the M(ake command to
recover a Removed file.

C(hange

Changes a diskette file’s filename, or changes a diskette”s volume name.
This command requires two file specifications.
specifies the file or the volume whose name is to be changed; the
second specification shows the new filename or the new volume name.
The first specification is separated from the second specification
either by a comma (,) or by pressing the RETURN key. If the Ffirst
file specification contains a filename, any volume name or number in
the second file specification is ignored, since obvicusly the "old

file" and the "new file" are on the same volume! Size specification
information is ignored.

The first of these

If you change the name of the Prefix diskette, the volume name that
the system supplies as Prefix is also changed. Similarly, if you
change the name of the "system" or "root" diskette, the name that the

system supplies for the asterisk (*) volume-specifier is also changed.
EXAMPLE:

The file F5.TEXT is on the diskette in disk drive volume #5:
Prompt: CHANGE WHAT FILE ? or CHANGE ?

Response: #5:F5.TEXT

When you press the RETURN key, the dialogue continues:
Prompt: CHANGE TO WHAT ?

Response: HOOHAH

Typing the above response changes the name in the directory from
F5.TEX! to HOOHAH . Filetypes (such as TEXTFILE or CODEFILE) are
originally dectermined by the filename’s suffix (such as .TEXT or

-CUDE)« The C(hange command does not affect the filetype, but it

also does not automatically place the correct standard filetype suffix
after the new filename. In the above case, HOOHAH would still be listed
as type TEXTFILE by an E(xtended directory list. However,

since the G(et command searches for the suffix .TEXT in order to
fdentify a textfile as the workfile, you would have to C{hange the

filename HOOHAI to HOOHAH.TEXT before that file could he used as the
workfile.

FILER 45

Wildcard specifications are legal in the C(hange command. If a
wildcard character is used in the first file specification, then a
wildeard must be used in the second file specification. The subser—
specifying strings in the first file specification are replaced by the
analogous strings (henceforward called replacement strings) given in
the second file specification. The Filer will not change the filename
if the change would have the effect of making the filename too leng
(more than 15 characters).

EXAMPLE: r
The diskette named MYDISK: contains these files:
CHAF1.TEXT
CHAP2.TEXT
CHAPTER=-3.TEXT
CHAP4.TEXT
Prompt: CHANGE WHAT FILE 7?7 or CHANGE 7
Response: MYDISK:C=XT,OLDC=XT

After you typed the above response (the two parts of the response were
separated by a comma, this time, but you could also press the RETURN
key to separate the responses), the Filer would then indicate the
following name changes. Only the files” filenames are changed; the
contents of the files themselves are left unmodified.

MYDISK:CHAPL - TEXT

——> OLDCHAP1.TEXT
HYDISK:CHAP2. TEXT

~-> OLDCHAP2.TEKT
HYDISK:CHAPTER-3.TEXT
==> NOT PFROCESSED
MYDISK:CHAPS . TEXT
==> OLDCHAP4.TEXT

2 5 AN nes

In the third attempted name change, the "destination" filename would have
been OLDCHAPTER-3.TEXT, which exceeds the l5-character limit for filenamES-E: 1
Therefore, that file was "NOT PROCESSED"™ . If all of the "destination" ~ ;
filenawes exceed L5 characters, this additional message is given:

BAD DEST FOR FILES FOUND

The subset-specifying strings may be empty, as may the replacement
strings. The Filer considers the one-character file specification
(where both subset-specifying strings are empty) to specify every file
on the diskette.

46 APPLE PASCAL OPERATING SYSTEM

nr v

1

EXAMPLES:

Prompt: CHANGE WHAT FILE 7?7 or CHANGE ?

Responseil: =,Z=Z

Typing this response would cause every filename on the Prefix
diskette to have a Z added before the first character and after the

last character.
Responsefl: Z=Z,=

Typing this response
terminal and initial

would (apgain, on the Prefix diskette) erase the
Z from each filename that possessed both.

Suppose the Frefix diskette contained these filenames:

THIS.TEXT
THAT . TEXT

Response#f3: T=T,=

Typing response #3 would result in changing THIS.TEXT to HIS.TEX ,
and THAT.TEXT to HAT.TEX .

Response#4: =.TEXT,0LD.=

Typing this response would add the prefix OLD. to every filename on
the Prefix diskette, and remove the suffix .TEXT from every filename.
CHAPL.TEXT would thus become OLD.CHAP1 , and CHAP2.TEXT would become
OLD.CHAPZ . This would quickly mark all your old versions of a file
and simultaneously make those versions safe from accidental access by
the G({et command.

The diskette’s volume name may also be changed, by specifying the
current diskette volume name or number and (after a comma or RETURN) a
new volume name for the diskette.

EXAMPLE:
Prompt: CHANGE WHAT FILE ? or CHANGE ?
Response: NOTSANE: ,WRKDISK:

Typing this response would cause the system to give this message:
NOTSANE: ——>» WHKDISK:

showing that the diskette named NOTSANE: has been renamed WRKDISK:.

FILER 47

R[emove Typing this response causes the Filer to remove AMAZING.CODE and
ANDROID.CODE from the Prefix diskette directory.

Removes file entries from the directory, which makes those diskette Er i

files inaccessible. While a removed file’s contents are still stored WARNING: Remember that the Filer considers the one-character file

on the diskette, and it may sometimes be possible to recover them in specification = (where both subset-specifying strings are empty) to
an emergency (see M(ake), the system acts as if a removed file had 1 specify every file on the volume. Typing an = alone will cause the
been erased from the diskette. That area of the diskette is then E E Filer to remove every file on your directory!

considered free for overwriting with other files.

This command requires one file specification for each diskette file 1
that you wish to remove. Wildcards are legal. Size specification

K(runch

information is ignored.

1
EXAMPLE: E

Moves the files on the specified diskette volume so that unused blocks
are combined. You use this when you run out of space or seem about

to, because the unused space on the diskette is fragmented. Using the
E(xtended directory list command to list the directory will show you

how the unused space is distributed on the diskette. After typing K,

all the unused space will be together at the end of the diskette (or
at some other place on the disk, specified by you).

Suppose the Prefix diskette contains these files:

AARDVARK.TEXT i

ANDROID.CODE

QUINT .TEXT This command requires that you type a diskette volume name or number.

AMAZING .CODE E’ ! The specified diskette volume must be on-line (currently available to

the system). It is a good idea to perform a bad block scan of the

volume before K{runching, to avoid writing files over bad areas of the
a diskette. If bad blocks are encountered, they must be either fixed

or marked before the K{runch (see X(amine).

Prompt: REMOVE WHAT FILE ? or REMOVE ?

Response: AMAZING.CODE
As each file is moved, its name is displayed on the screen. If
Typing this response tells the system to remove the file AMAZING.CODE SYSTEM.PASCAL is moved, the system must be reinitialized by booting.
from the Prefix diskette’s directory. The system then considers that file

erased from the diskette, although only the directory has been changed.

©
To remove SYSTEM.WRK.TEXT and/or SYSTEM.WRK.CODE , the Filer®s N(ew

command should be used, or the system may get confused. IT IS VERY _l
IMPORTANT TO REMEMBER THIS LITTLE QUIRK, BECAUSE THE SYSTEM WON'T WARN YOU

WARNING! Do not touch the disk, the RESET key, the power switch or the
disk-drive door until K{rumch tells you it has completed its task. To
do otherwise may make the information on your diskette unreadable.

EXAMPLE:

Suppose you wish to K(runch the boot diskette:
As noted before, wildcard removes are legal. Fortunately, hefore

finalizing any wildcard removes, the Filer asks 1f you wish to Prompt: CRUNCH WHAT VOL ? or CRUNCH ?

L]
Bl =

UFDATE DIRECTORY 7 Response: *

Typing Y in response to this prompt causes all the specified files to
be removed. Typing N returns you to the outer level of the Filer
without any removes having occurred.

You could also have responded with the volume number { #4:) or the
volume name of the boot diskette, of course.

m
am/

Prompt: FROM END OF DISK, BLOCK Z8¢) 7 (Y/N)

]

EXAMPLE: Typing the response Y initiates the normal K(runch. Typing an N will
cause the prompt:
Prompt: REMOVE WHAT FILE ? or REMOVE ?

mmw
=) am

Prompt: STARTING AT BLOCK # ?
Response: A=CODE

48 APPLE PASCAL OPERATING SYSTEM FILERR 49

If you type & block number in response to this prompt, the Filer wilil

attempt to make room for new files in the area surrounding the block
number that you specified. It does this by moving files forward

(toward lower block numbers) which are below the specified block, and
moving files backward (toward higher block numbers) which are abovE the

specified block. This feature allows you to re-arrange files, by
placing them at diskette locations other than the end of the diskette.

Note: If you specify a Krunch starting block that is clearly within an
existing file, but the Filer tells you the diskette is already Erunched,
just try again with a starting block in the next higher-block-numbered
file.

Z(ero

"Erases" the directory of the specified volume (by writing zeros into
it)« The previous directory is rendered irretrievable. This is used
to "recycle" a used diskette; the system forgets anything previously
stored on the diskette and the diskette is ready to be used again.
This command does NOT format the diskette: the diskette must already
have been formatted by eXecuting the FORMATTER utility program (see

this manual’s chapter UTILITY PROGRAMS).

EXAMPLE :

Suppose you wish to forget all information stored on a diskette named
OLDDISK, in disk drive volume #5: , in order to re-use it as a clean,
blank diskette.

Prompt: ZERO DIR OF WHAT VOL 7 or ZERO DIR OF ?

Response: #5:

Prompt: DESTROY OLDDISK: ?

Response: Y

Prompt: DUPLICATE DIR ?

Always respond to this prompt by typing an N response, which will
cause the usual single directory to be maintained. The Apple Pascal
system does not support duplicate directories. Next you will see:

Prompt: ARE THERE 28§ BLKS ON THE DISK 7?7 (Y/N)

Response: Y

50 APPLE PASCAL OPERATING SYSTEM

!"l

L]
=) =l eml eml oeml e emf

F

(T V- VR V- VR - TR - VI V- VR~ TR - ¥

-

L

=

The Apple Pascal system uses only 28¢-block diskettes, so your answer
to this prompt should always be Y for "Yes". Each diskette’s
directory contains the number of the blocks on the diskette. If your
system ever asks

ARE THERE 110} BLKS ON THE DISK ? (Y/N)

(or any number other than 28ff), the diskette’s directory is probably
damaged.

Now you will be asked to name the newly-zerced diskette:

Prompt: NEW VOL NAME 7
Response: NEWDISK:

(or you can type any other valid volume name); and then you will be
asked to verify the new name.

Prompt: NEWDISK: CORRECT 7?7
Response: Y

Typing a Y response to this prompt causes the Filer to respond with
the message:

NEWDISK: ZEROED

WORKFILE COMMANDS

Glet

Identifies the designated diskette file for later use as the
workfile. The next time you attempt to Edit, Compile, or Run, the
designated file will be used. At that time, {f the designated file
is no longer available to the system this message is given:

ERROR: WORKFILE LOST.

Hote: Although you are told that the specified file has been "loaded",
this command does NOT actually transfer the specified file to the Dcnt
diskette file named SYSTEM.WRK (or to any other file). The file
SYSTEM.WRK is usually created by Updating the workfile from the Editor
(see this manual’s chapter THE COMMAND LEVEL for more information
about the workfile, and the chapter THE EDITOR for more information
about the Editor).

FILER 54

One-drive note: In one-drive systems, since your boot diskette
(usually APPLE@:) must be in the drive to Edit, Compile, and Run the
designated workfile, you can only effectively G(et files that you have
previously T(ransferred to your boot diskette.

If there is already a workfile SYSTEM.WRK present on the boot diskette
when you issue the G(et command, you are prompted:

THROW AWAY CURRENT WORKFILE ?

Response: Y will clear the workfile, removing all files SYSTEM.WRK
from the boot diskette, while N recurns you to the outer level of
the Filer.

Typing the filename®s suffix in the file specification is not
necessary. [If the volume name of the diskette is not given, the
Prefix diskette is assumed. Wildeards are not allowed, and the size
specification option is ignored.

EXAMPLE:

NN

Suppose the Prefix diskette contains the following files:

FILERDOC2.TEXT
ABSURD.CODE
HYTYPER .CODE
STASIS.TEXT
LETTER].TEXT
FILER.DOC.TEXT
STAS1S.CODE

Prompt: GET WHAT FILE ? or GET ?

Response: STASIS

The Filer responds with the message
TEXT & CODE FILE LOADED

since both text and code file exist. Had you typed STASIS.TEXT or
STASIS5.CODE , the result would have been the same: both text and code
versions would have been identified for later use as the workfile. If
only one of the versions exists, as in the case of ABSURD.CODE, then
that verslon is identified for later workfile use, regardless of
whether text or code was requested. Typing ABSURD.TEXT in response to
the prompt would generate the message: CODE FILE LOADED . Working
with the workfile may create a number of files whose names begin
SYSTEM.WRK. , as parts of the workfile. These files will disappear
when the S{ave command is used to save the contents of the workfile
under their original filename or under a new filename. If the system
is rebooted before the S(ave command is used, the original name of the
workfile”s contents (as specified by the G(et comnand) will be forgotten.

. W

.
el e el aml iRl gE gm

n

52 APPLE PASCAL OPERATING SYSTEM

|
L

il L

isl &l &l &l DA aa

S(ave

Saves all versions of the boot diskette’s workfile SYSTEM.WRE under
the filename originally specified with G(et or under a different
filename which you specify.

If a file already exists with the specified filename and if you are
S(aving your file onto a diskette other than the boot diskette, you
are asked for verification before the old file is removed. In that
case, the workfile is saved under the specified name only after the
old file has been removed.

If you are S5{aving the workfile as another filename on the boot diskette,
the workfile (which is already on that diskette) is simply renamed.

When you S(ave the workfile on a diskette other than the boot

diskette, the system is actually performing a T(ransfer of the

workfile. Thus the workfile is unchanged after the S(ave is completed.

The entire file specification is not necessary. In particular, DO NOT
specify a suffix. The correct suffix for each version of the workfile
(-TEXT, .CODE, etc.) is supplied automatically, in addition to any
suffix cthat you might type. Unlike many parts of the system, ending
the specified filename with a period does NOT suppress the addition of
a suffix. If the disketre volume name or number is not given, the
Prefix diskette is assumed. Wildcards are not allowed, and the size
specification option is ignored.

One-drive note: Even on one-drive systems, S(ave works just fine if
there is only one version of the workfile. If vou S(ave the workfile
onto a diskette other than the boot diskette, the Filer will prompt
you to put the destination diskette into the drive at the correct
time. However, only the FIRST version of the workfile (usually .TEXT)
is S5{aved onto the destination diskette. If the Filer returns to the
boot diskette to get another version of the workfile (.CODE, say), the
boot diskette is not in the drive and the command is terminated. If
you want to S(ave MORE THAN ONE version of the workfile (.TEXT and
-CODE, say), first S(ave the workfile onto the boot diskette. This
renames the workfile versions and tells the system that your workfile
is gone. THEN T(ransfer the S({aved versions onto your destination
diskette, one version at a time.

EXAMPLE:

Prompr: SAVE AS MYDISK:OLDFILE 7?7

Response: N

Prompt: SAVE AS WHAT FILE 7 or SAVE AS ?

Response: Type a filename of 1@ or fewer characters, observing the
filename conventions discussed under FILES (earlier in this chapter).
This causes the Filer to remove (after asking you for verification)
any old file having the specified filename, and then to save the
workfile under that name. For example, typing X in response to the

FILER 53

prompt causes the workfile to be saved on the Prefix disk as X.TEXT .
If a codefile has been compiled or assembled since the last update of
the workfile, that codefile will also be saved, as X.CODE .

The Filer automatically appends the suffixes L.TEXT and .CODE to files
of the appropriate rypes Explicitly typing AFILE.TEXT in response to
the prompt will cause the Filer to save this file as AFILE.TEXT.TEXT .

EXAMPLE:
Prompt: SAVE AS WHAT FILE ? or SAVE AS ?
Response: RED:EYE

1f cne of your disk drives contains a diskette named RED: , you will
soon see the message

APPLE1:SYSTEM.WRK.TEXT
—=> RED:EYE.TEXT

This message tells you that the workfile named SYSTEM.WRK.TEXT , on
the boot diskette named APPLEL: , has been successfully transferred to
the file named EYE.TEXT , on the diskette named RED: . If there is no
diskerte named RED in any disk drive, you will see the message

PUT IN RED:
TYPE <SPACE> TO CONTINUE

This gives you the chance to insert a diskette named RED , 1f you have
one, inte a disk drive. RED:EYE constitutes a file specification,

and this response will tell the Filer to attempt to transfer the
workfile to the specified volume and file (see the T{ransfer command) .
1f you specified diskette RED: by accident, press the gpacebar anyway-
The system will not find diskette RED: , and the command will be
terminated.

EXAMPLE:

Suppose you earlier used the G(et command to designate the file
MYDISK:LETTER as the next workfile. You then Q(uit the Filer and
entered the F(ditor, causing MYDISK:LETTER.TEXT to be read into the
computer. Finally, you added some new material to the file, and then
used the Editor®s Q{uit and U(pdate commands to store the new version
of the file on the boot diskette as SYSTEM.WRK.TEXT .
Wow, back in the Filer again, you type S5 for S(ave and receive this
prompL:

SAVE AS MYDISK:LETTER 7
If you type a ¥ , the Filer first asks

REMOVE OLD MYDISK:LETTER.TEXT ?

54 APPLE PASCAL OPERATING SYSTEM

1= 1= 1 = = =

V=4 T =4 S = S - 4 SO - V- V- I -

Typing another Y causes your previous version of LETTER.TEXT to be
removed from MYDISK: , and then causes the new version (stored as
APPLEL :SYSTEM.WRK.TEXT) to be saved on MYDISK:

APPLE] : SYSTEM. WRK. TEXT
——> MYDISK:LETTER.TEXT

N(ew

Clears the workfile, so that there is no default file to be used
automatically by E{dicr, C{ompile, A(ssemble, and R{un . The last file
specified as the workfile by the Filer’s G(et command is no longer so
designated. All versions of the workfile SYSTEM.WRK saved on the boot
diskette are removed from the directory (SYSTEM.LST.TEXT is also
removed). There will be no workfile on the boot diskette until a
workfile is saved (usually using the fditor’s U{pdate command).

If there is already a workfile SYSTEM.WRK present on the boot diskette
when you issue the N(ew command, you are prompted:

THROW AWAY CURRENT WORKFILE ?

¥ will clear the workfile, removing all files SYSTEM.WRK

Response:
returns you to the outer level of

from the boot diskette, while N
the Filer.

Use the N{ew command to clear away Cthe automatically-loaded workfile
before you try to create a new File in the Editor or Compile any file
other than the workfile.

W(hat

ldentifies the name and state (saved or not) of the workfile.

<

If the workfile has been S5(aved onto any diskette other than the boot
diskette, the W(hat command continues to report the workfile as (NOT
SAVED). This is because the workfile still exists on the boot
diskettes

INFORMATION COMMANDS

V(olumes
Lists the input and output volumes (devices or diskettes) currently

"on-line" (actively connected into the system), by volume name and by
volume numbers.

FILER &5

A typliecal display for a single-drive syst
might be: yatem, with few peripherals,

VOLS ON-LINE:
I CONSOLE:
2 SYSTERM:
4 # APPLE@:
ROOT VOL IS - APPLEg:
PREFIX IS - APPLEf:

The volumes CONSOLE: and SYSTERM:
: : are always available. Th
two different ways to refer to the screen and the keyhaard.eF fre o8t

A four-drive system, with a
printer and with a modem for comm
over telephone lines, might give a display like this: rieaeing

VOLS ON-LINE:
CONSOLE:
SYSTERM:

APPLEL:

APPLE2:
PRINTER:
REMIN:
REMOUT :

11 # APPLE3:

12 # JEF:
ROOT VOL IS - APPLEL:
PREFIX 15 - JEF:

0~ O N B

The boot diskette, also called the system volume, is indicated here as
the ROOT VOL — in this case the diskette named APPLEL: in disk drive
vnlt_xme #4: . The default volume is indicated here as the’ PREFIX volume
== in this case it has been changed by the P(refix command to JEF:

the name of the diskette in disk drive volume #12: . 1In general tﬁe
Prefix volume will be the same as the boot volume unless the Fre%ix
(see the P(refix command) has been changed. BHlock-structured devices
(disks) are indicated by a "pound" sign { #).

L(ist Directory

Liﬁt?_a diskette’s directory, or part of one, to the volume and file
specified (default is CONSOLE:). All files and unused areas are listed
along with their block length and last modification date.

Yuu_may list any portion of the directory, using the "wildeard"
option, and may alsoc write the directory, or any portion of it, to a
volume or filename other than CONSOLE; . This is why you must'
sometimes give both a source file specification and a destination file

specification. The destination file specification should NOT include
a wildcard.

56 APPLE PASCAL OPERATING SYSTEM

mowom m

iz f2 g2 E= oEm o=l o=

AR AR L& iR L& & R&

i Ia

Source file specification consists of a mandatory disk wolume name or
and optional wildcard and subset-specifying strings, which may
be empty. The source file specification must be separated from a
destination file specification by a comma (,)+ Destination file
specification consists of a volume name or number and, if the volume
is a disk, you MUST include a filename.

number,

A directory listing stops when it has f£illed the screen. Press the
spacebar to continue the listing, or press the ESC key to abandon the
listing and return to the Filer prompt line.

EXAMPLE:

The most frequent use of this command is to list an entire diskette
directory on the screen. The following display, which represents a
complete directory listing for an example diskette APPLE@: , could be
generated by typing any valid volume name or number for APPLE@: in
response to the prompt,

Prompt: DIR LISTING OF WHAT VOL ? or DIR LISTING OF ?

Response: #4:
APPLE@:
SYSTEM.PASCAL 36 L=MAY=T9
SYSTEM.MISCINFO 1 4=MAY=T79
SYSTEM.COMPILER 71l IP=MAY-TY
SYSTEM. EDITOR 45 29-JAN=79
SYSTEM.FILER 28 24=-MAY-T9
SYSTEM.LIBRARY 36 22=-JUN=T79
SYSTEM.CHARSET 2 14=JUN=T79
SYSTEM. SYNTAX 14 18-APR=T79
TUNAFISH.TEXT & B=-JUL=79
SYSTEM.WRK.TEXT 4 17-JUL-79
SYSTEM.WRK.CODE 2 17-JUL-79

11/11 FILES, 31 UNUSED, 23 IN LARGEST

The bottom line of the display informs you that 1l files out of a

cotal of 11 files on the diskette have been listed, that there are 3l

out of a total of 28 diskette blocks left for you to use, and that

there are 23 contiguous blocks in the largest unused area on the
diskette. The first ratio shows that you are looking at a comp lete
listing of the diskette’s directory, and not a partial listing as
discussed below. The last number shows the size of the largest file

that you could now store onto *this diskette. Even though there are 31
unused blocks available on the diskette, the largest file you could store
would be 23 blocks, because a file must be stored in contiguous blocks.

EXAMPLE:
Here is a L(ist-directory transaction involving wildcards.

Prompt: DIR LISTING OF WHAT VOL ? or DIR LISTING OF ?

Response: #4:5=R

FILER 57

Iyping the response above might generate the following display:
APPLEQ:
SYSTEM.COMPILER 71 3@-MAY-79
SYSTEM. EDITOR 45 29-JAN=-T79
SYSTEM. FILER 28 24=-MAY-T9

3/11 FILES, 93 UNUSED, 93 IN LARGEST

ii;;

A partial listing of a directory assumes that the last file listed is
the last file on the diskette, and uses that assumption in calculating
the number of unused blocks remaining on the diskette beyond the last
listed file. This faulty assumption usually gives an incorrect number
of unused blocks, and an Incorrect size for the largest unused area.

This is only a problem on partial listings: complete listings give the
correct numbers.

EXAMPLE:

This L{ist-directory transaction involves writing a subset of the
directory to a device other than the default CONSOLE:

Prompt: DIR LISTING OF WHAT VoL ? or DIR LISTING OF ?
Response: APPLEW:S5=R,PRINTER:
Typing the above response causes this message:

APPLE@:

SYSTEM.COMPILER 71 4=MAY-T9

SYSTEH. EDITOR 45 29-JAN-T79

SYSTEM.FILER 28 24-MAY-T79

/11 FILES, 93 UNUSED, 93 IN LARGEST

to appear on the printer (if you have a printer, and iIf it was turned
onl). It"s that easy. The number of unused blocks is still wrong,
since this {s a partial directory listing.

EXAMPLE:

This L(ist-directory transaction involves writing the directory to a
disk:

Frowpt: DIR LISTING OF WHAT VOL ? or DIR LISTIWNG OF ?

Response: #4:,#4:DRCTRY. TEXT

After typing this response, you will see the messape

WRITING: ccvvevsa

58 APPLE PASCAL OPERATING SYSTEM

&

momwomw mw
B C o o -

oo

M

N
;

m

|

L
-
i

1
|

F—r—pr—fF—F—r—r
FE U T

-

i &

CT |

ikl W

-

as the Filer creates the file DRCTRY.TEXT on the diskette in disk
drive #4: .« This file would contalin the entire directory of the

diskette in drive #4: , as it looked BEFORE the file DRCTRY.TEXT was
added to it.

E(xtended Directory List

Lists the directory of a diskette, giving more detail than the L{ist-
directory command. All files and unused areas are listed along with
(in this order) their block length, last modification date, the
starting block address, and the filetype.

This command takes a little longer than the L(ist-directory command,
but it gives important extra information about the distribution of
files on your diskette.

The prompt lines, syntax, and wildcard options are exactly the same for
this command as for the L(ist-directory command discussed above. For
more details and examples, look at the L(ist=directory discussion.

EXAMPLE:

An example display for a diskette APPLE@: , also shown in the
previous L(ist-directory discussion, is shown below.

Prompt : DIR LISTING OF WHAT VOL 7 or DIR LISTING OF 7

Response: #4:
APPLE@:
SYSTEM.PASCAL 36 G4=MAY-T79 6 DATA
SYSTEM.MISCINFO 1 4=MAY=T79 42 DATA
SYSTEM.COMPILER 71 3@-MAY-79 43 CODE
SYSTEM. EDITOR 45 29-JAN-79 1l4 CODE
SYSTEM.FILER 28 24-MAY-79 159 CODE
SYSTEM. LIBRARY 36 22-JUN-79 1B7 DATA
SYSTEM.CHARSET 2 14-JUR-79 223 DATA
SYSTEM. SYNTAX 14 1B-APR-79 225 TEXT
< UNUSED > 4 239
TUNAFISH.TEXT b 8-JUL-79 243 TEXT
< UNUSED > 4 247
SYSTEM.WRK. TEXT 4 17=JUL-79 251 TEXT
SYSTEM.WRK.CODE 2 17-JUL-79 255 CODE
DRCTRY.TEXT 4 18-JUL-79 257 TEXT
< UNUSED > 19 261

12/12 FILES, 27 UNUSED, 19 IN LARGEST

If you are using the Apple Pascal system with an external terminal
whose screen shows an B@i-character-wide, upper-and-lower-case display,

FILER 59

your directory listing will appear somewhat different from the one
shown above. The same diskette directory, 1f listed on your system,
would look more like this:

APPLEg:

SYSTEM.PASCAL 36 4=-May-79 6 512 Datafile
SYSTEM.MISCINFO 1 4-May-79 42 512 Datafile
SYSTEM.COMPILER 71 3@-May-79 43 512 Codefile
SYSTEM.ELITOR 45 29-Jan-79 114 512 Codefile
SYSTEM.FILER 28 24-May-79 159 512 Codefile
SYSTEM.LIBRARY 6 22=Jun=79 187 512 Datafile
SYSTEM.CHARSET 2 14-Jun-79 223 512 Datafile
SYSTEM. SYNTAX 14 18-Apr-79 225 512 Textfile
< UNUSED > 4 239

TUNAFISH.TEXT 4 B-Jul-79 243 512 Textfile
< UNUSED > 4 247
SYSTEM.WRK.TEXT 4 17-Jul-79 251 512 Textfile
SYSTEM.WRK.CODE 2 17-Jul-79 255 512 Codefile
DRCTRY . TEXT 4 18-Jul-79 257 388 Textfile
< UNUSED > 19 261

12/12 files<listed/in=-dir>, 253 blocks
The extra column of numbers gives the number of bytes used in the last

block of each file. This number is almost always 512, the maximunm
number of bytes per block.

EXAMPLE:

Here is an E(xtended-directory-list transaction that lists a partial
directory by using a wildcard in the filepame specification.

Prompt: DIR LISTING OF WHAT VOL ? or DIR LISTING OF ?
Response: #4:5=R
Typing the response above might generate the following display:
APPLE@:
SYSTEM.COMPILER 71 3@-MAY-79 43 CODE
SYSTEM.EDITOR 45 29-JAN-79 114 CODE
SISTEM.FILER 28 24-MAY-79 159 CODE
< UNUSED > 93 187

3/12 FILES, 93 UNUSED, 93 IN LARGEST

A partial listing of a directory assumes that the last file listed is
the last file on the diskette, and uses that assumption in calculating
the number of unused blocks remaining on the diskette beyond the last
listed file. This faulty assumption usually gives an incorrect number
of unused blocks, and an incorrect size for the largest unused area.
This is only a problem on partial listings; complete listings give the
correct numbers.

60 APPLE PASCAL OPERATING SYSTEM

used, 27 unused, 19 in largest

=

DISK UPKEEP COMMANDS

B(ad Blocks

Scans the specified disk volume and detects bad blocks, by comparing
the recorded checksum for each block with the actual information
stored in the block.

This command requires that you type a volume name or number. The
specified disk volume must be on-line (currently available to the
system). Lf the disk drive or diskette is not there, the message

NO SUCH VOL ON-LINE <SOURCE>

will appear. You can just ignore the last word.

EXAMPLE:

Prompt: BAD BLOCK SCAN OF WHAT VOL ? or BAD BLOCK SCAN OF ?
Response: APPLE(:

Prompt: SCAN FOR 28@ BLOCKS 7 (Y/N)

In response you will normally type Y for "Yes", telling the Filer
you want to scan the entire diskette. If you wish to check only a

smaller portion of the disk (a very unusual case), type N and you
will be asked to type the number of blocks you want the Filer to scan.

Note: The Apple Pascal System uses only 28P-block diskettes, so you
can always answer the question

SCAN FOR 28@ BLOCKS ? (Y/N)

with a ¥ . Each diskette’s directory contains the number of blocks on
that diskette. If your system should ever ask

SCAN FOR 1134 BLOCKS ? (Y/N)

(or any number other than 28@), the diskette’s directory is probably
damaged.

When you type Y , the system then checks each block on the indicated

diskette volume for errors, and lists the block number of each bad
block. The message you will see at least 99% of the time is this:

SCAN FOR 28§ BLOCKS 7 (Y/W) Y
@ BAD BLOCKS

Very rarely, however, the disk drive will buzz and clatter, and you
may see a message similar to this:

FILER

S5CAN FOR 2BQ BLOCKS ?
BLOCK 23 IS BAD
BLOCK 24 IS BAD
BLOCK 25 IS BAD

3 BAD BLOCKS
FILE(S) ENDANGERED:
THISFILE.TEXT
THATFILE.CODE

(¥/N) X

18
25

24
29

The last line tells you that the three bad blocks are contained partly
in the file THISFILE.TEXT , which is stored in blocks 18 through 24 ,
and partly in the file THATFILE.CODE , which occupies blocks 25
through 29 . Blocks reported as "bad" can often be fixed, using the
X(amine command. Those which cannot be fixed can be "reserved" to

avold their use. See the X({(amine command, which follows this
discussion, for a more complete example of this process.

X(amine

Attemprts to "fix" suspected bad blocks on a diskette (bad blocks are

found by using the B{ad-blocks command). The eXamine command is
invoked by typing the letter X .

This command requires that you type a disk volume name or number. The
specified disk volume must be on=-line (currently available to the

system}.

EXAMPLE:

Suppose you have just done a B{ad-blks scan of the diskette named
MYDISK:, and the Filer has given you the following message:

SCAN FOR 28p BLOCKS ?
BLOCK 23 IS BAD
BLOCK 24 IS BAD
BLOCK 25 IS BAD

3 BAD BLOCKS
FILE(S) ENDANGERED:
THISFILE.TEXT
THATFILE.CODE

(Y/N) ¥

18
25

24
29

Now you have typed X to initiate the eXamine command.

Prompt: EXAMINE BLOCKS ON WHAT VOLUME ? or EXAMINE BLOCKS ON ?
Response: MYDISK:
Prompt: BLOCK=RANGE ?

At this point, you should have just done a bad block scan (using the
B{ad-blks command), and should enter the block number returned by

62 APPLE PASCAL CPERATING SYSTEM

- -— — — — -— - -— j—

-
ikl

. .

ik A i A

the bad block scan. If more than one bad block was reported, type the

number of the first bad block, followed by a minus sign, followed by
the number of the last bad block.

Response: 23-25

If any files are stored on the area of the diskette occupied by the

blocks you are about to eXamine, you will be told the name of each such
file and its beginning and ending block numbers:

Prompt: FILE(S) ENDANGERED:
THISFILE.TEXT 18 24
THATFILE.CODE 25 29
FIX THEM ?

Note: The files shown are endangered merely by their containing bad
blocks, NOT by the eXamine process. Also, the question FIX THEM ?
refers to the specified bad blocks, not to the files.

An N response to this prompt returns you to the outer level of the
Filer. If you type a Y 1in response to the above prompt, you will
cause the Filer to examine the blocks in the range you specified. The
Filer will then usually return a message like this:

BLOCK 23 MAY BE OK

BLOCK 24 MAY BE OK

BLOCK 25 MAY BE OK
in which case the bad blocks have probably been fixed. Occasionally,

however, the Filer may return a message like this:

BLOCK 23 MAY BE OK

BLOCK 24 IS BAD

BLOCK 25 IS BAD

FILE(S) ENDANGERED:

THISFILE.TEXT 13 24

THATFILE.CODE 25 29

MARK BAD BLOCKS 7 (FILES WILL BE REMOVED !) (Y/N)

in which case the
block(s) which it
prompt, the Filer
that could not be

s

Filer is offering you the option of marking the
could not fix. If you type a Y response to this
first removes all files containing those bad blocks
fixed. It then creates a special file on the

diskette, named BAD , which exactly covers the bad blocks (or more

™

and you are returned to the outer Filer level.

than one such file, if the bad blocks are not contiguous).
message then appears:

This

BAD BLOCKS MARKED

On the diskette, there

is now a new directory entry saying

™

BAD. §@@24.BAD

FILER 63

Blocks in a file marked .BAD will not be used to store any of your
files, and will not be shifted during a K(runch. These dangerous
areas of your diskette are thus rendered effectively harmless. It is
a good idea to do a bad-blocks scan of each new diskette, at the time
you first create the formatted, zeroed diskette. Any bad spots on the

diskette which are discovered at that time can be safely and easily
marked, saving you much trouble in the future.

<

WARNING: A block which has been "fixed" may still contain useless
garbage. The message MAY BE OK should be translated as "is probably
physically ok". Fixing a block means that the information stored in
the block is read into the computer, is stored again at the same spot
on the diskette, and is then read again. If the same information is
read from the block both times, that spot on the diskette is probably
not physically damaged (some kinds of damage cause inconsistent
recordings). In that event, the message MAY BE OK is given. However,
if the two readings are different, the block i1s declared bad and may
be marked as such te protect you from using that spot on your
diskette.

The most common cause of reported bad blocks on a diskette is actual,
physical damage or other problem with the diskette’s recording
surface. Dirt, fingerprints, and peanut butter are common culprits.
An attempt to store information in a bad block may result in the loss
of that information, and may render the entire file unreadable. To
guard against this kind of problem, you should always do the
following:

1) Handle your diskettes very carefully, and keep them clean;

2) Do a B(ad-blocks scan of every diskette at the time you format
it, when you Z({ero its directory to re-use it, and at any other
times when you have suspicions about the diskette.

A less common cause of bad blocks 1is opening the disk drive door or
otherwise disturbing the recording process while the system is trying
to store information on the diskette in that drive. This will
sometimes create an error in the data field of a diskette sector.

Since the diskette itself is not damaged, this kind of error can be
"fixed" by the X(amine command. However, the information in that

block may still be faulty.

Occasionally, the address field of a diskette sector may be rendered
unreadable by something you or the system does. This problem is
reported as a bad block by the B({ad=blocks command, but it cannot be
fixed by the X(amine command. When you attempt to read or transfer
the file containing the damaged address field, the system will report
I1/0 ERROR #64 . This problem can be corrected by reformatting the
diskette (which erases everything on the diskette, so be sure to save
the undamaged files, first). Or, of course, you can just mark the bad
blocks to aveoid using them.

64 APPLE PASCAL OPERATING SYSTEM

W m W W W W W W

-

L

L

L L i

iE L

ikl i iE iR i

W
i

K

.,
i

in

MISCELLANEOUS COMMANDS

P(refix

Changes the current default Prefix volume name to the volume name
specified. Thereafter, until the next time the system is booted, the
system will supply this Prefix volume name whenever a file
specification does not include any volume name or number.

This command requires that you type a volume name or number. An
entire file specification may be entered, but only the volume name

number will be used. It is not necessary for the specified volume
be on-line (actually in the system at the moment). If you speecify

disk volume, either by number or by name, the Prefix is set to the

NAME of the diskette In that drive. You may specify devices other
than a disk volume, such as PRINTER: .

or
Lo

Each time the system is booted, the Prefix volume name is set to the
name of the diskette in the boot disk drive (slot 6, drive 1; the boot
or "Root" volume). At any time, you can return the Prefix volume name
to the boot volume name again by typing an asterisk (* } in response
to the Prefix prompt.

To see which volume name is currently set as the default, you may
respond to the Prefix prompt by typing a colon (:) alone.

Using the C(hange command to change the name of the Prefix diskette
alse changes the default Prefix name supplied by the system.

On a one-drive system, being able to set the default volume name can
save you much typing, If you are having to switch back and forth
between two diskettes. One of the diskettes you use most will usually
be the boot diskette, which can always be specified by * . If the
Prefix i1s set to the name of the other diskette you use often, you can
eliminate the volume from all file specifications typed while that
diskette is in the drive.

On a two-drive system, you can use the Prefix command to make the
diskette in disk drive volume #5: (slot 6, drive 2) the Prefix
default. This saves typing, because the diskettes in the two drives
can then be specified with the simple names : and * .

D(ate

This is the first command you should use every day; it ranks only
after brushing your teeth as a necessity. The command tells you what
date the system thinks it is, and allows you to correct any mistaken
impression the system might have.

FILER 65

Prompt: DATE SET: <l.:31>-<JAN..DEC>-<f{..99>
TODAY IS 19-AUG-79

NEW DATE ?

You may enter the correct date in the format shown after TODAY IS .
For example, if today is the 13th of November, 1981, you might type

Response: 13-NOV-B81

After pressing the RETURN key, the new date 1s displayed. Typing
only a RETURN does not affect the current date. The hyphens are
delimiters for the day, month and year fields, and it is possible to
affect only one or two of these fields. For example, the year could
be changed by typing --88 , the month by typing -SEP , etc. The
entire month-name can be entered, but will be truncated to three
letters by the Filer. Slash (/) is also acceptable as a delimiter.

In most cases, you will need to type only a single number, which will
set the new day. For example, if yesterday was the 19th of August,
you would simply type D2f and press the RETURN key. This command
and response would change the date to the 2ffth of August (typing D
initiates the date-setting routine, typing 2@ sets the new date, and

pressing the RETURN key terminates your entry). The day-month-year
order is imviolate, however.

This date will be associated with any files saved during the current

sesslon and will be the date displayed for those files when the
directory is listed. This information can be very useful when you are
trying to remember which is your latest version of a file.

Q(uit

Leaves the Filer, returning you to the outermost Command level of the

operating system. Remember to have your boot diskette in the boot
drive before you issue this command.

66 APPLE PASCAL OPERATING SYSTEM

FILER COMMAND SUMMARY

»
i.-j'j

FILE SPECIFICATION

T #5: or MYDISK: Typical volume specification. See Table 3A for
device volume names and numbers.
TH #5:MYFILE.TEXT Typical file specification. Unless otherwise

or noted, Filer commands require complete file

MYDISK:MYFILE.TEKT specifications, including the suffix.

Typical filename with file [size] specifier.

3 MYFILE.TEXT [13]
Used with M{ake and T(ransfer commands.

* Specifies the boot diskette volume name-
Specifies the Prefix volume name.

Volume name with

no filename Specifies the entire named diskette.

Filename with no

volume name Specifies the named file on the Prefix volume.

= Wildcard used in specifying a subset of filenames
to be acted on. For example, BR=XT specifies all
filenames beginning with BR and ending with XT .

? Same as = except Filer requests verification before

acting on each filename. Example: BR?XT

5 In T(ransfer, specifies a destination filename which
. 1 is the same as the source filename.
’ Separates any number of Filer command response fields.

Some commands use response fields in palrs.

Produces the left bracker: |
Produces the right bracker:]

CTRL-K
SHIFT-M

SYSTEM COMMANDS

CTRL-A Shows the other 4f-character "page" of the system’s
8@~character display, until the next CTRL=A .

CTRL-Z Display scrolls right and left to follow the cursor.

CTRL-S Stops any on-going process until the next CTRL-S .

CTRL-F Flushes program output (does not send it to the screen

or printer) until the next CIRL-F -«

FILER 67

GENERAL FILE-MOVING COMMAND

T({ransfer: Transfers information from the first specified volume or
file to the second specified volume or file. Destination file

uses the largest unused diskette area or the first unused area
of specified [size].

entire diskettes, or send files to a printer or other device.

GENERAL DISKFILE COMMANDS

Mlake: Creates a diskette directory entry with the specified filename
and [size]. Produces a "dummy" file on the diskette.

C(hange: Renames the specified diskette or diskette file to the second
specified name. If second specification is a filename, it
need not Include the volume.

R{emove: Removes the specified file from a diskette’s directory.

K(runch: Packs the files on the specified diskette so that unused
portions of the diskette are combined into one area at the
end (or other specified area).

Z(ero:

Renames and erases the directory of the specified diskette.

WORKFILE COMMANDS

G(et: Designates a specified diskette file as the next workfile (no
suffix needed: .TEXT and .CODE are supplied automatically).
The next E(dit, C{ompile or R(un will use this file.

S(ave: Saves all versions of the workfile SYSTEM.WRK under the
specified filename (do not specify a suffix: .TEXT and

are supplied automatically).

«CODE

N{ew: Clears the workfile, removing all SYSTEM.WRK files from the

boot diskette.

W{hat: Tells the name and state (saved or not) of the workfile.

68 APPLE PASCAL OPERATING SYSTEM

i
51 -]
-

Used to move or save diskette files, copy -

"~ INFORMATION COMMANDS

Ti V(olumes: Shows the devices and diskettes currently in the system, by
) volume number and by volume name.

'

-

=

ified diskette. If
—directory: Shows what files are on the spec
e desirid. 1ist is sent to a second specified file or device.

cified diskette,
ded-directory-1ist: Shows what files are on spe
St with extra information about the files and unused portions.
1f desired, list is sent to a second specified file or device.

3 DISK UPKEEP COMMANDS

- B(ad-blocks: Tests all 28@ blocks on the specified diskette to see
li that information has been recorded consistently. Any bad
j Z(amine:

blocks are reported. Use X(amine to fix bad blocks.
MISCELLANEOUS COMMANDS

3 P(refix: Changes the current default volume name to the volume name
specified. Response of : shows current Prefix volume name.
a D{ate:

Quit:

i ks, previously
Attempts to fix the specified diskette blocks,
reportzﬁ bad by the B(ad-blocks command. Allows you to mark
blocks that can’t be fixed, to prevent using those blocks.

Lets you specify a new current date for the system. Type one

number to change the day, only.

Leaves the Filer and returns Lo the outermost Command level.

FILER

69

THE EDITOR

70 APPLE PASCAL OPERATING SYSTEM

EDTOR T

INTRODUCTION

DISKFILES NEEDED

The following diskfiles allow you to edit programs and text:

SYSTEM. EDITOR (any diskette, any drive; required)

Textfile to be Edited (any diskette, any dri-e; optional;
default 1s boot diskette’s workfile

SYSTEM-.WRK.TEXT, any driwve)

The Apple Pascal system will retrieve
diskette, and store the workfile onto
which disk drive the boot diskette is in. However, since other files
on the boot diskette must be found in the boot drive, it is
recommended that you keep your boot diskette in the boot drive while
editing.

the
the

workfile from the boot
boot diskette, no matter

In addition, you may wish to have some of the following diskfiles
available to the system, if needed for your purposes:
SYSTEM.COMPILER (any diskette, any drive; optional;
used if you Run or Compile your
text after Editing)

SYSTEM.LINKER (any diskette, any drive; optional;
used if any external routines must
be Linked into your program) (no
Link needed to Use intrinsic Units)

SYSTEM.LIBRARY (boot diskette, boot drive; optional;
used if Run calls the Linker, or if
your program needs Long Integers,
does file 1/0, or USES Units)

SYSTEM. ASSEMBLER
65@% . 0OPCODES
6590 . ERRORS

(any diskette, any drive; optional;
used if you Assemble your text
after Editing)

The file SYSTEM.EDITUR is normally found on diskette APPLEl: and also
on diskerte APPLE@: . One of those diskettes is your boot diskette,
50 be sure that diskette is in one of your disk drives (preferably
the boot drive) when you select the E(dit option.

One-drive systems boot Initially with APPLEL: in the drive. TIf you
are just Editing, Filing, and eXecuting programs that are already
Compiled, you can continue to use APPLEl: as your boot diskette in a
one-drive system. If you are developing a program, you will want to
use the Edit-Run-Edit-Run cycle, which requires the Compiler in order

72 APPLE PASCAL OPERATING SYSTEM

W oW W U OW T WO WO W W W W W

i oan own o ad o W

i

W oWl W

AR AR AR Al

to Run your newly-edited program. Since the file SYSTEM.COMPILER is
not on diskette APPLELl: , one-drive users should put APPLE@: (which
does contain SYSTEM.COMPILER) in the drive and press the RESET key to
re-boot. Thereafter, APPLEf): is your boot diskette.

In general, one-drive users will follow this procedure when Editing:

wish to R{un a program you are editing, you must
as your boot diskette. With your beot diskerte
APPLE@:) in the drive, enter the Filer.

l. If you will
use APPLE{:

(APPLEL: or

T(ransfer onto your boot diskette a copy of the textfile you
wish to Edit. Start the T(ransfer with the source diskette
in the drive, and wait until prompted before putting the
destination diskette (your boot diskette) into the drive.

With your boot diskette in the drive, G(et the textfile you
have just T(ramsferred. Then Quit the Filer, and enter the
Editor. The file designated by G{et is automatically read

into the Editor.

Edit the file. OQ(uit, U(pdate the workfile, and re—enter the
Editor from time to time. On each re-entry, the updated
workfile (SYSTEM.WRK.TEXT) is automatically read back into the
Editor. When you are through editing, Q(uit and U{pdate the
workfile one last time, but do not re-enter the Editor.

If you are editing a program, you can R{un the program now to
check its operation and also to generate a code version
(5YSTEM.WRK.CODE) of your latest workfile. Repeat steps & and
5 until the program runs as it should.

Enter the Filer and use the S{ave command to rename the
workfile on the boor diskette: Then T(ransfer the S(aved
file or files, one at a time, onto any other diskette. 5tart
each T(ransfer with the boot diskette in the drive, and wait
until prompted before putting the destination diskette in the
drive.

You may also wish to R(emove the S(aved files from your boot
diskette at this time, to leave more room on that diskette
for future editing jobs.

8. Before you Exit the Filer, put your boot diskette back in the

drive.

Two-drive systems also boot with APPLEl: in the boot drive. Lf you
place APPLE2: in the other drive, vour system can use SYSTEM.COMPILER
from that diskette when you want to R{un a program you are editing.

Another possibility is to press RESET with APPLE@: in the boot drive.
Diskette APPLE@: (which contalns SYSTEM.COMPILER) then becomes your
boot diskette and you will not have to put APPLEZ: in the non-boot
drive to R{un a program you are editing.

EDITOR 73

On two-drive systems, "non-boot drive" means drive volume #5: (the
"boor drive" is volume #4:). On systems with three or more drives
"non~boot drive'" means any drive except wolume #4:. Systems with :
three or more drives can leave APPLEl: and APPLE2: in drive wvolumes
#4: and #5: throughout the Edit-Run-Edit-Run cycle.

In general, two-drive users will follow this procedure when Editing:

l. With your boot diskette (APPLEl: or APPLE@:) in the boot

drive, put in the other drive the diskette that has the file
you wish to Edit.

2. Enter the Filer, and G(et the textfile you wish to Edit.
1he? Q{uit the Filer, and enter the Editor. The file
designated by G(et is automatically read into the Editor.

3. ?dit the file. Q{uit, U(pdate the workfile, and re-enter the
Editor from time to time. On each re-entry, the updated
workfile (S5YSTEM.WRK.TEXT) is automatically read back into the
Editor. When you are through editing, Q(uit and U(pdate the
workfile one last time, but do not re-enter the Editor.

If you are editing a program, you can R{un the program now to
check its operation and alsc to generate a code version
(SYSTEM.WRK.CODE) of your latest workfile. If your boot
diskette is APPLEl: , you should put APPLEZ: in the non-boot
drive before attempting to R(un your programs. This is not
necessary if you are using APPLE(: as your boot diskette.
Repeat steps 3 and &4 until the program runs as it should.

3. Enter the Filer, and S(ave the workfile onto a diskette that
you have put in the non-boot drive.

If you are only editing text, you may wish to remove all unnecessary

f@les from a copy of APFLEl: , in order to leave room for large text
files on your boot diskette. The following example shows a directory

list of files on a possible text-editing-only diskette named EDITI:

EDITI1:

SYSTEM.APPLE 32 26-JUL-79 6 DATA
SYSTEM.PASCAL 36 4-MAY-79 3B DATA
SYSTEM.MISCINFOQ L 4=MAY-T79 74 DATA
SYSTEM.EDITOR 45 29-JAN-79 75 CODE
SYSTEM.FILER 28 24-MAY-T79 120 CODE
< UNUSED > 132 148

When you are handling large text files, the amount of unused space on
the boot diskette is important. During the course of editing, the
file being worked on is usually stored again and again in the workfile
on the boot diskette. To be safe, the contiguous unused space
available for storing the workfile should be at least THREE TIMES the
size of the largest workfile you will store. Since text files can be

74 APPLE PASCAL OPERATING SYSTEM

mow R W W WO OO OW WO OW W W

-

P

i

-

Ll

(U VY VR T VAT VO T VI I 1V 1V N 1T R T T 1™

1

L

as large as 38 blocks, an unused area of about 114 blocks would be
safe. Of course, for working on smaller programs and text much less
room is needed.

Note that text files always use diskette space in two-block
increments.

One-drive systems must also have room on the boot diskette for the
original copy of rhe file being edited, in addition to room needed for
the workfile. If space is a real problem, you could avoid U(pdating

the workfile by always W(riting to the name of the original copy on
the boot diskette, instead. That way, the file SYSTEM.WRK.TEXT would

not be created. The old version of your original copy will be removed
automatically after each time you W(rite the newest version to that
NADE

Two-drive systems can keep in another drive the original copy of the
file being edited, so that only the workfile SYSTEM.WRK.TEXT appears
on the boot diskette in the boot drive.

A “WINDOW" INTO THE FILE

The Screen-Oriented Editor is specifically designed for use with video
displays such as the Apple’s TV or monitor. On entering any file, the
Editor displays the start of the file on the second line of the
screen. If the file is too long for the screen, only the first
portion is displayed. This is the concept of a "window". The whole
file is there and is accessible by Editor commands, but only a portiom
of the file can be seen through the "window" of the screen. When any
Editor command would take you to a position in the file which is not
displayed, the "window" is moved to show that portion of the file.

The Apple Pascal Editor uses a text window that is Bf) characters wide.
On the Apple’s TV or monitor, only the leftmost 4@ characters of the
window are normally displayed. To see the rightmost 4@ characters of
the window at any time, just press CTRL-A. Frequently, the right half
of the window is just black, as there is no text to display there.
Pressing CTRL-A again shifts you back to the left half of the window.

You can also make the display “seroll" to the right and left, by
pressing CTRL-Z. In the CTRL-Z mode, the display "follows" the cursor
everywhere it goes. As the curser moves, the display is automatically
adjusted to show the text surrounding the cursor. CTRL-Z is cancelled
by CTRL-A and by many other commands.

Most programs will not require you to write beyond the leftmost &40
characters. For many other text applications, you can adjust the
display”s right margin to columm 39 (see the E(nvironment command), so

that the text will be confined to the leftmost 4@ characters of the
window.

EDITOR 75

THE CURSOR

The cursor marks a position in the file and can be moved to any
position occcupied by text. The window shows a portion of the file
near the cursor. To see another portion of the file, move the
cursor. Action usually takes place in the wvicinity of the cursor.

If the text being displayed is more than 4@ characters wide, the
cursor will disappear when you move it right, beyond the leftmost 4@
characters. To see the cursor and the text around it, you can press
CTRL-A (which shows you the other half of the B@-character Apple
Pascal window), or you can invoke the "Auto-Follow" option by pressing
CTRL-Z . After CTRL-Z, the Apple’s 4f-character display will
automatically scroll right and left to follow the cursor wherever it
goes, so the cursor never disappears from view. CTRL-A and many other
commands cancel the action of CTRL-Z.

There are a number of commands available to you. Some of the
commands permit additions, changes or deletions of such length that
the screen cannot hold the whole portion of the text that has been
changed. In those cases, the screen shows the portion of the file
where the cursor ended up after the change. In no case is it
necessary for you to operate on portions of the text not seen on the
screen, but in some cases it is optional.

THE PROMPT LINE

The Editor’s prompt line lets you know, first of all, that you are in
the Editor rather than in some other part of the system. The Apple
Pascal operating system is complex enough that vou need these
signposts to remember where you are in the system. Secondly,
prompt line reminds you of some of the commands you can use.
Remember that on the Apple’s 4f-character screen display, you will
sometimes see only the leftmost 4P characters of the prompt line.
CTRL=-A to see the rest of the line.

the
Use

Here is the complete Editor prompt line:
>EDIT: A(DJST C{PY D(LETE F(IND I(NSRT J(MF R{PLACE Q{ULIT X(CHNG Z(AP

The letters and numbers in square brackets which will appear on your
screen at the end of the prompt line are just the version number for
this portion of the program.

NOTATION

The notation used in this chapter is sometimes borrowed from the
notation used in the Editor prompt lines. 1In the Editor prompt lines,
a word enclosed between angle-brackets < like this > tells you that a
particular key is to be pressed. For example, <RET> means that the
RETURN key should pressed at that point, and <ESC> means to press the
ESC key. Either lower-case or upper-case characters may be used when
typing Editor commands.

76 APPLE PASCAL OPERATING SYSTEM

e e e e, e — — —

WM W m W W W W W

re
Ty

inl iml ml iml el el o ol el o ol

L,

iy

A BRIEF SCENARIO

This scenario will give you a quick idea of what is invelved In using
the Editor, with little or no attempt to explain the terms and

concepts used. Following the scenario is a more detailed discussion
of the same concepts, in the section called A LITTLE MORE DETAIL.

Following that section there is a full discussion of all Editor
commands.

CLEARING THE WORKFILE

From Command lewvel, with your boot diskette (APPLE@:
the boot disk drive (volume #4:), type F for F(ile .
prompt line appears:

or APPLEL:) in
The following

FILER: G{ET, S(AVE, W(HAT, N(EW, L(DIR, R{EM, C(HNG, T(RANS, D(ATE, Q(UIT
or
FILER: G, S, N, L, R, C, T, B, Q [C.2]

Type N for N{(ew . 1f this message appears:

WORKFILE CLEARED

then you can simply type Q to Q{uit the Filer, and proceed to the next
section. However, if this message appears:

THROW AWAY CURRENT WORKFILE ?

you may be about to lose someone’s valuable workfiles. Unless you know

for sure that all files beginning with SYSTEM.WRK on the boot diskette

are dispensable (these files constitute the workfile), you should

respond to the above question by typing an N for "No". MNow type 5 for

S(ave , and the system will ask you
SAVE AS WHAT FILE ? or SAVE AS 7

Respond by typing any valid filename (without any .TEXT or .CODE
suffix). For example, you might type

ULD . WHE

The system Dhediently renames SYSTEM.WRK.TEXT as OLD.WRK.TEXT , and
renames SYSTEM.WRK.CODE (if there is one) as OLD.WRE.CODE . When this
is done, again type N for N(ew , and this time you will see

WORKFILE CLEARED

Type Q for Q(uit to return to the system”s outermost Command level.

EQITOR

77

STARTING A NEW FILE

Now that the workfile has been cleared, type E for E(dit from the
Command level. Soon, this prompt appears:

>EDIT:
NO WORKFILE IS PRESENT. FILE? (<RET> FOR ND FILE <ESC-RET> TO EXIT)

Press the RETURN key to start a new file, and this prompt appears:
>EDIT: A(DJST C(PY D(LETE F(IND I(NSRT J(MP R(PLACE Q(UIT X(CHNG Z(AP

fou can now type L to enter I(nsert wode, and then proceed to type
your program or text. When each portion of the insertion is
you press CTRL-C to accept that portion of the insertion and
I{nsert mode. If you wish to add more text, type 1 again to
I{nsert mode. Further typing will insert text at the cursor
until you terminate the latest insertion by pressing CTRL-C.

complete,
terminate
re-enter

position,

If you wish to remove unwanted text after CTRL-C has terminated an
insertion, move the cursor to any appropriate part of the text (using
the arrow-keys), and then type D to enter D{elete mode. In D(elete
mode, moving the cursor erases the characters moved over. Terminate
each deletion by pressing CTRL-C.

For example, you might type I for 1(nsert, and then type

PROGRAM EXAMP;
BEGIN

WRITE(AN APPLE A DAY”)
END.

Terminate this insertion by pressing CTRL-C.

UPDATING THE WORKFILE

Finally, when the text is the way you want it for now, type Q for
Y(uit and then type U for U(pdate. The system stores your file in the
workfile, a file on the boot diskette called SYSTEM.WRK.TEXT , and you
are once again at the outermost Command level.

If your file was a Pascal program (as the example is), you may now
type B for R{un, and the system will automatically attempt to compile
and run the workfile, storing the compiled version of your program (if
compilation is successful) as SYSTEM.WRK.CODE . If APPLEl: is your
boot diskette, APPLE2: must be in another drive during compilation.
APPLE2: is not necessary if APPLE(@: is your boot diskette.

If you wish to change your file for any reason, simply type E for
E(dit again. Now a workfile is present, and the system automatically
reads the workfile into the computer, ready for more Editing.

78 APPLE PASCAL OPERATING SYSTEM

m W

—

VI VIR VIR VIR VIR VIR TR VI T TR TR P TR " TR T 1"

SAVING THE WORKEFILE

One-Drive Method

On one-drive systems, you can only S(ave one version of the workfile
(usually .TEXT) onto another diskette. To save more than one workfile
version (usually .TEXT and .CODE), you must first S(ave all versions
onto the boot diskette, and then T(ransfer each version to the other
diskette. Then you can R{emove the S(aved files from the boot
diskette. Here is how it might be done:

When the U(pdated workfile contains your finished product, or when you
need to start a new file for another project, type F from Command
level to enter the Filer. From the Filer, type 5 for 5(ave and you

are prompted:

SAVE AS WHAT FILE ? or SAVE A5 7

You should respond by typing a valid boot diskette file specification
(without any .TEXT or .CODE suffix). The system then renames all

versions of the workfile to the filename which you have specified.
For example, if APPLE@: is your boot diskette, you might respond by

typing
APPLE{ : PROGRAML

The system obediently renames SYSTEM.WRK.TEXT as PROGRAM1.TEXT, and

SYSTEM.WRK.CODE (if it exists) as PROGRAM1.CODE , on the boot
diskette. This step makes the former workfile safe from being

accidentally erased by a N(ew command, and tells the system that the
workfile is gone.

Now type T for T(ransfer. The system prompts
TRANSFER WHAT FILE ? or TRANSFER 7

You should respond by typing the complete file specification
(including the suffix, this time) for one version of your saved file.
In the example, you might type

APPLE(: PROGRAM1 . TEXT
When you press the RETURN key, the system asks

TO WHERE ?
Now type the complete file specification for the destination file.
If you wish to save your PROGRAML files on diskette MYDISK: , for

example, you would type

MYDISK:PROGRAMI . TEXT

EDTOR 79

The disk drive whirrs, and soon this message appears:

PUT IN MYDISK:
TYPE <SPACE> TO CONTINUE

Follow the directions, putting diskette MYDISK: in the disk drive and
pressing the Apple’s spacebar. When PROGRAML.TEXT has been
successfully transferred to MYDISK: , you can put APPLE@: back in the
disk drive.

Now, repeat the T(ransfer command, this time saving the file
PROGRAM].CODE (if it exists) onto MYDISK: . When that transfer is
complete, again put APPLE@: back in the disk drive.

To prevent your boot diskette from becoming cluttered up with files
that you have already saved elsewhere, you may wish to remove the
PROGRAM]1 files from APPLE@: at this time. Type R for R(emove, and
when the Filer prompts

REMOVE WHAT FILE 7 or REMOVE ?

type the complete file specification (including the .TEXT or .CODE
suffix) of one file that you wish removed from the boot diskette.
example, you might respond by typing

For

APPLE@: PROGRAM] . TEXT
The Filer soon says

APPLEP: PROGRAML . TEXT
UPDATE DIRECTORY ?

-->» REMOVED

This gives you a last chance to avoid removing the specified file by
typing an N response. If you type a response of Y , the file
PROGRAML.TEXT is removed from APPLE@:"s directory, and the system
forgets that file's existence. You can repeat the R{emove command as
often as you wish, of course, until all unnecessary files have been
removed.

Multi-Drive Method

On multiple drive systems, you can S(ave all the versions of the
workfile (usually .TEXT and .CODE) directly onto another diskette,
using a filename of your choice. Then N(ew erases the workfile from
the boot diskette. This is the process:

When the U(pdated workfile contains your finished product, or when you
need to start a new file for another project, type F from Command
level to enter the Filer. From the Filer, type S for S(ave and you
are prompted:

SAVE AS WHAT FILE ? or SAVE AS 7

B0 APPLE PASCAL OPERATING SYSTEM

m OO OE MWW W W W OW W W

&

'V VY VR Y URE Y TR UV VRN VAT TR T VRN T VR T VR T VR

An

L

When you respond by typing any valid disk file specification (without
any .TEXT or .CODE suffix), the system saves all versions of the
workfile under the filepame which you have specified. For example, if
you respond by typing

MYDISK: PROGRAMI
the system saves SYSTEM.WRK.TEXT as PROGRAMI.TEXT, and SYSTEM.WRK.CODE
(if it exists) as PROGRAML.CODE , on diskette MYDISK:
You can now type the Filer command N{ew , which erases all versions of
the workfile on the boot diskette, and the creation or editing process
can begin again.

RE-EDITING AN OLD FILE

One-Drive Method

On one-drive systems, you must first use the Filer to T(ransfer onto
your boot diskette the file you want to edit. Only then can you use
the Filer to G(et that file.

From Command level, with your boot diskette (APPLE@: or APPLELl:) in
the disk drive, type F to enter the Filer. Now put into the disk

drive the diskette containing the file you wish to edit. Type T for
T(ransfer, and when you see the message

TRANSFER WHAT FILE 7 ar TRANSFER 7

respond by typing the complete file specification (including the .TEXT
suffix) for the textfile you want to edit. For example, to re-edit
the file saved on MYDISK: in the previous section, you mignt type

MYDISK:PROGRAML . TEXT

When you press the RETURN key, the disk whirrs and this message appears:

TO WHERE ?

At this point you should type the complete file specification (again
including the .TEXT suffix) for the file as it will appear on your
boot diskette. For example, 1f you are using APPLE@: as your boot
diskette, you might type

APPLE@ : PROGRAML . TEXT
After some more disk-whirring, you will be prompted
PUT IN APPLE@:

TYPE <SPACE> TO CONTINUE

EDITOR 81

Put APPLE@: in the disk drive, press the spacebar, and a copy of
PROGRAM1.TEXT is saved on APPLE@: .

Now that the file you want to edit is on the boot diskette, you can
type G to G(et that file. When you see the prompt

GET WHAT FILE ? or GET 7

type the file specification (without the .TEXT suffix, this time) for
the boot diskette copy of the file you want to edit. For the example
we have been showing, you would respond to the prompt by typing

APPLE@: PROGRAM1

When the Filer has cleared away any previous workfile (as the command
N(ew did), it marks the specified file as the next workfile. Since
only the .TEXT version of PROGRAMI1 exists on APPLE@: , you will soon
see the message

TEXT FILE LOADED

Now type Q to Q(uit the Filer, and from Command level type E for
E(dit. The file designated by G(et is automatically read into the
Editor, ready for work.

Multi-Drive Method

On multiple-drive systems, you can use the Filer to G{et the file you
want to edit, directly from any diskette in any available drive.

(APFLELl: or APPLE@:) in the boot drive and put
diskette containing the old textfile you wish
level, type F to enter the Filer, and then Ctype

see the prompt

Put your boot diskette
into another drive the
to edit. From Command
G for G(et « When you
GET ?

GET WHAT FILE ? or

type the file specification for the file you want to edic. For

example, to re-edit the file saved on MYDISK: in the example earlier
in this section, you might respond te the prompt by typing

MYDISK: PROGRAM]

When the Filer has cleared away any previous workfile (as the command
N{ew did), it marks the specified file as the next workfile. Since
both .TEXT and .CODE versions of PROGRAMI exist on MYDISK: , you will
soon see the message

TEXT & CODE FILE LOADED

82 APPLE PASCAL OPERATING SYSTEM

-

™ WO Om W W W W W N W

. rr

H

in aml e o e o o oW oW

iR Al

iml im im

This does not mean that PROGRAM]1 has been transferred to your boot
diskette or into memory; you must continue to leave MYDISK: in its
drive. MNow type Q to Q(uit the Filer, and from Command level type E
for E(dit. The file designated by G(et is automatically read into the
Editor, ready for work. THEN you may take MYDISK: out of its drive,

if you wish.

A LITTLE MORE DETAIL

ENTERING THE EDITOR

When the COMMAND: prompt line is on the screen, and your boot diskette
{(usually APPLEf@#: or APPLELl:) is in the boot drive (volume #4:), type
an E for E(dit . 1f the system already has a text workfile (see
WORKFILES, below), that file is automatically read into the Editor,
ready for work. 1If the system does not have a workfile yet, or if
only a code workfile exists, this prompt line appears on first
entering the Editor:

>EDIT:
WO WORKFILE IS PRESENT. FILE? (<RET> FOR MO FILE <ESC-RET> TO EXIT)

Of course, you may not be able to see the entire prompt line at once.
Use CTRL-A to flip back and forth between the rightmost 4@ characters
of the display and the leftmost 4@ characters.

There are three ways to answer this opening prompt line’s question:

l. You can respond by typing the file specification of any textfile
that already exists on diskette.

On one-drive systems, you must specify a textfile on the boot
diskette. On multi-drive systems, the diskette containing the
specified file may be in any drive. The Editor will read the
spaecified file into the computer, and then display the first part of
the file"s text on the screen, ready for Editing.

For example, you might type
APPLE@: PROGRAMI
When you press the RETURN key , the file named PROGRAMI.TEXT is

retrieved from diskette APPLE@: and the text of that file is
displayed on the screen.

EDITOR 83

2. You can answer by pressing the RETURN key: <RET>

This tells the system that you are starting a new file. The only
thing visible on the screen after doing this is the normal EDIT
prompt line:

>EDIT: A(DJST C(PY D(LETE F({IND I(NSRT J(MP R(PLACE Q(ULT X(CHNG Z(AP

A new file has been started and currently has nothing in it. Type
1 to begin I(nserting a program or text. MNo diskette version of

this new file exists until you Q(uit the Editer and U{pdate the
workfile or W(rite to some other disk file.

3. You can answer by pressing the ESC key and then pressing the
RETURN key: <ESC-RET>

This causes the Editor to return you to the system Command level,
a useful option when you didn’t mean to type E .

WORKFILES

The workfile is a diskette "scratchpad" copy of the file on which you
are currently working. Each time you Q(uit the Editor and U{pd

) pdate
(see LEAVING THE EDITOR, at the end of this section), the latest
version of your program or text is saved in the workfile, under the
name SYSTEM.WRK.TEXT on the boot diskette. This is a very convenient
arrangement, as you will see.

The first convenience comes each time you type E to enter the Editor
from Command level. No questions are asked if a workfile already
exists (in a file named SYSTEM.WRK.TEXT on the boot diskette). The
workfile is automatically read into the computer and displaved on the
screen, ready for editing. If you keep the workfile U(pdated to the
latest version of a job in progress, you can turn on the computer at

any time, type E from Command level, and you will immediately be ready
to work on your job again.

Editing using the workfile has another advantage when you are working
on a program. You can Q(uit the Editor and U(pdate the workfile, and
then immediately type R from Command level to compile and R(un the
workfile automatically. Following a successful compilation, the
compiled version of the workfile is automatically saved as
SYSTEM.WRK.CODE . After the code version of your program has been
executed, typing E from Command level will automatically read the text
version of your program back into the Editor for more work. Thus you
are alwost completely spared the constant typing of filenames during
program development.

Urdinarily, the workfile is created by Q(uitting the Editor and

U(pdating the workfile. There is also one other way to make the
system behave as {f there were a workfile. From the Filer, the G(et

84 APPLE PASCAL OPERATING SYSTEM

m m

m oW omEE W

command can be used to designate any textfile as the next workfile.

The file so designated will be read into the computer when you next
enter the Editor, just as if that file were on the boot diskette and
named SYSTEM.WRK.TEXT . This designation is "forgotten", however,
each time you boot the system.

When you have completed work on your file, you will want to enter the
Filer and S{ave the latest U(pdated workfile under some other name, or
else you will Q(uit the Editor by W(riting to a disk file of some
other name. But during the development of a program or text file, it
is very convenient to keep the latest version saved in the workfile.

To edit a different file when a workfile already exists, the workfile
must first be cleared, by using the Filer's N(ew command (if you wish
to start a new file) or the G(et command (if you wish to re-edit an
old file). Make sure that you have 5(aved the latest version of the
workfile under another name, before you clear the workfile, .s all
versions of SYSTEM.WRK will be erased.

SOME HIDDEN CHARACTERS

The Apple II keyboard doesn”t appear to have the left and right bracket
symbols [and] .« But they can by typed. The left bracket is
produced by typing CTHL-K. The right bracket is produced by typing
SHIFT-M. You might consider marking these special characters on your
keyboard.

MOVING THE CURSOR

In order to edit, it is necessary to move the cursor. On the keyboard
are two "arrow-keys" which move the cursor right and left. 1In
addition to these cursor-moving keys, CTRL-0 moves Che cursor up one
line, and CTRL-L moves the cursor down one line. Some people find it
convenient to mark these last keys with an up-arrow and a down-arrow,
to help them remember. You can move the cursor only when one of these
prompt lines is at the top of the screen: EDIT , DELETE , or ADJUST .

If you type a number before you type a cursor move, the cursor moves

that number of characters or lines in the direction indicated. Typing
P moves the cursor to the next "page", a little more than a screenful
away from the current cursor position. Also, notice how the spacebar
and the RETURN key move the cursor. Sometimes these moves are useful.

Vertical motion of the cursor is made without regard to the text on
the page. But for horizontal moves, the cursor does not like to be

outside of the text of the program. For example, suppose the cursor
appears after the "N" in "BEGIN" :

EDITOR 85

PROGRAM EXAMP;
BEGIN
WRITE(AN APPLE A DAY")
END.
(Actually, the cursor is the invisible RETURN character that ends

every line.) 1If you press the right-arrow key, the cursor moves to
the "W" in "WRITE" :

1I0nlf

PROGRAM EXAMP;
BEGIN

WRITE("AN APPLE A DAY")
END.

Similarly, pressing left-arrow key now moves the cursor back to after
the "N" in “BEGIN".

If it is necessary to change "WRITE(”AN APPLE A DAY’)" found in the
third line to "WRITE("AN ORANGE A DAY")", the cursor must first be
moved to the correct spot.

For example: if the cursor is on the "P" in "PROGRAM EXAMP;", go down
two lines by pressing CTRL-L twice. After the first CTRL-L the cursor
is on the "B" in "BEGIN"; and after the second CTRL-L the cursor is in
front of the "W" in "WRITE".

PROGHAM EXAMP;
BEGIN

WRITE (“AN APPLE A DAY”)
END.

How, using the right-arrow key, move until the cursor sits on the "A"
in "APPLE".

Note that with downward and upward cursor
CTHL-0) the cursor may at times appear to
the last illustration, the cursor appears
before the "W" in "WRITE". As far as the Editor knows, however, the
cursor is actually on the "W" in "WRITE". So do not be surprised
when, on first pressing the right-arrow key, the cursor jumps to the
"R" in "WRITE". In other words, when the cursor appears to be outside

the text, it is conceptually on the closest character to the right or
left.

moves (using CTRL-L and
be outside the text. 1In
to be in the blank space

Remember that the Apple’s TV screen only shows the lefrmost 4§
characters of the system”s 8f-character-wide display. When the cursor
disappears into the hidden portion of the Pascal display, you can
follow it by pressing CTRL-A . Even easier, you can initiate
"Auto-follow" mode, by pressing CTRL-Z . After CTRL-Z , Apple’s
4@-character screen automatically scrolls left and right to keep the
cursor visible. CTRL-A and many other commands cancel CTRL-Z .

86 APPLE PASCAL OPERATING SYSTEM

mow om o

™ ow o

e — — —

IR

!

L

U UV VI U T UV O 11 [1V R V1 7'

i

Al

USING I(NSERT MODE

The EDIT prompt line shows the command option I(nsrt (or "Insert", if
you like your words with all their vowels and without parentheses

To Insert an item, first move the cursor
to the correct position, and then type I . You must always move the
curser to the correct position BEFORE typing I . Earlier, the cursor
was moved to the "A" in "APPLE". Now, on typing I , an insertion will
be made just before (just to the left of) the "A". The rest of the
line starting with the "A" will be moved to the right hand side of the
screen. 1f the insertion is lengthy, the right hand portion of the
line (beginning with "A") will be moved down to allow roem on the
screen for more inserted text to appear. After typing I the following
prompt line should appear on the screen:

running amok inside them).

>INSERT: TEXT [<BS> A CHAR, A LINE] [<ETX> ACCEPTS, <ESC> ESCAPES]
If that prompt line did not appear at the top of the screem, you are
NOT in Insert mode. You may have typed a wrong key.

If the cursor was at the "A" in "APPLE" when you typed I , the Insert
prompt line appeared and the remaining portion of that line (beginning
with "A") was pushed to the right hand edge of the screen. "ORANGE"
may be inserted by typing those six letters. They will appear om the
screen as they are typed.

There remains one more important step. The choice at the end of the
prompt line indicates that <ETX> (which means pressing CTRL-C) accepts
the insertion, while <ESC> (which means pressing the ESC key) rejects
the insertion so that the text remains as it was before typing I .

{Portion of screen when Inserting ORANGE)

PRUGRAM EXAMF;
BEGIN

WRITE(AN ORANGE
END.

APPLE A DAY")

(Portion of screen after Insertion followed by CTRL=C)
FROGRAM EXAMP;
BEGIN
WRITE("AN ORANGEAPPLE A DAY")
END.
EDITOR 87

(Portion of screen after Insertion followed by <ESC>)
PROGRAM EXAMP;
BEGIN
WRITE(AN APPLE A DAY")
END.

B T e—

e

———

It is legal to Insert a carriage return. This is done by doing a

<RET> (that is, pressing the RETURN key) while in the Insert mode and
causes the Editor to start a new line.

USING D(ELETE MODE

The Delete mode works somewhat like the Insert mode. Having inserted

the word "“ORANGE" into the EXAMP program and having typed CTRL-C, "APPLE"

must now be deleted. Move the cursor so that it is placed directly on
the first character that you wish to delete. Then type D to put the
Editor into Delete mode. The following prompt line should appear.

>DELETE: < > <MOVING COMMANDS> [<ETX> TO DELETE, <ESC> TO ABORT)

Remember that <ETX> means to type CTRL-C.

Each time the right-arrow key is pressed, the character on which the
cursor is sitting disappears. Pressing the left-arrow key will erase
characters to the left of the first cursor position. 1In this example,
pressing the right-arrow key five times will cause the word "APPLE" to
disappear. To terminate the Delerion, you have the same choice you
had with Insert. Use <ETX> (by typing CTRL-C) to make the proposed
deletion permanent. Use <ESC> (by pressing the ESC key) to cancel the
proposed deletion and restore the original text.

It is legal to delete a carriage return. At the end of the line,

enter Delete mode and press the right-arrow key until the cursor moves
to the beginning of the next line.

LEAVING THE EDITOR

When all the changes and additions have been made in your program or
text, you will want to exit the Editor and "save" a copy of the
modified program or text. This is done by typing Q for O(ult, which
will cause this prompting display:

»QUIT:
U(PDATE THE WORKFILE AND LEAVE

E(XIT WITHOUT UPDATING
R{ETURN TO THE EDITOR WITHOUT UPDATING

W(RITE TO A FILE NAME AND RETURN
S(AVE WITH SAME NAME AND RETURN

88 APPLE PASCAL OPERATING SYSTEM

e — - — s

—|

The most elementary way to save & copy of your present file onto disk
is to type U for U(pdate. This causes your file to be saved in the
workfile on the hoot diskette, under the filename SYSTEM.WRKE.TEXT.
With the workfile thus saved, it is possible to use the R{un command,
provided of course the file is a program.

1t is also possible to use the S(ave option in the Filer to save the
diskette workfile under its own filename before using the Editor to
wodify or create another file. Remember that the Filer’s N(ew command
can erase the workfile SYSTEM.WRK.TEXT at any time, and that the
Editor‘s U(pdate always stores the just-edited file under the same
filename SYSTEM.WRK.TEXT. You will not want SYSTEM.WRE.TEXT to be
your only copy of a file, once you are through working on it.

It is a good idea to temporarily Q(uit and U(pdate your file about
every 15 minutes or so. This way, in case of accident (such as the
power going out, or your mistakenly deleting an important part of your
file), you are not likely to lose more than 15 minutes worth of typing.

These are sufficient commands to edit any file desired. The next

section describes many more commands in the Editor which make editing
even easiers.

THE EDITOR COMMANDS

an General Information

g0 The Cursor

a1 The Screen

91 Repeat-factors

91 The Set Direction

92 Cursor Moves

92 Moving Commands

92 J{ump

93 Plage

93 F{ind

94 Set Direction

94 Repeat-factor

94 L{iteral or T(oken Search

95 Target String and Delimiters

95 ESC Option

a5 Same-string Option

97 Text Changing Commands

97 I{nsert

98 Text Formats

98 With A(uto-indent TRUE, F(illing FALSE
99 With A(uto-indent FALSE, F(illing TRUE
100 With A(uto-indent TRUE, F(illing TRUE

With A{uto-indent FALSE, F{illing FALSE

EDITOR 89

101 Dielete

103 Z{ap

104 Clopy

104 From a Diskette F(ile
105 From the Copy B(uffer
a7 X(change

108 R({eplace

108 Set Direction

109 Repeat-factor

109 L{iteral or T(oken Search
109 V(erify Option

110 Strings

110 String Delimiters

111 Same-string Option

113 Formatting Commands

113 A{djust

114 M{argin

116 Miscellaneous Commands

116 S{et

116 M{arker

118 E{nvironment

119 The Environment Options:
119 A{uto-indent

119 F(illing

120 L{eft Margin

120 R(ight Margin

120 P(aragraph Margin
120 C{ommand Character
121 T(oken Default

122 V{erify

122 Qfuit

122 U(pdate the Workfile

122 E(xit without updating
123 R{eturn to the Editor
123 W(rite to any Disk File
124 S{ave to original Disk File

GENERAL INFORMATION

The Cursor

The "cursor" is the white rectangle that indicates your position in

the file. 1In general, special "cursor moves" (see below) are used in
the Editor to move the cursor through the text and place it just where
you want the next command to have its effect. Once you have initiated

a particular command, the same cursor moves may have an additiomal
function, such as deleting text or adjusting the position of lines.

It should be pointed out that not all commands affect the character on which
the cursor is actually sitting. Some commands do affect the character AT
the cursor position (eXchange, for example, and Delete when used with

the right-arrow key). But other commands affect the first character to

90 APPLE PASCAL OPERATING SYSTEM

m m
= b

L

1

& |‘. |-| I:.I Il- [Il E.I I.
! N J
- -_ = —_—

'

!
- -

AR/

E.ff._L
N

3

il

™

L,

the LEFT of the cursor position (for example, Delete when used with the
left-arrow key). Still other commands affect the place BETWEEN the
cursor position and the first character to its left (for example,
Losert). A little experience, or a careful reading of the detailed

command descriptions, will teach you what to expect.

THE SCREEN

The Apple Pascal system’s display is always 8¢ characters wide, but the
Apple screen normally shows only the lefemost 4@ characters. If the
cursor should disappear into the hidden half of the display, use CTRL-A
to see the other half of the display. To initiate "Auto-follow" mode,
in which the Apple screen automatically scrolls left and right to keep
the cursor visible,; use CTRL-Z . CTRL-A and many other commands cancel
CTRL=-Z .

Repeat-Factor

(TR

Most of the cursor moves, and some of the command options, allow
repeat-factors. A repeat-factor is a number which is typed
immediately before issuing a cursor move or command. The cursor move
or the command option is then repeated for the number of times
indicated by the repeat-factor. For example, typing 2 followed by
CTRL-L causes the cursor move to be executed twice, moving the cursor
down two lines. Cursor moves and commands which allow a repeat-factor
assume the repeat-factor to be 1 if no number is typed. Typing a
slash (/) before a cursor move or a command indicates an "infinite"
repeat-factor, and causes the move or command to be repeated as many
times as possible in the file.

The Set Direction

The first character displaved on most Editor prompt lines is a
"direction indicator". On entering the Editor, the set direction is
"forward". A "greater than" (>) character indicates "forward"
direction. A "less than" (<) character indicates "backward" (or
reverse) direction. When the EDIT or the DELETE prompt line is
showing, you can type the > or the < key (with or without the SHIFT
key) to change the set direction.

Typing one of these keys: Changes the set direction to:
backward

forward

AR

EDITOR 91

Certain commands and certain cursor moves are affected by the set
direction. [If the set direction is forward, then they operate forward
through the file, that being the standard direction of reading
English. Forward operations begin at the current cursor position and
proceed toward the end of the file. Backward is the reverse
direction. Backward operations begin at the current cursor position
and proceed toward the beginning of the file. Where the set directian
affects a command, this is specifically noted in the detailed command

description.
Cursor Moves
If you type: The cursor moves:
CTRL-L down
CTRL-0 up
right-arrow key right
left-arrow key left

in the set direction

in the set direction, to the next tab-stop
(tab-stops are set every B spaces
across the screen)

spacebar
CTHL-1 or TAB key

RETURN key in the set direction, to the beginning of
the next line
= (equals) to the beginning of the last text Inserted,

Found, or Replaced

Repeat-factors can be used with any of the above commands (except the
"equals" command.

The Editor maintains the column position of the cursor when you use
CTRL=0 and CTRL-L, even when this means that the cursor appears
outside the text. If the cursor appears to the right of a line of
text, the Editor acts as though the cursor were immediately after the
last character in the line. If the cursor appears to the leftr of a
line of text, the Editor acts as though the cursor were on the first
character in the line.

MOVING COMMANDS

Jlump

Jump mode is reached by typing J for J{ump while at the Editr level.
On entering Jump mode the following prompt line appears:

>JUMP: B(EGINNING E(ND M(ARKER <ESC>

92 APPLE PASCAL OPERATING SYSTEM

wow oW W
i W W W

m
L

(VU V TR T TR T TR T TR T

|
Anl

-

Typing B for B(eginning moves the cursor to the beginning of the file,
displays the Edit prompt line and the first page of the file. Typing

E for E(nd moves the cursor to the end of the file, displays the Edit
prompt line and the last page of the file. Typing M for M{arker
causes the Editor te display the prompt line:

JUMF TO WHAT MARKER?

If you respond by typing the name of a marker that exists in the file,
when you press the RETURN key the cursor is placed at the marker
position in the text. If you type a marker name that does not exist

in the file, this message is given:

ERROR: NOT THERE. PLEASE PRESS <SPACEBAR> TO CONTINUE.

and the cursor is not moved.
under S(et M(arker ,

Placing markers in the text is explained
in the Miscellaneous Commands.

P(age

Page command is executed by typing P while at the Edit level.
Depending on the set direction, indicated at the beginning of the

EDIT prompt line, Page command moves the cursor somewhat more than one
whole screenful up or down. The cursor always moves to the start of

a line. A repeat-factor may be used before this command, for moving
several pages.

Flind

Find mode is reached by typing F for F{ind while at the Edit level.
On entering Find mode one of the following prompt lines appears,

depending on the setting of the Environment’s T(OKEN DEFault option
(see S(et E(nvironment, in Miscellaneous Commands):

>FIND[1]: L(LT <TARGET> =>

if the Environment’s T(OKEN DEFault option is set to TRUE, or
*FIND[1]: T(OK <TARGET> =>

if the Environment“s T(OKEN DEFault option is set to FALSE.

Find mode searches through a file in the set direction, finds the

repeat-factor-th occurrence of the specified string of characters
<TARGET>, and places the cursor at the end of that string.

EDITOR 93

Set direction

The F(ind command searches for the specified occurrence of the target
string beginning at the present cursor position and scanning through
the text in the set direction (indicated by the arrow at the beginning
of the prompt line}. An occurrence of the target string will be found
only if it appears in that portion of the text which lies between the
cursor and the end of the file toward which the search is

progressing. See the section on the set direction (in this chapter,
under General Information) in order to change the set direction

arrow. If the required occurrence of the target string is not found
by searching through the text in the set direction, this message
appears:

-

R
ERROR: PATTERN NOT IN THE FILE PLEASE PRESS <SPACEBAR> TO CONTINUE. ' -

Remember, however, that the search does not "wrap around". That
portion of the file between the cursor and the end of the file in the
direction OPPOSITE the set direction is not searched.

Repeat—factor

The repeat-factor is an integer from 0 to 9999 which may be typed just
before typing the F for F(ind. It is shown on the prompt line in
square brackets: [l] , for example. If a repeat-factor of n is
specified, the cursor is placed after the n-th occurrence of the
target string. If no repeat-factor is specified, a repeat-factor of
one is used. If a repeat—-factor of / is used, the cursor is placed
after the last occurrence of the specified string.

L{iteral or T(oken search

The target string is treated somewhat differently, depending on

whether Literal search or Token search Is selected. The default

setting of the search mode is set in the Environment. The FIND prompt
line indicates only the non-default choice: L(IT or T(OK . If you do
not specify a search mode, the default search mode (the one which is

NOT mentioned on the prompt line) is used. To use Token search when

the default is Literal search (prompt line says T(OK), type T after

the prompt line and before the target string. To use Literal search
when the default is Token search (prompt line says L({IT), type L

before typing the target string. Note: nothing appears to happen when
you type L or T ; the letter just appears where you are about to type
the target string. See S{et E(nvironment in Miscellaneous Commands

for more detail about Literal and Token search modes. In Literal search
mode, the Editor will look Eor ANY occurrence of a string of characters 1
that exactly matches the <TARGET> string. In Token search mode, the

Editor will look for ISOLATED occurrences of the <TARGET> strimg. The

&

w
™

Editor considers a string isolated if it is surrounded by any combination
of delimiters, where a delimiter is any character that is not a number
or letter.

94 APPLE PASCAL OPERATING SYSTEM

':‘:

UV T T TR T TR T TR T T T TR T TR 7 T T !

Ll

iR An

L

Target string and delimiters

To allow the target string to contain any characters (including RETURN
characters), the target string must be typed using special rules. 1In

Farticular, the target string must be set off by characters called
'delimiters”". Both delimiters of the target string must be the same

character. One delimiter must precede the first character of the
string, and the same delimiter must follow the last character of the
string.

The Editor alleows any character which is not a letter or a number to
be a delimiter. This lets you choose the delimiter. The most common
choice is the slash (/) because it is a lower-case character that is
not often found in the text, and it is easy to type. If you forget to
precede the target string with a correct delimiter character, you will
be told:

ERROR: INVALID DELIMITER. PLEASE PRESS <SPACEBAR> TO CONTINUE.

Just try again, this time beginning with a correct delimiter.

ESC option

At any point during your response to the FIND prompt, vou can abandon
this command and return to the Edit level by pressing the ESC key.

S({ame-string option

Typing 5 instead of the delimited target string tells the Editor to
use the same string that was last specified for the target string (the
target string may have been specified either in Find mode or in
Replace mode). From the Editor, typing the command

F3

will cause the cursor to jump to next occurrence of the previously
specified target string. When the set direction specifies searching
through the text in the reverse direction (toward the beginning of the
file), FS may appear to have no effect. This is because Find mode
places the cursor just AFTER the found occurrence of the target
string. Unless the cursor is moved beyond the FIRST character of the
previously found occurrence of the target string, FS will just keep
finding the same occurrence of the target string again and again.

Note: The Environment (see S(et E(nvironment , in Miscellaneous
Commands) displays the current <TARGET> string which will be invoked
by typing § as a string response.

EDITOR 95

!

(VR U U VI V VIV VI ¥ VIV T 7 VR VI VIV VR - VR v~ ¥

S
|

EXAMPLE 1: EXAMPLE 3:

Suppose you are editing a file containing the following text: First, type

PROGRAM STRINGL; F/WRITE/

BEGIN
WRITE(“TOO WISE “);
WRITE("YOU ARE");
WRITELN(®,"):
WRITE ("T0OO WISE ")
WRITELN({“YOU BE.")
END.

This locates the first occurrence of the Token string WRITE ,
searching in the set direction. Now, typing

F5

will make the prompt line flash:
In the STRINGLl program, with the cursor at the first P in FIND[1]: L)IT <TARGET> =25

the line -
and the cursor will appear at the next occurrence of WRITE .

PROGRAM STRINGI;
TEXT CHANGING COMMANDS
type F to select Find mode. When the FIND prompt line appears, type

‘WRITE®
I(nsert
The two single quote marks (or two of some other delimiter) MUST be

5 E bl t the Edit
typed. The prompt line should now appear as: Insert mode is reached by typing I for I(nsert while a 1e Ed

level. On entering Insert mode the follewing prompt line appears:
>FIND[1]: L)IT <TARGET> =>"W " ’

(1= 1) AR SINSERT: TEXT [<BS> A CHAR, A LINE] [<ETX> ACCEPTS, <ESC> ESCAPES]
When you type the last quote mark, the cursor jumps immediately to the
first character following the E in the first occurrence of the Token
targer string

Insert mode allows you to put new information into the text you are

creating or editing. The characters that you type in this mode are
inserted between the character on which you placed the cursor and the

character that was immediately to the cursor’s lefr.

WRITE

In order to maximize speed, the Editor does not constantly re-write
the entire screen as you insert each new character. Instead, it makes
a gap in the text, just where your insertion will appear, and then
waits for you to type. Often you will have to terminate your
insertion (by pressing CTRL-C) in order to see exactly how the
insertion will leook in its final form.

EXAMPLE 2:

Again in the STRINGl program, with the cursor at the E of END. , type:

<2F

This prepares the system to Find the second pattern (you typed a
repeat=factor of 2) in the reverse direction (you changed the set
direction by typing <). When the prompt line appears, type

Lf you make a mistake while typing in Insert mode, just use the left-

arrow key to backspace over your inserted characters. To delete the
entire line that you are in the process of inserting, back to and
including the previous RETURN character, type CTRL-X (some external
terminals use the RUB or RUBOUT key, which generates ASCII DEL). The
Insert prompt line helps you remember these mistake-correcting
possibilities by "<BS> A CHAR" and " A LINE". <BS> stands for
the left-arrow (BackSpace) key and stands for CTRL=X . You can
erase only the text that you have inserted since entering Insert mode.

/WRITELK/

The prompt line should read:

<FIND[2): L}IT <TARGET> =>/WRITELN/

When you type the last / , the cursor will move immediately to the

first character following the N in the second occurrence (searching
backward through the file) of the Token string WRITELR .

The set direction does not affect the Insert mode.

/O /N /R /I U (N (N O N R L

B 4

96 APPLE PASCAL OPERATING SYSTEM ' EDTOR 97

At any time during an inservrtion, you can cause the Editor to accept
the insertion as it stands (making it a part of your file) by pressing
CTRL-C (which the prompt line calls <ETX>). Until you press that
CTRL-C you can cause the Editor to forget everything vou have typed
since entering Insert mode, by pressing the ESC key.

If an {nsertion is made and accepted (using CTRL-C), that insertion is
also available (until the next insertion or deletion) in the Copy
buffer, for use by the C{opy command. You can use this to duplicate
your last insertion as many times as you wish. However, if <ESC» is
used to reject the insertion, the Copy buffer is left empty.

The maximum size of a file is about 1B4@@ bytes, or 38 diskette

blocks. When your file can hold only another few hundred bytes, you
may receive this warning as you begin typing in Insert mode:

B

FLEASE PRESS <SPACEBAR> TO COMNTINUE.
R
E

ERROR: BUFFER OVERFLOW!!!! PLEASE PRESS <SPACEBAR> TO CUNTINUE.E—' i

ERROR: PLEASE FINISH UP THE INSERTION
When you respond by pressing the spacebar, you will still be in Insert
mode. You can continue your insertion, but you have been warmed that
your file is almost full. You should start a new file right away or
split the present file into two parts. If you continue typing in
Insert mode, you will scon receive this more urgent message, when your
file has exceeded the amount of text it can hold:

Pressing the spacebar terminates wour insertion, and any further
attempts to initiate Insert mode cause this message:

|
ERROR: NO ROOM TO INSERT. PLEASE PRESS <SPACEBAR> TQ CONTINUE. E

Insert mode is immediately terminated, and you are not allowed to add
any more text to yvour file.

Text Formats

There are two basic ways that text can be formarted as you Tnsert it.
The formatting scheme is determined by the settings of various oprions
in the Environment (see S(et E(nvironment, in Miscellaneous Commands).
A(uto-indent is usually used for writing Pascal programs, while
F(illing is mwost often used In writing text such as letters and other
documents.

Inserting with A(uto-indent TRUE , F(illing FALSE

This is the normal setting of the Environment when you are writing
Pascal programs. During an Insertion, the margins set in the
Enviromment are dgnored. Instead, vou must terminate each line
yourself, and start a new line, by pressing the RETURN key. Each new
line automatically starts at the same indention as the first non-space
character of the preceding text line.

98 APPLE PASCAL OPERATING SYSTEM

VIR VI VI VIR VIR VER TR TR TR T

g
N
-

B3
o

=

A new indentation can be started by typing a space (to indent more) or
by pressing the left-arrow key (to indent lesa) or by typing CTRL-Q

{zero indentation) as the first character of any new line. The A(djust
command can also be used to create a new indentation for a line-

If you use CTRL-C to terminate an insertion immediately after
pressing the RETURN key (to start a new line), the cursor w{l!
automatically be indented the same amount as the line in which)
you began your insertion. This feature, which can be very useful in

writing Pascal programs, ignores any change you may have made to the
indentation of the insertion®s first line, and ignores the
indentation of intervening lines.

A paragraph cannot be formatted with the M{argin command while Auto-
indent is set to True.

EXAMPLE:

With the Environment’s A{uto-indent option set to TRUE, and the
F(illing option set to FALSE, enter I(nsert mode and Cype the
following sequence of keys (the names of special keys are enclosed in
angle brackets <like this> b 3

ONE<return>
<gpace><space><space>TWl<return>
THREE<return>

<left-arrow>FOLUR

This should create the indentations shown at the left below:

ONE Original indentation
TWO Indentation changed by <space> <space> <space>
THREE <return® causes auto—indentation to level of line above
FOUR ¢<left-arrow> changes indentation from lewvel of line above

Inserting with A(uto-indent FALSE , F(illing TRUE

This is the normal setting of the Environment when you are writing
text such as letters and other decuments. It is the only Environment
in which the M{argin command will function. The Editor forces all
Insertions to be between the margins set in the Environment. The
instant a new word (as you are typing it) exceeds the set R{ight
margin, a RETURN character is automatically inserted before the word
and the entire word (or as much of it as you have typed at that point)
is placed beginning at the set L(eft margin. In the Editor, a '"word"
is any text character or characters bounded by any two '"word
delimiters", where a word delimiter is a space, a RETURN

character, the beginning or end of the file, or the beginning or end
of the current insertion (before CTRL-C is pressed). The hyphen is not a
recognized word delimiter. If two or more RETURN characters are typed in

succession, the next text is started at the set P{aragraph margin.

99

EDITOR

This setting of the Environment also causes the Editor to adjust the
margins on the portion of the paragraph following an insertion {but
not the paragraph portion preceding the insertion). The Editor
considers a paragraph to be any text bounded by any two "paragraph
delimiters", where a paragraph delimiter is a blank line (created by
two RETURN characters), a line beginning with the C(ommand character
(set in the Environment), or the beginning or end of the file.

Note: the automatic re-margining following an insertion can sometimes
cause you much grief. If you are editing in or near a diagram, table,

or other carefully formatted portion of text, it is a good precaution
to temporarily set F(illing to False (just type SEFF<space>). This

will prevent an incidental insertion from reformatting your beautiful
diagram into a paragraph of meaningless text.

EXAMPLE:

With the Environment”s A{uto-indent option set to FALSE, the F(illing
option set to TRUE, the L{eft margin to @, and R(ight margin to 1§,
enter I({nsert mode and type the following:

WISH I WEREN'T A WASH-AND-WEAR WARRIOR

This should create the text format shown at the left, below:

WISH 1 Auto-returned when next word would exceed margin
WERER'T A Auto-returned when next word would exceed margin
WASH=-AND=-WEAR Auto-returned at first possible break, even though
WARRIOR beyond margin.

Inserting with A(uto-indent and F(illing both TRUE

With this setting of the Environment, A(uto-indent controls the left

margin, ignoring the settings of the L(eft margin and P(aragraph
margin. F(illing inserts RETURN characters as before, to keep lines
from exceeding the set R(ight margin.

However, F(illing only operates to keep the CURRENT insertion from
exceeding the Right margin. Any text on the same line, but to the
right of the cursor, may extend beyond the Right margin or even beyond

the 8@ characters visible on the Apple Pascal system’s display. The
existence of characters beyond position 79 is indicated by an

exclamation mark (!)} displayed at the rightmost position on the
screen. To see the hidden characters, insert a RETURN character

anywhere in the visible portion of the line, or set A({uto-indent to
False and M(argin the paragraph.

Changing the indentation can be done as before, by typing space, left—
arrow, or CTRL-Q, but only if that is the FIRST character in a new
line (not likely, since F(illing will generally begin a line with tha
last typed word). This setting of the Environment is not usuwally very
useful, as its effects can be better obtained in other Ways.

100 APPLE PASCAL OPERATING SYSTEM

n:

™

.- .. W

. -

Ll

Inserting with A(uto-indent and F(illing both FALSE

Wicth this setting of the Enviromment, the Editor ignores the margins

get in the Environment. All margins, indentations and RETURN
characters must be typed into the text by you. Characters may be
inserted at any position on the screen.

If you attempt to type beyond position 71, the computer may beep to
warn you. If you attempt to type beyond position 79, an exclamation
mark (!) is displayed at the rightmost position on the screen. This
character at the end of any line indicates that the line contains more
than the 8@ characters which can be displayed on the screen.
Additional characters typed Into that line are not lost, but they are
not displayed. To see the hidden characters, you can Insert a RETURN
character anywhere in the wvisible portlion of the line; or vou can set
the Environment®s F(illing option to TRUE, the A{uto-indent option to
FALSE, and then issue the M(argin command.

D(elete

Delete mode is reached by typing D for D(elete while at the Edit

level. On entering Delete mode, the following prompt line appears:

>DELETE: < > <MOVING COMMANDS> [<ETX> TO DELETE, <ESC> TO ABORT]

In order to delete, the cursor must be Iin the correct position to
begin the deletion. TIf you are going to delete to the right (forward
through the text), place the cursor directly on the first character to
be deleted. If you are going to delete to the left (backward through
the text), place the cursor on the first character=position to the
right of the first character to be deleted.

On typing D and entering Delete mode, the Editor remembers where the
cursor is. That position is called the "anchor". As the cursor is
moved away from the anchor in any direction, using the normal cursor-
moves, all text between the cursor and the anchor disappears. When
the cursor is moved toward the anchor, the "erased" characters re-
appear. The repeat-factor may also be used to delete or undelete
several lines at once, by prefacing a <RET> or any other cursor move
with a repeat-factor while in Delete mode. The slash (/) repeat-
factor cannot be used.

undo the entire

Remember that
the ESC key.

To accept the deletion at any point, use <ETX>. To

deletion at any time before using <ETX>, use <ESC>.
<ETX> means to type CTRL-C and <ESC> means to press

Unlike inserting text, deleting text does NOT cause re-margining of
the portion of the paragraph following the deletion, even if the
Environment“s F(illing option is set to TRUE and A(uto-indent is set
to FALSE. Especially after a deletion that included a RETURN

character, the line containing the cursor may extend beyond the 8¢~
character limit of the Apple Pascal system’s display. The invisible

EDTCR 104

portion of the line is indicated by an exclamation mark (|) in the

lgst visible character-position of the line. To see the rest of the
line, insert a RETURN character anywhere in the visible portion of the

line, or use the M{argin command to reformat the entire paragraph.

All the text between the cursor and the anchar position is stored in
the Copy buffer, ready for use by the C(opy command, not only after
you accept the deletion with CTRL-C , but also after you reject the
deletion by pressing the ESC key. This last fact is useful when you
want to duplicate some text in another location, or when you are

moving some text to another location but wish to keep a backup copy of E_' =

the text until the move is successfully completed.

If you dttempt to delete too much text at one time (the maximum amount
varies somewhat, depending on how large your file is at the moment.),

the Copy buffer may be unable to hold all the deleted text. In that
case, when you press CTRL-C to accept the deletion this mESSAge appears:

THERE IS NO ROOM TO COPY THE DELETION. DO YOU WISH TO DELETE ANYWAY? (Y/N) E

If you type Y for "Yes", the text between the cursor and the anchor
position is deleted but that text is not placed in the Copy buffer. -
1f you type N for "No'", the deletion is not carried out, and the text E»,
is not placed in the Copy buffer. After a response of either Y or N
the Copy buffer is left containing the same text it held before the
D(elete command was initiated. If you reject a deletion that is too
large for the Copy buffer, by pressing the ESC key, no message is
given at that time. However, if you then attempt to Clopy from the
Copy buffer this message appears:

ERROR: NO ROOM PLEASE PRESS <SPACEBAR> TO CONTINUE.

EXAMPLE:

Suppose you are editing the following text:

PROGRAM STRINGZ;
BEGIN
WRITE(TOO WISE “);
WRITELN (“TO BE.*)
END.

l}) Move the cursor onto the

2) Type < (This changes the set direction to backward)

3) Type D to enter Delete mode.

4) Press the RETURN key twice. After the first RETURN the line
WRITELN('TO BE.”) disappears. After the second RETURN, the
line WRITE("TOO WISE‘); disappears.

5) Now press CIRL-C . The program after deletion appears as shown:

E din END.

PROGRAM STRINGZ;
BEGIN

END .

102 APPLE PASCAL OPERATING SYSTEM

The two deleted lines have been stored in the Copy buffer and the

cursor has returned to the anchor position. Now use the C(opy command
to copy the two deleted lines at any place to which the cursor is

moved.

Note: after pressing CTRL-C , if you immediately C(opy the deletion
withOUT moving the cursor, the deleted material is just replaced.
This gives you one more chance to recover from a mistaken deletion.

Z(ap

The Zap command is executed by typing Z for Z(ap while at the Edit
level. This command deletes all text between the current cursor
position and the start of what was previously found, replaced or

inserted.

The text position of the first character of the previous Find,

Replace, or Insert is ecalled the "equals mark". Typing the = key
will place the cursor exactly at the equals mark, showing you where a
Zap would end. You can then move the cursor (but do not use F({ind!)

to the beginning of the material you wish to Zap.

This command is designed to be used immediately after one of the Find,

Replace or Insert commands. If you Insert new material to the right
of the old text that you want deleted, and then move the cursor back
to the beginning of the old text and type Z, you will leave the

Inserted material while deleting the old text.

If more than 8@ characters are being Zapped, the Editor will ask for
verification:

WARNING! YOU ARE ABOUT TO ZAP MORE THAN 8@ CHARS, DO YOU WISH TO ZAP? (Y¥/N)

Repeat—factors and Zap: If a Find or a Replace is made with a repeat-

factor, only the last string found or replaced will be deleted by
Zap. All the other strings will be left as found or replaced.

All the text that is deleted by using the Zap command is placed in the

Copy buffer, where it is available for use with the Copy mode {until
the next insertion or deletion).

Lf you attempt to use Zap to delete too much text at one time (the
maximum amount varies somewhat, depending on how large your file is
at the moment), the Copy buffer may be unable to hold all the

deleted text. In that case, when you type Z to Zap the deletion,
first this message appears:
WARNING! YOU ARE ABOUT TO ZAP MORE THAN B0 CHARS, DO YOU WISH TO ZAP? (Y/M)

and then, when you type Y for "Yes", this message appears:

THERE IS NO ROOM TO COPY THE DELETION. DO YOU WISH TO DELETE ANYWAY? (Y/N)

EDITOR 103

If you type Y for "Yes", the text between the cursor and the "equals"
position is deleted but that text is not placed in the Copy buffer.
If you type N for "No", the deletion is not carried out, and the text
is not placed in the Copy buffer. After a response of either ¥ or N
the Copy buffer is left containing the same text it held before the
D(elete command was initiated.

Clopy

You get into Copy mode by typing C for C(opy at any time the EDIT

prompt line is showing. On entering Copy mode, the following prompt
line is displayed:

>COPY: B(UFFER F(ROM FILE <ESC>

Copying F(rom a Diskecte File

To Copy text that is stored in another diskette file, so that it is
Inserted at the current cursor position in the file you are Editing
(that is, between the character on whicl the cursor sits and the first
character to the cursor’s left), type C for C(opy and then type F for
F(rom file and another prompt line appears:

>COPY: FROM WHAT FILE[MARKER,MARKER]?

Any existing diskette file may now be specified. You may type the
filename”s TEXT suffix or not, as you wish. The suffix .TEXT is
automatically supplied If you do not type it into vour file
specification. To suppress this feature (when Clopying from a file whose
name does not end in .TEXT), type a period following the complete file
specification. In order to Copy a portion of a file, two markers must
have been set in the text of that file to bracket the desired text. The
markers must have been set in the file at an earlier time, when that

file was the file being Edited (see S{et M(arker ., under Miscellaneous
Commands) .

If your response to the prompt line above does not include any marker
names (in square brackets), the entire specified file is inserted into
your workfile. If the file specification is followed by two marker
names, enclosed in square brackets and separated by a comma, the
portion of the specified file”s text that is bounded by the two
markers is inserted into your workfile. If [ymarker] is used,
file is copied from the beginning to the marker. If [marker,]
used, the file is copied from the marker to the end of the file.

of the Copy command does not change the contents of the file being
copied from.

the
is

Use

104 APPLE PASCAL OPERATING SYSTEM

b
Ll

AR AR R R e o o

W

e to the prompt line above does not include any marker
izngufiiezgzzie brackets), 2he entire specified £i1le is inserted into
your workfile. If the file specification is followed by two marker
names, enclosed in square brackets and separated by a comma, the
portion of the specified file’s text that is bounded by the two
markers 1is inserted into your workfile. If [,marker] is used, the
file is copied from the beginning to the marker. If [marker,] is
used, the file is copied from the marker to the end of the file. Use of
the Copy command does not change the contents of the file copled from.

On the completion of the Copy command, after text has been copied from
the specified diskette file, the cursor is placed on the first
character of the text which was copled and this message appears:

BE SURE ORIGINAL SYSTEM.EDITOR DISK IS IN SAME DRIVE: {RETURN TO CONTINUE}

This message 1s for one-drive users who have copied from a file on a
diskette other than their boot diskette. When the boot diskette is
back in the boot drive, press the RETURN to continue.

If your present file can not contain all the additional text that you
are attempting to Copy into it (maximum size of a file is about 18400

bytes, or 38 diskette blocks), the Editor copies in as much of the
additional text as it can. Then it gives this message:

ERROR: BUFFER OVERFLOW. PLEASE PRESS <SPACEBAR> TO CONT INUE.

When you press the spacebar, the Copy is complete; your file now contains
as much of the additfonal text as the Editor could fit into your file.

EXAMPLE:

Suppose the diskette named MYDISK: contains a file named OLDFILE.TEXT,
which has two markers placed in its text: ALPHA and BETA . Further
suppose that you are now in the Editor, editing a new file, and you
wish to insert at the current cursor position the text of
OLDFILE.TEXT bounded by markers ALPHA and BETA .

In response to the EDITOR prompt line, you would first type a C to
enter Copy mode, and then an F to select copying From-a-file. This
prompt line would then appear:

>COPY: FROM WHAT FILE[MARKER,MARKER]?

To cause the planned insertion, type
MYDISK:0LDFILE [ALPHA,BETA]

Copving from the Copy B(uffer

Each time text is inserted or deleted, that text is also stored in the
"Copy buffer", sometimes called the "insert-delete buffer". To use
the text in the Copy buffer, type C to enter C(opy mode and then type
B for B(uffer. The Editor immediately copiles the contents of the Copy
buffer into the file at the current locationm of the cursor (that is,

EDITCR 105

between the character on which the cursor sits and the first character

to the cursor’s left). TUse of the C{opy command does mnot change the
contents of the Copy buffer.

On the completion of the C(opy command, after text has been copied

from the Copy buffer, the cursor is placed on the first character of
the text which was copied.

Unlike inserting text, Copying text does NOT cause re-margining of

the portion of the paragraph following the Copy, even if the
Environment"s F(illing option is set to TRUE and A(uto-indent is set
to FALSE. After Copying, some lines may extend beyond the Bf-
character limit of the Apple Pascal system’s display. The invisible
portion of the line is indicated by an exclamation mark { !) in the
last visible character-position of the line. To see the rest of the
line, insert a RETURN character anywhere in the visible portion of the
line, or use the M({argin command to reformat the entire paragraph.

The Copy command can be used after an Insertion has been made, to
duplicate the section of text just inserted, as many times as desired.
Even more common is to use the Copy command to move text from ons

location in the file to another. Just D(elete the text from its
present location, then move the cursor and Clopy the deleted text into

its new location.

The contents of the Copy buffer are affected by the following
commands :

1) Di{elete: When you accept a deletion (with CTRL-C), the Copy buffer
is loaded with the deleted text. When you reject a deletion {by
pressing the ESC key), the Copy buffer is loaded anyway, with the text
that would have been deleted had you accepted the deletion.

2) I(nsert: When you accept an insertion (with CTRL-C), the Copy
buffer is loaded with the inserted text. When you reject an insertion
(by pressing the ESC key), the Copy buffer is empty.

3) Z(ap: When you delete text using the Zap command, the Copy buffer
is loaded with the delered text.

The Copy buffer is of limited size (the actual size depends somewhat
on how much of your computer’s memory is occupied by your workfile).
Whenever the proposed deletion (using either the Z(ap or the D(elete
commnd) is greater than the amount of space available in the Copy
buffer, the Editor will issue this warning:

THERE IS NO ROOM TO COPY THE DELETION. DO YOU WISH TO DELETE ANYWAY? (Y/N)

If you respond by typing Y for "Yes", the deletion is carried out in
the normal way, but the deleted text is not stored in the Copy
buffer. TIf you respond by typing N for "No", the deletion is
rejected, but the rejected deletion is not stored in the Copy buffer.
After either response, the contents of the Copy buffer remain what
they were before D(elete or Z{ap was initiated.

106 APPLE PASCAL OPERATING SYSTEM

" W

-

-

UV VI Y VIR U VT VIV VI T VR T VR U TR T TR T

i

If you Delete too much text and then reject the deletion by pressing
the ESC key, you are given no message at that time. However, a
subsequent attempt to Copy from the Copy buffer causes this rather
enigmatic messapge:

ERROR: NO ROOM PLEASE PRESS <SPACEBAR> TO CONTINUE.

and the Copy is not carried out.

I[f your file is already almost full (maximum file size is about 199§
bytes, or 42 diskette blocks), you may receive one of these messages

when you attempt to C{opy from the Copy buffer:
INVALID COPY. PRESS <SPACEBAR> TO CONTINUE.

ERROR: FLEASE

or

ERROR: NO ROOM PLEASE PRESS <SPACEBAR> TO CONTINUE.

In either case, the Copy is not carried out. This condition indicates

that it is time to start a new file or to split your current file inteo
two parts.

X(change

The eXchange mode is reached by typing X while at the Edit level.
entering eXchange mode the following prompt line appears:

On

»EXCHANGE: TEXT [<BS5> A CHAR] [<ESC> ESCAPES; <ETX> ACCEPTS]

The eXchange mode is used to replace the character on which the cursor
is sitting. As you type in eXchange mode, the cursor moves to the

right along the line of text, replacing one character in the line each
time you press a key. The left-arrow key (<BS>) can be used to move

the cursor back one character, causing the character originally in
that position (before the eXchange) to reappear. The set direction
does not affect eXchange mode.

As with many other commands in the Editor, a text eXchange is made
final by pressing CTRL-C (<ETX>). Pressing the ESC key (<ESC>)
leaves eXchange mode without making any of the changes indicated since

entering the mode.

Note: eXchange mode does not allow you to type beyond the end of the
line, nor does it allow you replace a text character with a RETURN
character.

EXAMPLE:

Suppose you wish te alter this line of text:

WRITE(“TOO0 WISE “);

EDITOR 407

After placing the cursor on the W in WISE, type an X to enter eXchange
mode. Now type the letter 5 and notice how it replaces the letter W .
Press the left-arrow key to see the W reappear. Now type 5 again,

and then M ; leaving the line of text as follows:

WRITE(" TOO SMSE ")

Typing CTRL-C will make this change final, or pressing the ESC key will
cause the original line to be retained.

R(eplace

Replace mode {8 reached by typing R for R{eplace while at the Edit
level. On entering Replace mode, one of the following two prompt
lines appears, depending on the setting of T(OKEN DEFault in the
Environment (see S{et E(nvironment in Miscellaneous Commands):

>REPLACE[1]: L{IT V(FY <TARG> <SUB> =3

if the Environment®s T(OKEN DEFault is set to TRUE, or

>REPLACE[1]: T(OK WV(FY <TARG> <SUB> =>

if the Environment”s T(OKEN DEFault is set to FALSE.

The Replace command searches through a file in the set direction to
find repeat-factor occurrences of the specified TARGet string of
characters, and replaces each of those occurrences (after
verification, if that option is chosen) with the specified SUBstitute
string of characters. When finished, it places the cursor at the end
of the last string found and/or substituted.

Set direction

The R(eplace command searches for repeat-factor occurrences of the
target string beginning at the present cursor position and scanning
through the text in the set direction (indicated by the arrow at the
beginning of the prompt line). An occurrence of the target string
will be found only if it appears in that portion of the text which
lies between the cursor and the end of the file toward which the
search is progressing. See the section on the set direction (in this
chapter, under Ceneral Tnformation) in order to change the set
direction arrow. 1If the end of the file is reached before the repeat-
factor-th replacement can be carried out, this message appears:

ERROR: PATTERN NOT IN THE FILE

Remember, however, that the search does not "wrap around". That portion i]l—-

E-

of the file between the cursor and the end of the file in the
direction OPPOSITE the set direction Is not searched.

108 APPLE PASCAL OPERATING SYSTEM

PLEASE PRESS <SPACEBAR> TO CONTINUE.

mow oW W
(s

__ ,. H
TR TR T T TR 24

\RS

1=

PP

i

o

i

Repeat-factor

The repeat-factor is an integer from ¢ to 9999 which may be typed just
pefore typing the R for R(eplace. It is shown on the prompt line in
square brackets: [1] , for example. If a repeat- factor of n is
specified, the next n occurrences of the target string in the set
direction are replaced. If no repeat-factor is specified, a repeat-
factor of one is used. If a repeat-factor of / is used, all
sccurrences of the target string in the set direction are replaced.

L{iteral or T(oken search

The target string is treated somewhat differently, depending on
arch or Token search is selected. The default
:2???3; h%tiﬁzlsggrch mode is set in the Environment. The REPLACE
prompt line indicates only the non-default choice: L(IT or T(OK .
you do mot specify a search mode, the default search mode (the one
which is NOT mentioned on the prompt line) is used. To use Token
search when the default is Literal search (prompt line says T(OK),
type T after the prompt line and before the target stringf To use
Literal search when the default is Token search (prompt line says L(IT
)}, type L before typing the target string. Note: nothing appears to
happen when you type L or T j the letter just appears where you are
about to type the target string. BSee S{et E{nvironment in
Miscellaneous Commands for more details about Literal and Token

gearch modes.

If

V{erify option

The Verify option (shown as V(FY on the REPLACE prompt line) permits
examination of each target string as it is found, before the
replacement is carried out. You can then decide whether this
occurrence of the target string is to be replaced or not. To select
the Verify option in Replace mode, type V before typing thg target
string. HNothing will appear to happen when you type V, but the Verify
option will be selected anyway. The following prompt line appears
whenever Replace mode has found an occurrence of the target string in
the file and Verify has been requested:

‘R’ REPLACES, * * DOESN'T

S>REPLACE: <ESC> ABORTS,

Typing an R at this point will cause the specified replacement te be
carried out, while pressing the spacebar will cause the Replace mode
to search for the next occurrence of the target string, provided the
specified repeat-factor (or the end of the file) has not been reached.
The repeat-factor specifies the number of times an occurrence of the
target string is to be found, not the number of times you actually
type R to cause its replacement. Use / as the repeat-factor im order
to examine every occurrence of the target string in rhe set direction.

EDITOR 109

Strings

The Editor has two string storage variables. The first string
xariablﬁ, called <TARGET> or <TARG> by the prompt line, contains the

target” string, and is used both by the F(ind command and by the
R(eplace command. The target string is the sequence of characters
which will be searched for by the Find command, or searched for and
replaced by the Replace command. The second string, used only by the
Replace command, is called <SUB> by the REPLACE prompt line and is the
"substitute" string. In the Replace command only, the substitute
string is the sequence of characters which will replace the target
string when the target string is found.

String delimiters

To allow the target and substitute strings
(including RETURN characters), each string
rules. 1In particular, each string must be
called "delimiters". Both delimiters of a
character. One delimiter must precede the
string, and the same delimiter must follow
string.

to contain any characters

must be typed using special
set off by characters

string must be the same
first character of the
the last character of the

The Editor allows almost any normal printing character which is not a
letter or a number to be a delimiter. This lets you choose the
delimiter. The most common choice is the slash { /) because it is a
lower-case character that is not commonly found in the text, and it
easy Lo type.

Unce you have typed the initial delimiter character for either the
target or the substitute string, you cannot backspace (using the left-

arrow key) to erase that character or any of the preceding characters
in your response. If you forget to precede either the target string

or the substitute string by a correct delimiter character, you will be told.

ERROR: INVALID DELIMITER.
You will get the same message if you try to backspace (by pressing the
lefr-arrow key) immediately after typing the target string”s final

delimiter. Just try the whole command again, and this time use the
correct delimiters.

Note: many CTRL characters have other system uses, and should not be

used as string delimiters. These include CTRL-A (screen page-flip),
CTRL-F (stop output), CTRL-H (left-arrow key), CTRL=-1 (tab), CTRL-M
(RETURN), CTRL-S (stop program), CTRL-Z {cursor auto=follow), and
CTRL-E (hangs system).

M0 APPLE PASCAL OPERATING SYSTEM

PLEASE PRESS <SPACEBAR> TO CONTINUE.

=y

i

WO W W W W om W

i la

1%

IR TR T

-

B OR R LR WRD WRD LR WEl LEE LAl

ESC option

At any time during your response to the REPLACE prompt, you can
abandon this command and return to the Edit level by pressing the ESC
key.

The Same-string optiom

Typing S in the place of the delimited target string tells the Replace
command to use the same target string that was last specified. The
target string may have been specified either by the Find command or by
a previous use of the Replace command. Similarly, typing 5 in the
place of the delimited substitute string tells the Replace command to
use the same substitute string that was last specified by a previous
use of the Replace command. For example, in Replace mode, typing

5/<any-string>/

causes the Replace mode to use the previous target string (and a new
substitute string), while typing

/<any-string>/8

causes the previous substitute string to be used (and a new target
string). From the Editor, typing the command

RVSS

says "Do it again": it causes the next cccurrence of the previously

specified target string to be replaced (after verification) with the
previously specified substitute string.

Note: when the set direction specifies searching through the text in
the reverse direction (toward the beginning of the file), RVSS may
appear to have no effect if you chose NOT to replace the last found
occurrence of the target string. This is because the Replace command
places the cursor just AFTER the found occurrence of the target
string. Unless the cursor is moved beyond the first character of the
currently found occurrence of the target string, or unless that
occurrence is changed to a different string, RVSS will just find the
same occurrence of the target string again and again.

Note: The Environment (see S(et E(nvironment, in Miscellaneous

Commands) shows you the current <TARGET> and <SUBST> strings which
will be invoked by typing S as a string response.

EDTOR M

EXAMPLE 1:

Suppose you wish to replace the next three occurrences of the target
string APPLE with the substitute string BANANA :

From Edit mode, you would type
3R

to indicate a repeat-factor of 3 and then to select the Replace mode.
In response to the REPLACE prompt line:

>REPLACE[3]: T(OK V(FY <TARG> <SUB> =>
you could type
/APPLE/) BANANA)

In this example, first the character / is used as the beginning and
ending delimiter for the target string, and then the character) is

used as the beginning and ending delimiter for the substitute string.
In the example, two different delimiters were used for pedagogical
purposes. In practice you would be more likely to use

/APPLE/ /BANANA/

I1f you now wish to Replace 5 more occcurrences of the target string
APFPLE , but this time with the substitute string PAPAYA , just type
(from Edit mode)

SRS /PAPAYA/S

After a brief flash of this prompt line

>REPLACE([5]: T(OK V(FY <TARG> <SUB> =>S/PAPAYA/
the requested replacements will be carried out.
EXAMPLE 2:
From Edit mode, 1if wyou type
RL/QX//YZ/
this prompt line should appear:
>REPLACE[L]: L)IT V)FY <TARG> <SUB> =>L/QX//YZ/

M2 APPLE PASCAL OPERATING SYSTEM

m o

UL

m oo

L.i‘

[

W W Gl e

VRV Y 1 T T

B ORI AR

This command will change the program line
VAR SIZEQX:INTEGER;

to
VAR SIZEYZ:INTEGER;

You must select the non—default Literal search mode (by typing L
before typing the target string) because the string QX is not a token

but is part of the token SIZEQX.

FORMATTING COMMANDS

Aldjust

Adjust mode is reached by typing A for A(djust while at the Edit

level. On entering Adjust mode, the following prompt line appears:

SADJUST: L(JUST R(JUST C(ENTER <LEFT,RIGHT,UP,DOWN-ARROWS> [<ETX> TO LEAVE]

The Adjust mode 1s designed to make it easy to adjust the indentation
of a line or a whole group of lines. Cursor moves (using the right-
arrow and the left-arrow keys} can be used to push the line right and
left, or you can adjust the line to the L{eft margin, the R{ight
margin, or the C{enter. Moving the cursor up or down makes Fhe same
adjustment to lines above or below. 1Use of a repeat-facter is valid

with all cursor moves.

Once you are in Adjust mode, each time the right—arrow key is typed,
the whole line moves one space to the right. The line can be moved
beyond the Right margin set in the Environment. Characters moved
beyond the 8f-th character position are not displayed, but their
existence is indicated by an exclamation mark (!) in the 8@=th
character position of the line.

Each time the left-arrow key is typed, the whole line moves one

position to the left. The line can be moved beyond the Left margin
set in the Environment, but the leftmost character cannot be moved

beyond the left edge of the screen display (character position zero).

When the line is adjusted to the desired indentation press <ETX>

(that"s CTRL-C , of course).

Note: <ESC> cannot be used to cancel You MUST accept

the adjustment, by pressing CTRL-C .

an Adjustment .

EDITOR M3

In order to adjust a whole sequence of lines, first adjust the top or
the bottom line, then (BEFORE typing CTRL-C) use CTRL-0 or CTRL-L
commands and the line above (or below) will automatically be adjusted
by the same amount when the cursor jumps to that line. Finally, when
the entire sequence has been adjusted, type CTRL-C.

Repeat-factors, including / , are valid when used before any of the
cursor moves while in Adjust mode.

Adjust mode can also be used to center text on the page and to left-
justify or righr-justify text (force all the lines to make a smooth
left margin, like this page, or a smooth right margin). Typing L for
L(JUST while in Adjust mode causes the line containing the cursor to
be left-justified by moving the leftmost non=-space character to the
Left margin set in the Environment. Similarly, typing R for R(JUST
right-justifies the line by moving the rightmost text character to the
set Right margin. Typing C for C(ENTER causes the line to be centered
between the set Left and Right margins. Typing CTRL-0 or CTRL-L
(before CIRL-C is typed) will cause the line above (or below) to be
adjusted to the same specification (left-justified, right-justified or
centered) as the previously adjusted line.

M(argin

The Margin command is executed by typing M for M{argin while at the
Edit level. There is no indication of this command in the EDIT prompt
line. Within the paragraph containing the cursor, the Margin command

adjusts the text to compress it as much as possible without violating
the three margins set in the Environment.

Margin is an Environment dependent command; that is, it may only be
executed when F(ILLING is set te TRUE and A(UTO INDENT is set to FALSE
in the Environment. If you attempt to Margin a paragraph when
F(illing and A(uto indent are not set correctly in the Environment,
this message appears:

ERROR: INAFPROPRIATE ENVIRONMENT FPLEASE PRESS <SPACEBAR> TO CONTINUE.
You must set these two options correctly in the Environment before the
Margin command can be executed. There are also three parameters (all
are Set in the Environment) used by this command: R{IGHT MARGIN, L{EFT
MARGIN and F(ARAgraph MARGIN. See S(et E(nvironment under

Miscellaneous Commands for how to set F(illing, A{uto-indent, and the
margin values.

The Margin command affects only the paragraph which contains the
cursor. A paragraph is defined to be any text bounded above

and below by any two paragraph delimiters, where a paragraph delimiter
may be a blank line (created by two consecutive RETURN characters).
the beginning of the file, the end of the file, or a line which starts

M4 APPLE PASCAL OPERATING SYSTEM

i — A — — —

O T W OO WO W W W W W
B AR AR AR MR MR MR M & tEl isl

.

”
= _;

W@ @ &

(4]

with the Command character that is currently set in the Environment.
Unless you change it (see S(et E(nvironment), the COMMAND CHaracter is
set by default to the carat (™).

To Margin a paragraph, move the cursor to anywhere in that paragraph
and type M . When doing an exceptionally long paragraph, it may take
several seconds before the routine is ready to redisplay the screen.
When breaking lines to avoid exceeding the right margin, the Margin
command recognizes all spaces as possible points to break the

line. All other characters in sequence are considered words, and will
not be broken. The Margin command does not recognize hyphens as
possible line break points, nor does it know how te correctly
introduce hyphens into words that do not already contain them.

Certain characters or character combinations, when followed by one or
more spaces, Will be followed by exactly two spaces after a Margin
command. These characters include the following: period, question
mark, colon, exclamation point, or any of those characters immediately
followed by a close-parenthesis or double guote.

EXAMPLE:

The paragraph below has been Margined with these Environment parameters:

L{eft margin (1
R{ight margin 72 I
P{aragraph margin 8

When you operate a skateboard in excess of 350 miles per hour,
certain problems are encountered. First of all, the number of traffiec
citations becomes excessive, unless your skateboard is equipped with
the proper racing stripes. Secondly, goggles and knee protectors
often blow away and skateboards have been known to become airborne.
Lastly, you may have to endure the ire of Porshe and Ferrari drivers,
since they become depressed, angered, and sometimes say uncomp limentary
things when passed by a person on a skateboard.

EDITOR 15

Next, the same paragraph is shown after being Margined with these

ired spot, type S to enter S(et mode, and then type M for
parameters set in the Environment: the desired sp e '

M(arker. The following prompt line appears:

FTaRr)

L{eft margin 19 SET WHAT MARKER?
E(ight margin B4
P(aragraph margin 1] This is asking you to type the name of the marker which will be placed

at the current cursor position. The marker name may be up to eight
characters (if you type more, they will be truncated to the Eirst
eight), terminated by pressing the RETURN key. Almost any character
except a carriage return may be used in a marker name, but all lower-
case letters are converted to upper-case lerters. WNote that the C(opy
F(rom file command uses a comma to separate the two markers which
specify the text to be copiled. For use with that command, the first
marker name must not contain a comma. If a marker with the specified
name has already been placed in the text at an earlier time, the old
marker is moved to the current cursor position without comment, and
the old position is lost.

4]

!
|

m W ™ W Ww W W
i

When you operate a skateboard in excess of 35§ miles per hour,
certain problems are encountered. First of all, the
number of traffic citations becomes excessive, unless
your skateboard is equipped with the proper racing
stripes. GSecondly, goggles and knee protectors often
blow away and skateboards have been known to become
airborne. Lastly, you may have to endure the ire of
Porshe and Ferrari drivers, since they become
depressed, angered, and sometimes say uncomplimentary
things when passed by a person on a skateboard. Only ten markers are allowed in a file at any one time. 1If you

attempt to place an eleventh marker, the following message appears:

MARKER OVFLW. WHICH ONE TO REPLACE?

#) namel
1) name?2 I

w® o

MISCELLANEOUS COMMANDS

9) namel@

You must eliminate one of your existing markers before you can place
the new one. Choose a number from @ through 9, type that number and
its place in the list will now be available for your new marker name.
You can use this method to rename or re-place an existing marker, but
you can never simply remove a marker from your file, even 1if you
delete all the text that contained the marker.

Erker gspecifies an absolute position in the file. If an insertien,
copy or deletion is made between the beginning of the file and the
marker position, the marker will move along with the associated text
although the movement 15 only approximate.

S(et

et mode is reached by typing S for S(et while at the Edit level.
There is no indication of the Set mode option on the EDIT prompt
line. On entering the Set mode, the following prompt line appears:

>SET: E(NVIRONMENT M(ARKER <ESC>

S5(er M{arker:

When you are editing a large file, it is particularly convenient to be
able to jump directly to certain places in the file by using markers
that have been set in the desired places. Once set, it is possible

to jump to these markers at any time, by using the M{arker option in
the J(ump mode (see Moving Commands).

The C(opy F(rom File command can also make use of markers that have
been placed in the text of a file. When you are editing one file, the

marked portion of a second file that is stored on diskette may be
copied into the file you are editing (see Text Changing Commands).

I —— i —

Tnis is how you place a marker in the text of a file that you are
editing. While still in Edit mode, move the cursor to the spot in the
text where you want the marker to be placed. When the ecursor is in

T

w
U V=0 -4 T V-V - -4 S -1 S -1 V- I -1 T 1 I 71

]

M6 APPLE PASCAL OPERATING SYSTEM EDITCR M7

S{et E(nvironment

The Editer lets you set various aspects of the editing "environment"
te suit the task at hand. From the Edit level, type S to enter the
S(et mode, and then type E for E(nvironment. The screen display is
replaced with a prompt similar to the one shown below:

>ENVIFONMENT: [OPTIONS] <ETX> OFE <SP> TO LEAVE
A(UTO INDENT TRUE
F(ILLING FALSE

L{EFT MARGIN @
R{IGHT MARGIN 79
P{ARA MAPGIN 5
C{OMMAND CH -
T{OKEN DEF TRUE

7436 BYTES USED, 12@2¢ AVAILAELE.

PATTERNS :
<TARCET>= "APPLE", <SUBST>= “BANANA®
MARKERS:
START PART3 SUMMARY
INTRO MATNPARA BIBLIOG
ACENOVL PART 5 INDEX
DATE CREATED: 4-13-79 LAST USED: 7-28-79

By typing the appropriate first letter, any or all of the options
listed in the upper portion of the display may be changed. The
settings shown for many of the options are the default settings for
the Editor on most screens. Implementations for some external
terminals may use different defaults.

The portion of the display showing the PATTERNS: <TARGET> and <SUBST>
will not sppear unless you have used the F(ind or R{eplace commands
since entering the Editor this time. The portion of the display
showing the MARKERS: currently in the file will not appear unless you

have at some time used the S({et M({arker command to place a marker in
the texts

The information stored in rhe Fnvironment (with the exception of the
<TARGET> and <SUBST> strinps) is saved each time you save the file on
diskette, so the system can "remember" that environment each time you
work on that file again.

M8 APPLE PASCAL OPERATING SYSTEM

B WO W R W W W W W e W oW o =

e ———

— - ——— -

THE ENVIRONMENT OPTIONS

A{uto indent

Auto=indent affects only the Editor commands I(nsert {under Text

Changing Commands) and M(argin (under Formatting Commands). See the
discussions of those commands for more details and examples.

The A(UTO INDENT option is set to TRUE (each new line is automatically
started at the same Iindentation as the first non-space character of
the previous line) by typing A T .

The A(UTO INDENT option is set to FALSE (new lines begin at the
screen’s left edge or at the set Left margin and Paragraph margin) by
typing A F . Unless Autco=indent is False (and Filling is True), the
Margin command will not operate and the Insert command will not cause
re-marginning of the portion of a paragraph following an insertion.

Auto-indent should generally be True for writing and editing Pascal
programs, and False for writing and editing natural language text.

F(illing

Filling affects the Editor"s I(nsert Command (under Text Changing

Commands) and allows the M(argin command (under Formatting Commands)
to function. See the discussions of those commands for more details

and examples.

The F(ILLING option is set to TRUE (lines are automatically broken
between words —- at spaces and hyphens -- to avoid exceeding the set
Right margin) by typing F T . Unless Filling is True (and Auto-
indent is False), the Margin command will not operate and the Insert
command will not cause re-marginning of the portion of a paragraph
following an insertionm.

The F(ILLING option is set to FALSE (the set margins are ignored;
you must end each line yourself) by typing F F .

Filling should generally be False for writing or editing Pascal
programs, and True for writing or editing natural language text.
However, if you are editing a table, diagram, or other carefully
formatted portion of text, it is & very good safety precaution to
set Filling to False (from the Edit level, just type SEFF<space>).
This will save you the frustration of having your text completely
re-formatted following an insertion.

EDTOR M9

B e lg»

L(eft margin
R(ight margin
P(aragraph margin

When Filling is True (and Auto-indent is False), the margins set in
Lhe Environment are the margins which are used by the I(nsert command
(under Text Changing Commands) and the M(argin command (under
Formatting Commands). These margins also affect the Center,

Left, and Right justifying commands in the Adjust mode (under
Formatting Commands). See the discussions of those commands for more
details and examples.

To change the value for the L(EFT MARGIN option, type L followed by
an unsigned integer, and then press the spacebar. The unsigned
integer may also be terminated by pressing the RETURN key. The value
that you type replaces the old value for the Left margin in the prompt
display shown at the beginning of this section.

To change the value for the R{IGHT MARGIN option, type R followed by
an unsigned integer, and then press the spacebar. Similarly, you can

change the value of the P(ARA MARGIN option by typing P followed by
an unsigned integer, and then press the spacebar.

All unsigned integers with four or fewer digits are valid margin
values. 1If you attempt to assign a margin value of more than Four
digits, the value will be truncated to the first four digits typed.
To create normal text displays whose characters are all wvisible on
the screen, you should use margin values from § through 79, and the
Left and Paragraph margin values should be less than the value of the
Right margin. To create text that is confined to the left "page" of
the 4@-character Apple screen, use margin values from §f through 39.

C{ommand character

The Command character affects the M(argin command (under Formatting
Commands) and re-marginning in the Insert mode (under Text Changing
Commands). See the discussions of those commands for more details.

To change the setting of the C(OMMAND CH option, type C followed by
almost any character except the RETURN character or ESCape. For
example, typing C * will change the set Command character to * .
This change will be reflected in the Environment prompt.

If the Command Character appears as the first non-blank character in a
line of text, then that line is protected from the Margin command, and
from re-marginning following an Insertion. That line is also treated
as a paragraph delimiter for marginning purposes. The normal Command
character is the carat or circumfiex accent (=). Unless you have
some special use for the ecarat character in your text, you should
generally leave it as the set Command character.

120 APPLE PASCAL OPERATING SYSTEM

)

=V V=UR VU V-V V- = - -V - T T I T T R =T Y

T(oken default

This option affects the search mode used by the commands F{ind and
R({eplace (under Text Changing Commands). See the discussions of
those commands for meore details and examples.

The T({OKEN DEF option is set to TRUE (the default search mode is Token
gearch) by typing T T , and to FALSE (the default search mode is
Literal search) by typing T F .

In Literal search mode, the Editor will look for ANY occurrence of
a string of characters that exactly matches the <TARGET> string. 1In
Token search mode, the Editor will look for ISOLATED occurrences of

the <TARGET> string. The Editor considers a string isolated 1f it is
surrounded by any combination of delimiters, where a delimiter is any
character that is not a number or letter.

For example, in the sentence "Put the book in the bookcase.", using
the <TARGET> string "book", Literal search mode will find two
occurrences of "book" while Token search mode will find only one, the
word "book" isolated by the delimiters <space> <space>.

In Token search mode you can find an occcurrence of the <TARGET> string,
even if the occurrence has more spaces or fewer spaces (including
zero) corresponding to each space in the specified <TARGET> string.
example, suppose you are searching the following text, which contains
four slightly different occurrences of the words "APPLE PIE":

I°LL HAVE SOME
SOME APFLEPIE,

A PPLEPIE, SOME APPLE PIE,
AND THEN SOME AP PLE PIE, TOO.

If you use the <TARGET> string "APPLEPIE" , a Token search will find

only the third cccurrence. With the <TARGET> string "APPLE PIE" , a
Token search will find both the second occurrence (which has more

spaces, but at the right place in the string) and the third occurrence

(which has fewer spaces, and none in the wrong place). With the
<TARGET> string "A P P L E P I E" , a Token search will find all four
occurrences.

However, only a Literal search would find an ocecurrence of "APPLE PIE"
that was buried in the word "CRABAPPLE PIE". That’s because the "B"
would not constitute a proper isolating delimiter.

When editing natural language text, it is a good idea to use Literal

search mode (set T(OKEN DEFault to FALSE). When editing programs, it
Is usually more useful to use Token search mode (leave T(OKEN DEF ser
to TRUE).

EDITOR 124

For

V(erify

The Verify command is executed by typing V for V(erify while at the
Edit level. There is no indication of the V(erify command on the EDIT

prompt line. The status of the Editor is verified by redisplaying the

screen. The Editor attempts to adjust the window so that the cursor
is at the center of the screen. This command can be psychologically
helpful. Type it whenever you are unsure that the screen really

corresponds to what is in your file, especially when an Insertion
leaves an extra word or two dangling beyond the right end of a line.

After typing V the screen is pretty much guaranteed to accurately
reflect what is really in your file.

Q(uit

Quit mode is reached by typing Q for Q(uit while at the Edit level.
On entering Quit mode, the screen display is replaced by this
prompt messapge:

>QUIT:
U(PDATE THE WORKFILE AND LEAVE
E(XIT WITHOUT UPDATING
R(ETURN TO THE EDITOR WITHOUT UPDATING
W(RITE TO A FILE NAME AND RETURN
S(AVE WITH SAME NAME AND RETURN

One of the four displayed options (described below in more detail)
must be selected by typing U for U(pdate, E for E(xit, R for
R(eturn, W for W(rite, or § for S(ave .

U(pdate

This tells the Editor to erase all previous versions of the boot
diskette’s workfile (SYSTEM.WRK.CODE as well as SYSTEM.WRE TEXT)
Then it saves on the boot diskette, under the filename

SYSTEM WRK TEXT, a backup copy of the file currently in memory. An
Uf{pdate should be done at least every 15 minmutes, in order to prevent
accidental loss of your efforts. From the Editor, every so of ten,
just type Q U E . 1In a few seconds, the boot diskette’s file
SYSTEM-WRK-TEXT will contain the latest version of your workfile, and
you will again be in the Editor, ready to continue working on your
backed-up workfile.

E(xit

This causes the system to leave the Editor without saving on diskette
the file that is currently being worked on in memory. The boot

122 APPLE PASCAL OPERATING SYSTEM

tﬂ diskettes backup copy of the workfile, SYSTEM.WRK.TEXT, is not
updated to contain the latest version of the workfile. This means
that any modifications made since entering the Editor are not recorded
in SYSTEM.WRK.TEXT or 1in any other place. All editing which was done
during the session is irretrievably lost. After selecting this
option, you are placed at the Command level.

R({eturn

This option lets you return directly to the Editor without updating.
The cursor is returned to the exact place in the file it occupied when
Q was typed. Usually this command is used after unintenticnally typing Q .

-

Wirite
g Selecting this option causes a further prompt to be displayed:

>QUIT:
E NAME OF OUTPUT FILE (<CR> TO RETURK) =->

The file in memory may now be saved under any diskette filename. You do

not need to specify the .TEXT suffix; it will be supplied automatically.

If you do not want .TEXT added to the filename, type a period following
a the file specification. In response to the above prompt, you can also

type your filename, complete with .TEXT suffix, followed by file size

specification. This lets you store your file in a space other than the
I largest unused area on the diskette.

If you wish to return directly to editing the file currently in
memory, without saving it, just press the RETURN key instead of typing
aa filename. 1If a file with the specified filename already exists on
the specified diskette, you will be warned. For example, if you try
to write to MYDISK:MYFILE, and that file already exists on MYDISK:
g you will be asked:

REMOVE OLD MYDISK:MYFILE.TEXT?

Type "¥" to continue. After your file has been
g saved on diskette, the Editor displays a message similar to this:
>QUIT:
g WRITINGsssss
YOUR FILE IS 1978 BYTES LONG.

DO YOU WANT TO E(XIT FROM OR R(ETURN TO THE EDITOR?

E! If you type E for E(xit, the system leaves the Editor and returns to
the Command level. If you type R for R{eturn, you are again placed
in the Editor, with the cursor in the same position it occupied in the

a file when Q was typed.

3 EDITOR 423

S{ave

When you choose this option, your new file will have the same name as
the file that was most recently called by the Editor. If the file
S5(ave was created at the current editing session and therefore does
not yet the file will be S(aved as SYSTEM.WRK.TEXT .

you
have a name,

After you invoke the S(ave option, you will be asked if you want to
purge your original file. For example, if you G{et MYDISK:MYFILE from
the Filer, edit the file, Q{uit the Editor and then 5(ave the updated
text, the following message will appear:

PURGE OLD MYDISK:MYFILE BEFORE S(AVE?
If you type "" the old file will be removed from the disk before the
new file is written This may cause the new file to overwrite the
old file. If wyou have no backup of the original file and it is a large
file, it would be safer to type "N". When you type "N" the old file
will not be overwritten and only will be removed when the new file is
successfully written to the disk. If there is not room to copy the new
file before destroying the old one,; the message

out .

ERROR: WRITING OUT THE FILE. PLEASE PRESS <SFACEBAR> TO CONTIKUE

will appear. Pressing the spacebar will return you to the Editor.
Do not press RESET after you have given the system permission to
purge your original file; doing so may destroy both the old and new

versions of your file.

After your file has been saved on diskette,; the Editor displays a

message similar to this:

>YUIT:

WRITING««s.s

YOUR FILE IS 1976 BYTES LORG.

DO ¥OU WANT TO E(XIT FROM OR R{ETURN TO THE EDITOR?

If you type E for E(xit, the system leaves the Editor and returns to
the Command level. If you type R for R(eturn, you are again placed
in the Editor, with the cursor in the same position it occupied in the
file when was typed.

124 APPLE PASCAL OPERATING SYSTEM

—

?.

EDITOR COMMAND SUMMARY

SCREEN COMMANDS

:s CTRL=-A

CTRL-2Z

Shows the other 4f-character "page" of the display.
Screen scrolls right and left to follow the cursor.

SPECIAL CHARACTERS

CTRL-K
SHIFT-M

Produces left bracket: [
Produces right bracket:]

CURSOR MOVES

a right-arrow key Moves repeat-factor spaces right.
left-arrow key Moves repeat-factor spaces left.
CTRL~-0 Moves repeat—factor lines up.
CTRL-L Moves repeat-factor lines down.
E spacebar Moves repeat-factor spaces {n set direction.
CTRL-I Moves repeat-factor tab positions in set direction.
RETURN key Moves to start of line that is repeat-factor

lines away, in set direction.
- Moves to start of latest text found, replaced

or inserted.
REPEAT-FACTOR

An integer from § through 9999 typed before a move or command. If
repeat—factor is / the move or command is repeated as many times
as possible in the file.

iml

=

SET DIRECTION

< s - All change set direction to backward
> . + All change set direction to forward

AV VI

MOVING COMMANDS

J{ump: Jumps to file‘s B{eginning or E(nd, or to previcusly set Marker.

Ei P(age: Moves the cursor repeat=factor pages in the set direction.

T

EDITOR

125

F(ind: Looks in the set direction for the repeat-factor-th L{iteral or
T(oken occurrence of the <TARGET> string, which must be typed
with delimiters. &5 means use the same string as before.

THE PASCAL COMPILER

TEXT CHANGING COMMANDS

I{nsert: Inserts text. Use left-arrow key to backspace over insertion.
CTRL-Q deletes Fack to the most recent RETURN character in the
current insertion. CTRL-X acts like CTRL-Q except that it also
deletes the RETURN.

D(elete: Deletes all text moved over by the cursor. Back up cursor to
undeletes

Z{ap: Deletes all text between the current cursor position and the
"equals position" (at the start of the latest text found,
replaced or inserted).

C{opy: Copies a diskette file, or what was last inserted, deleted or
zapped, into the file at the position of the cursor.

X(change: Replaces the character under the cursor with the character
typed. Each line must be done separately. Pressing the left-
arrow key causes the original character to re-appear.

R(eplace: Looks in the set direction for the next L(iteral or T(oken
occurrence of <TARG> string, and replaces it with <5SUB> string.
Continues repeat-factor times. Both strings must be typed with
delimiters. V(erify option asks for permission to replace. §
means use the same <TARG> or the same <SUB> string as before.

FORMATTING COMMANDS

A(djust: Adjusts indentation of the line the cursor is on. Left-arrow
and right-arrow keys move the line left and ripht. Moving
cursor up or down adjusts lines above or below by same amount.

M{argin: Starting at the cursor position, adjusts all text between two
blank lines (one paragraph) to the margins which have been set.

MISCELLANEOUS COMMANDS

S(er: Sets a M(arker of the specified name at the current cursor
position. Sets options in the E(nvironment for A(ute-indent,
F(illing, margins, default search mode, and C(ommand characters.

V(erify: Redisplays the screen with the cursor centered.

Qf{uit: Leaves the Editor. You may U(pdate the workfile, E(xit without
updating, R{eturn to the Editor, W(rite to any diskette file, or
S(ave to your original file.

126 APPLE PASCAL OPERATING SYSTEM PASCAL COMPILER 127

INTRODUCTION

The basic purpose of the Apple Pascal Compiler is to convert the text
of a Pascal program into the compressed P-code version of the program.

This P-code is the "machine language" of the Pascal pseudo-machine, or
"P-machine", described in this manual’s appendices on the P-

MACHINE. The P-code version of your program can then be run on

virtually any computer for which the P-machine interpreter has been
implemented.

The compiler control options recognized by the Apple Pascal Compiler
are described in the Apple Pascal Language Reference Manual. That

manual also contains a list of the error messages reported by the Apple
Pascal Compiler.

This chapter is writtem specifically for using the Apple Pascal
operating system with the Apple Pascal programming language and
the Apple Pascal Compiler. If you are using any other programming

language, wvou must first read that language ‘s reference manual for
special ifnstructions on using this operating system with that language.

The following diskfiles allow you to invoke the Compiler explicitly:

(boot diskette, boot drive; required
only if program USES Intrinsic Unitsj
Pascal compiler $U option may also E
specify other library files)

(any diskette, any drive; optionalj
to fix errors found by Compiler)

(boot diskette, any drive; optional ¥
messages given on entering Editor) |

Textfile to be

(any diskette, any drive; default
Compiled

is boot diskette’s text workfile
SYSTEM.WRK-TEXT, any drive; Pascal
compiler $I option may also
specify other source textfiles)
(any diskette, any drive; required)

|

I

DISKFILES NEEDED I
I

|

SYSTEM.COMPILER

SYSTEM.LIBRARY

SYSTEM.EDITOR

SYSTEM.SYNTAX

In addition to the above files, the following files may be needed if

you are imvoking the Compiler automatically wvia the R(un command:
SYSTEM.LINKER {any diskette, any drive; required if I
external routines need to be linked)
S5YSTEM. LIBRARY

contain needed external routines,

(boot diskette, any drive; required I:;: . I
i
Linker called) E

128

APPLE PASCAL OPERATING SYSTEM

i e e

m e el

(boot diskette, boot drive; required
between Compiling, Linking and
eXecuting steps)

SYSTEM.PASCAL

SYSTEM.LIBRARY (boot diskette, boot drive; required if
program uses long integers, does file
1/0 using real numbers or SEEK, or
USES Intrinsic Units)

(any diskette, any drive; required only
if program uses WCHAR or WSTRING from
TURTLEGRAPHICS)

SYSTEM.CHARSET

When you type C for C(ompile from the Command level, the file
SYSTEM.COMPILER must be available on a diskette in any on-line disk
drive. After the Compiler reports an error, if you elect to re-enter
the Editor by typing E for E(dit from the Compiler, the file
SYSTEM.EDITOR must be available in any disk drive.

On entering the Editor, a message describing your program’s error will
be given if the file SYSTEM.SYNTAX is available on the boot diskette.
SYSTEM.SYNTAX is optional; if it is not on the boot diskette the error
is reported by number. Compiler error messages corresponding to these
numbers are given in an appendix at the end of the Apple Pascal
Language Reference Manual. Some users will wish to save room on their
boot diskettes by removing the file SYSTEM.SYNTAX, referring to the
table of messages in the appendix, instead.

One-drive note: The files SYSTEM.COMPILER , SYSTEM.EDITOR , and
SYSTEM.SYNTAX are all on diskette APPLE@: , which is the normal one-
drive boot diskette. If you have been working on a program in the
Editor, and U(pdating the workfile, your boot diskette has all the
files needed to R{un or C(ompile the workfile. If you wish to R{un
or C{ompile a textfile that is not already on the boot diskette, use
the Filer’s T(ransfer command to transfer that textfile onto your
boot diskette before compiling. If your program requires Linking te
external routines, see this manual®s chapter THE LINKER for help.

Multi-drive note: The files SYSTEM.EDITOR and SYSTEM.SYNTAX are both
on diskette APPLEl: , which is the normal multi-drive boot diskette.
The file SYSTEM.COMPILER is on diskette APPLE2: , which 1s normally
kept in drive volume #5: in a multi-drive system. With APPLEl: in the
boot drive and APPLE2Z: in a non-boot drive, your system has all the
files needed to R{un or C(ompile the workfile.

Two=drive note: If you wish to R{un or C(ompile a textfile that is
not already on APPLEl: or APPLE2: , and your system has only two
drives, use the Filer’s T(ransfer command to transfer that textfile
onto either APPLEL: or APPLE2: before compiling. This T(ransfer is
not necessary on systems with three or more drives. Another

possibility for two-drive systems 1s to make APPLE@: your boot
diskette (just put APPLE®: in the boot drive and press the Apple’s
RESET key). This frees your second drive to hold a source or

destination diskette for compilations, saving you from T(ransferring

PASCAL COMPILER 129

the source file onto APPLEL: or APPLEZ: . APPLEf: does not contain
SYSTEM.LINKER; if your program requires Linking to external routines,
use APPLEL: and APPLE2: .

If a compilation is so large that the Apple’s available memory is
insufficient, you can use the Filer to M(ake a four-block file
called SYSTEM.SWOPDISK on the diskette containing SYSTEM.COMPTLER.
Before any attempt to read a new diskette directory (when finding an

Include-file for example) the system will first temporarily store the
bottom 2K bytes of the data heap in SYSTEM.SWOPDISE and then put the

diskette directory into that 2K area of the Heap. This saves 2K of
top-of-Heap memory. When the directory is no longer needed, the

contents of SYSTEM.SWOPDISK are stored back into their original Heap
locations.

USING THE COMPILER

The Compiler is invoked by typing C for C(ompile or R for R{un from

the outermost Command level of the Apple Pascal operating system. The
screen immediately shows the message

COMPILING. ..

The Compiler automatically compiles the boot diskette’s workfile
SYSTEM.WRK.TEXT or another workfile designated by the Filer’s G(et
command and saves the resulting code (if compilation is successful)
as SYSTEM.WRK.CODE . If there is a workfile, but you do not wish to
compile that file, use the Filer’s N(ew command to clear away the
workfile before compiling. If no workfile is available, you are
prompted for a source filename:

COMPILE WHAT TEXT?

You should respond by typing the name of the text file that you wish
to have compiled.

It is not necessary to type the suffix .TEXT ; that suffix is
automatically supplied by the Compiler. If you wish to defeat this

suffix-adding feature, to compile a textfile whose filename does not
end in .TEXT , type a period (.) after the last character of your
filename.

Next you will be asked for the name of the file where you wish to save
the compiled version of your program:

TO WHAT CODEFILE?

If you simply press the RETURN key the command will not be terminated,
as you might expect. Instead, the compiled version of your program
will be saved on the boot diskette‘s workfile SYSTEM.WRK.CODE . This

is handy if you then wish to Run the program. Pressing the ESC key in
response to this prompt returns you to the outermost Commmand level.

130 APPLE PASCAL OPERATING SYSTEM

RO W W W W W W W E

WO O W W O W Y O o

m omomw

"

of wyour program to have the same
program (of course, the suffix will
type a dollar sign (§) and press
the RETURN key. This is a handy feature, since you will usually want
to remember only one name for both versions of your program. The
dollar sign repeats your entire source file specification, including
the volume identifier, so do NOT specify the diskette before typing
the dollar sign. Note that this use is different from the use of the
dollar sign in the Filer.

If you want the compiled version
name as the text version of your
be .CODE instead of .TEXT), just

If you want your program stored under another filename, type the
desired filename.

It is not necessary to type the suffix .CODE ; that suffix is
automatically supplied by the Compiler. If you wish to defeat this
feature; In order to specify an output filename that does not have a
«CODE suffix, type a period («) afrer the last character of your
output filename. Ending your output filename with a file size
specification (with or without a following period) also suppresses the
addition of the .CODE suffix. The file is then opened observing the
given file size (on closing, the file will have its actual size). The
default file size for opening this file is [@#]. See this manual‘s
chapter THE FILER for details about file size specifications.

The Compiler then generates P-code codefiles to run directly on the
Pascal P-machine.

When the Apple is compiling, messages on the screen show the progress
of the compilation. The Apple Pascal Language Reference Manual
deseribes these messages in detail.

If the compilation is successful (that is, no programming errors

are detected), the Compiler saves the compiled code under the filename
SYSTEM.WRK.CODE on the boot diskette, or under another filename

that you specified earlier.

>

The code workfile, SYSTEM.WRK.CODE, is automatically erased when any
text workfile is U(pdated from the Editor.

Should the Compiler detect an error in your program, the screen will
show the text surrounding the error, an error number, and a marker
<<<< pointing to the symbol in the source where the error was
detected. For example, you might see the following message:

[=<«

LINE 9, ERROR 18: <SP>(CONTINUE), <ESC>(TERMINATE), E(DIT
Pressing the spacebar instructs the Compiler to continue the
compilation, in case you want to find more of the errors right now.
Pressing the ESC key causes termination of the compilation and return
to the Command level. Typing E sends you to the Editor, which
automatically reads in the workfile, ready for editing.

PASCAL COMPILER 131

Any error whose number is 4@@ or greater signifies a fatal error which
causes ccompilation to terminate even if the spacebar is pressed.

o
)

Lf you were compiling a file rhat was not the workfile, this prompt
appears when you enter the Editor:

>EDIT':
NO WORKFILE IS PRESENT. FILE? (<RET> FOR NO FILE <ESC-RET> TO EXIT

"

You should respond by typing the filename of the file you were
compiling, and that file will then be read into the Editor. Only the
main program file will be read into the Editor automatically. TE your
program uses Include-files, those files must be read in separately.
See the Apple Pascal Language Reference Manual for details about the
Include-file compiler option.

When the correct file has been read into the Editor, the first line
displays the error message (or the error number, if the file
SYSTEM.SYNTAX was not available on the boot diskerte) and the cursor is
placed at the symbol where the error was detected.

N N W

The error messages corresponding to the error numbers reported by the
Apple Pascal Compiler are given the Apple Pascal Language Reference
Manual. Some people may wish to save room on the boot disksrre by
removing SYSTEM.SYNTAX and using the printed table of mMESSages
instead.

]

The use of compiler contrel options is described in the Apple Pascal
Language Reference Manual.

m
UV Y T Y T VY T VY T S T T T TR T~ TR 7 T T RV 7 |

/B O I

w
WAl

PASCAL COMPILER 433

132 APPLE PASCAL OPERATING SYSTEM

THE 6502 ASSEMBLER

cuanmnnnnnnnynnn

134 APPLE PASCAL OPERATING SYSTEM 6502 ASSEMBLER 135

INTRODUCTION

You may occasionally wish to write small assembly-language routines

and use them within a Pascal host program to provide low-level or time-
critical facilities. The Assembler (in conjunction with the Linker)
meets this need. Apple Pascal’s 6502 Assembler is a version of the
UCSD Adaptable Assembler, specifically implemented for the 6502 micro=
processor on which the Apple Computer is bhased.

This assembler was modeled after The Last Assembler (TLA) developed at
the University of Waterloo. The basic concept behind both the TLA and
the UCSD Adaptable Assemblers is the use of a central machine-
independent core that is common to all versions of the assembler.

This central core is augmented with machine-specific code to handle
the peculiarities of each individual machine.

This chapter is intended for a reader who is already fluent in at
least one assembly language.

DISKFILES NEEDED

The following diskfiles allow

you to use the Apple Pascal system’s
6502 Assembler:

SYSTEM.ASSMELER (any diskette, any drive; required)
6500.0PCODES (any diskette, any drive; required)
6500. ERRORS (any diskette, any drive; optional
error messages given in Assembler)
Textfile to be (any diskette, any drive; default
Assembled is boot diskette’s workfile
SYSTEM.WRK.TEXT, any drive)
SYSTEM.EDITOR

{any diskette, any drive; optional;
te fix errors found by Assembler)

SYSTEM.ASSMBLER contains the Assembler itself, and 6500,0PCODES
contains the op codes for the 6500 series of microprocessors (the
Apple uses a 6502). These files are normally found on diskette
APPLE2: . They must be available on any diskette in any of the

system’s disk drives when you type A from Command level to invoke the
Assembler.

6500.ERRORS , normally found on diskette APPLEZ: » is an optional file

containing the Assembler syntax error messages. If it is not
available, the Assembler will report svntax errors by number and you
can loock up the error description in Appendix D, Table 6.

When an assembly error is detected, you are given the option of
returning directly to the Editor to correct the problem. If you type

136 APPLE PASCAL OPERATING SYSTEM

"

mOE oo mOWmOmomOmOWW W

FHRFHRP)

i

LUV 1

] the file SYSTEM-EDITOR (normally found

Enf?;uf(g;;tléuzigtztizfeigéiéé: or APPLEL:) should be available at
that time, on any diskette in any disk drive.
One=drive note: In order to edit and assemble a textfile on a one-
drive system, you may wish to use the Filer to T(ransfer the files
SYSTEM.ASSMBLER and 65(¢-0PCODES from APPLE2: to APPLEl: , and then
use APPLEl: as your boot diskette. This leaves 3@ blocks unused on
APPLEl: , for your source textfile and workfiles.

Multi-drive note: With APPLEl: in the boot drive and APPLE2: in drive
volume #5:, your system has all the files needed to E(dit, C(ompile,
A(ssemble, and L{ink programs.

Two-drive note: If you wish to E(dit and A(ssemble a textfile that is

: has only two
dv on APPLEl: or APPLE2: , and your system .
g:ivgifeﬁsz the Filer’s T(ransfer command to transfer that textfile

onto either APPLEl: or APPLE2: before assembling.

<

A hidden disk need is the Assembler’s use of a small area (usually less
than four blocks) on the boot diskette, in any drive, to storf a
temporary intermediate file containing Linker information. This diskette
file does not normally appear in the diskette’s directory, but space for
it must be available on the boot diskette.

An attempt to assemble without boot diskette space for this {ntermediase
file (after opening both the output codefile and the assembled listing s
output textfile) causes the message 10 ERROR: KO ROOM ON VOL , after
which you must press the spacebar to reinitialize the system. Your boot
diskette may then show a new file named LINKER.INFO, of zero length and
type "Infofile", often between two existing files. You may remove this
file or not, as you wish.

In ordinary use of the Assembler, this problem does not arise, as the
file size specification [*] is the default used when opening both the
output codefile and the assembled listing’s textfile. This default--
unusual in the Apple Pascal system--automatically saves room for the
Assembler“s Intermediate file.

However, if the output codefile exceeds the default file size, that file
is automatically extended to maximum [P] size. If there was only one
unused area on the boot diskette, this extension will eliminate the
space needed by the temporary file. You can overcome this unlikely
problem by specifying an appropriate file size for the output codefile,
or by making sure there are at least two non-contiguous unused areas on
the diskette.

’ v ble memory is
If an assembly is so large that the Apple’s avalla i
insufficient, you can use the Filer to M(ake a four block file called
SYSTEM.SWAPDISK on the diskette containing SYSTEM.ASSFMELER . Before
you attempt to read a new diskette directory (when‘flnd{ng an Include-
file, for example), the system will first temporarily store the bottom

6502 ASSEMBLER 137

2K bytes of the data Hea
P in SYSTEM.SWAPDISK and then put th
directory into that 2K area of the Heap. : B

g;:p memory. When the directory is no longer needed, the contents of
STEM.SWAPDISK are stored back inte their original Heap locations.

USING THE ASSEMBLER

This saves 2K bytes of top-of -

The Assembler is invoked by typing A for A(ssemble from the

outermost Command level of the Apple Pascal
operating s "
The screen immediately shows the nesbgs P g system

ASSEMBLING...

The Assembler automatically assembles the boot
zzi:EH&HRK.TEKT or another workfile designated by the Filer’s G(et
and and saves the resulting code (if assembly is successful) as

SYSTEM.WRK.CODE . If
Sodch FriaDE no workfile is available, you are prompted for a

diskette’s workfile

ASSEMBLE WHAT TEXT?

You should respond by typing th
g el sy ping e name of the text file that you wish

It is not necessary to type the suffix .TEXT
. ; that suffix is
automatically supplied by the Assembler, if y;u don”t type 1it. If you
gish to defeat this suffix-adding feature, to assemble a textfile whose
lename does not end in .TEXT , type a period (.) after the last
character of your filename.

Next you will be asked for the name of the file where you

wish
the assembled version of your routine:

Lo save

TO WHAT CODEFILE?

Pressing ESC in response to this

rompt retur
e S promp urns you to the outermost
If you simply press the RETURN key the command will not he terminated,
as you might expect. Instead, the assembled version of your routine
will be saved on the boot diskette’s workfile SYSTEM.WRK.CODE .

If you want the assembled version of
name as the text version of your routine (of course, the suffix will
:E -;gggnsnstead of .TEXT), just type a dollar sign (§) and press

e key. This is a handy feature, since you will usually want
to remember only one name far bhoth versions of your routine. The
dollar sign repeats your entire source file specification, ineluding

the volume idel‘ltifiel’g so do NOT specif th disk e elore typlﬂ
p Y e ett bef 14

your routine to have the same

If you want your routine stored
under another f
Pl oo el ilename, type the

138 APPLE PASCAL OPERATING SYSTEM

MmO M O W W
o e

"o oW

. — e e— e —

U TR T T TR TR TR T Y

It is not necessary to type the suffix .CODE ; that suffix is
automatically supplied by the Assembler. 1If you wish to defeat this
suffix-adding feature, in order to specify an output filename that does
not have a .CODE suffix, type a peried (.) after the last character of
your output filename.

Ending your output filename with a file size specification (with or
without a following period) also suppresses the addition of any
suffix. The file is then opened observing the given file size (on
closing the file will have its actual size).

The usual default file size for opening this file is [*]. If this
default allocates insufficient space for your codefile, you may wish
to specify a different file size. Ending the given filename with a
period changes the default file size to [#]1. 1If the output codefile
is being stored on the boot diskette, and if there is only one unused
space on the diskette, this causes the output codefile to initially
occupy all remaining space on the diskette, leaving no room for the
required assembly-intermediate file.

Now that the source and object files for the assembly have been
specified, the next prompt line is:

65¢@ ASSEMBLER II.¢# [D.4]
OUTPUT FILE FOR THE ASSEMBLED LISTING (<CR> FOR NONE):

You may now specify where you want the Assembler to send the assembled
listing, or just press the RETURN key if you do not want this listing.
(1f you wish to abandon the assembly at this point, just press the ESC
key.) If you specify a diskfile for the assembled listing, you do not
need to type the .TEXT suffix; .TEXT will be added for you
automatically if it is needed. Unlike many parts of the system,
ending the specified filename with a period does NOT suppress the
addition of the .TEXT suffix. However, 1if the filename you type
includes the string .TEXT anywhere in it, the filename is used
exactly as typed. If the filename ends In a .TEXT followed by a file
size specification, the file is opened observing the given file size
(on closing the file will have its actual size). The default size for
opening this file is [*].

The assembled listing is a detailed display of the progress of the
assembly showing location numbers, object code, source code, and other
useful information. This listing is independent of the minimal
assembled object code that is saved as the final output of the
assembly. If an assembled listing is stored as a diskette file, it

can be sent to the Editor, but non-standard control characters in the

6502 ASSEMBLER 139

file make it very difficult to edit. For instance, form feeds (CTR-Ls)
in the flle are interpreted as clear screen characters by the Editor.
Type /R/<CTRL>//<RET>/ immediately after entering the Editor for easier
reading. See the EXAMPLE later in this chapter for a sample assemhled
listing.

If you wish, you can have the assembled listing sent to a diskette
file or to the screen or printer. As usual for a console or printer
output, the words CONSOLE or PRINTER must be followed by a colon, i.e.
CONSOLE: « If the colon is omitted the listing is sent to a file of
the name given, on the Prefix diskette. At this point, the program
reports whether or not the output device (if any) is on line.

The program then starts assembling the workfile. If you did not tell
the Assembler to send the assembled listing to CONSOLE: , a simple
display of the assembly”s progress appears on the screen. As assembly
of your routine continues, the Assembler displays, on the left-=hand

side of the screen, one dot for each line of code assembled and a line
counter every 30 lines. Upon completing each preocedure or function, you

will see the number of words of available symbol table space in brackets
and the message

CURRENT MINIMUM SPACE IS xx WORDS

When an Include-file is started, the Assembler displays on the screen:

« INCLUDE <filename>
indicating which file has been included.

send the assembled listing to CONSOLE: ,
simpler screen display.

If vyou told the Assembler to
that listing replaces the

If the Assembler encounters an error, a message shows the offending
text and indicates the nature of the error. For example, you might see

$04 LEQU $
IDENTIFIER PREVIDUSLY DECLARED

The error message will be taken from the file 6500.ERRORS if
possible. If that is not possible, due to space limitations or the
ahsence of the errors file, the error message number is given. In
that case, you might see

504 .EQU §
ERROR # 9
"£500.ERRORS" FILE NOT AROUND

140 APPLE PASCAL OPERATING SYSTEM

i UG W W W LU W W W A

L

1
1

A complete list of Assembler syntax error messages corresponding to

these error numbers appears in this manual’s TABLES appendix. Note
that the descriptive error message is given at the time the error is
detected, not on entering the Editor as it is done in the Compiler.

After each error is found, you are given the following choice:
E{DIT,<SPACE>,<ESC>

This is similar to the choice that you are given when the Compiler
encounters an error. If you wish to proceed with the assembly,
looking for more errors, press the spacebar. If you just wish to
terminate the assembly, returning to the outermost Command level,
press the ESC key. If you type E . the Editor is loaded into the
computer, and the workfile is read into the Editor, ready for
editing. If you were assembling a file which was not the workfile,
this prompt appears:

>EDIT:

NO WORKFILE IS PRESENT. FILE? (<RET> FOR NO FILE <ESC-RET> TO EXIT)

You should now type the filename of the sourcefile used for the
assembly or the name of the Include-file if one exists. That file will
then be read into the Editor.

When the correct file has been read in to the Editor, the first line
displays an error message (or an error number if the file
SYSTEM.SYNTAX is not available on the boot diskette) and the cursor is
placed at the point in the text where the error was detected.

@.

The Editor does not display specific error messages reported by the
Assembler. Therefore before entering the Editor from the Assembler you
should first note the specific error reported by the Assembler.

At the end of a completed assembly, the Assembler indicates that it is
finished and tells you how many errors were found.

If the assembly was successful, the assembled code is writtem out to
the boot diskette’s workfile SYSTEM.WRK.CODE or (if no workfile was
available) to the file that vou specified in the beginning. This code
file cannot be executed by itself but must be used by Linking it in
with a Pascal host program file. For information about manual
Linking, see the EXAMPLE later in this chapter, and alsoc see this
manual®s chapter THE LINKER. For information about placing an
assembled routine into SYSTEM.LIBRARY , so that R(un will
automatically link the correct library routines into the Pascal host
program, see this manual”’s chapter UTILITY PROGRAMS.

The boot diskette’s code workfile, SYSTEM.WRK.CODE, is automatically
erased when any text workfile is U(pdated from the Editor.

6502 ASSEMBLER 141

REFERENCE SYMBOL TABLE

In the assembly listing, an alphabetic reference symbol table
(SYMBOLTABLE DUMP) is penerated following the assembly of each
procedure or functlon. Each entry in the reference symbol table is
divided into three parts. The first part is the symbol identifier,
the second part shows the symbol type, and the third part shows the
value (if the symbol represents an absolute) or the definition
location (if the symbel represents a label). The definition location
is given as a high-byte first number and corresponds to one of the
index numbers in the left-most column of the assembly listing. 1If the
symbol represents neither an absolute nor a label, dashes appear in
the third part of the entry. A vertical bar (|) ends each entry.
Here is a reference symbol table frem the upcoming example:

PAGE - 2 PADDLE FILE : ASMDEMD SYMBOLTAELE DUMP

AB = Absolute LB - Label UD = Undefined MC = Macro

RF = Ref DF - Def PR - Proc FC - Funec

PBE = Public PV - Private €5 - Consts

DONE LB @@1F| PADDLE FC ——=| POP MC ====| PREADZ
LB @@16| RETURN AR B0 |

The first entry shows a LaBel named DONE, defined at location @@1F.
The second entry shows that PADDLE is the name of the FunCtion. The
last entry shows that RETURN is an ABsolute which has been assigned
the value @@@@ . Note that the fourth entry

PREAD2 LB @@16]

is broken onto two different lines.

EXAMPLE

This example will show the following:

1) A sample assembly-language routine which includes an external
function (.FUNC), and an external procedure (.PROC).

2) The assembled routine, showing the Assembler’s complete
output listing.

3) A Pascal program which calls our assembly-language external
function and procedure.

4) How to Compile the Pascal program and then Link in the
assembly-language routine, in order to eXecute the program.

142 APPLE PASCAL OPERATING SYSTEM

)

T

' TRt ¥

(' TR TRV 1|

L UL RN VT VR VRt 1

An Assembly-Language Routine

The following sample assembly-language routine contains an external
function and an external procedure. The function is the game paddle
function, and the procedure is the routine to set or clear one of the
game TTL outputs. Both are provided for you, completely assembled and
ready to use, in the UNIT named APPLESTUFF (see the Apple Pascal
Language Reference Manual). See the later sections of the current
chapter for details about the Assembler directives .FUNC and .PROC .

The following shows the assembly-language routine, just as you might
type it into the computer, using the Editor:

SAMPLE MACRO POPS 16 BIT ARGUMENT

-MACRO POP
PLA

S5TA %1

PLA

STA Z1+1

« ENDM

+FUNC PADDLE,l ;ONE WORD OF PARAMETERS

3 SAMPLE GAME PADDLE FUNCTION FOR PASCAL

; (This function provided in APPLESTUFF unit.)

]

; FUNRCTION PADDLE(SELECT: INTEGER): INTEGER:

RETURN .EQU ¢ sTEMP VAR FOR RETURN ADDR

;NOTE: @..35 HEX AVAILABLE

POP RETURN ;SAVE PASCAL RETURN ADDR
PLA sDISCARD 4 BYTES STACK BIAS
PLA :(ONLY DO FOR .FUNC)
PLA
PLA
PLA ;GET LSB SELECT PARAMETER
AND #3 ;FORCE INTO RANGE f..3
TAX
PLA sDISCARD MSB SELECT PARAM
LDA PC@E7@ ;TRIGGER PADDLES
LDY #d ;INIT COUNT IN Y REG
NOP ;COMPENSATE FIRST COUNT
NOP

PREAD2Z LDA @CP64,X ;TEST PADDLE
BPL DONE ;BRANCH IF TIMER DONE
INY ;ELSE INC Y EVERY 12 USEC
BNE FREAD? ;LOOP UNLESS 255 EXCEEDED
DEY ;MAKE § INTO 255 (MAX COUNT)

6502 ASSEMBLER 143

DONE LDA fd

PHA ;PUSH MSB OF RETURN VALUE={
TYA

PHA sPUSH LSB OF RETURN VALUE
LDA RETURN+1 sRESTORE PASCAL RETURN ADDR
PHA

LDA RETURN

PHA

RTS +AND RETURN TO PASCAL CALLER

«PROC TTLOUT, 2

ROUTINE TO SET OR CLEAR ONE OF THE TTL 1/0 BITS
(This procedure provided in APPLESTUFF umit)

;TWO WORDS OF PARAMETERS

PROCEDURE TTLOUT(SELECT: INTEGER; DATA: BOOLEAN);

ETURN .EQU @

D e e e we we we

POP RETURN

sTEMP RETURN ADDR

;SAVE PASCAL RETURN ADDRESS
; POP PARAMETERS, LAST FIRST

PLA ;GET LSB BOOLEAN DATA 1=TRUE
LSR A ;SAVE BOOLEAN IN CARRY

PLA ;DISCARD MSE BOOLEAN DATA
PLA ;GET LSB SELECT

AND #43 ;TREAT IT MOD 4

ROL A ;:DOUBLE, ADD DATA FOR INDEX
TAY +PUT I/0 STROBE INDEX IN Y
LDA f#cpss,y ;ACTIVATE 1/0 STROBE

PLA ;DISCARD MSE SELECT PARAM
LDA RETURN+I ;RESTORE PASCAL RETURN ADDR
PHA

LDA RETUEN

PHA

RTS ;GO BACK TO PASCAL

« END

;END OF ASSEMBLY

The Assembled Output Listing

The preceding assembly-language routine, which we saved in the
diskette file named MYDISK:ASMDEMO.TEXT , can now be assembled by the
Apple Pascal 65@2 Assembler. From the Command level, type the letter
A for A(ssemble, and a dialog similar to the following takes place:

ASSEMBLING...

ASSEMELE WHAT TEXT? MYDISK:ASMDEMO
TO WHAT CODE FILE? MYDISK:ASMDEMO
650@ ASSEMBLER 1I1.00 [D.4]

OUTPUT FILE FOR ASSEMBLED LISTING: (<CR> FOR NONE) FPRINTER:

144 APPLE PASCAL OPERATING SYSTEM

fllllmmn-ll-
(U V- O - V1 T 1 [1 I - R -1 T TR TR - T T TR T/

e e —— o — — —

FTE")

The first response tells the Assembler to take the text version of the
routine from the file MYDISK:ASMDEMO.TEXT . The second response says to
save the assembled code version of the routine (when the assembly is
complete) in the file MYDISK:ASMDEMOD.CODE . By using the same name, we
have fewer filenames to remember, and most commands will auntomatically
choose the correct versiom (text or code). You could have accomplished
the same thing by typing a dollar sign (§) as the second response.

If the text version of the routine had been available in the boot
diskette’s workfile SYSTEM.WRK.TEXT (or another workfile designated

by the Filer’s G{et command)}, the Assembler would automatically have
assembled that file and would automatically have stored the assembled
caode version as SYSTEM.WRK.CODE .

The last response (PRINTER:) sends the assembled listing to the

printer, and lets the usual Assembler display appear on the screen.
The screen display looks something like this:

[L11038]% @racsssssssasas

2 BLOCKS FOR PROCEDURE CODE 9834 WORDS LEFT

[9827]< 13Pccscssnsnnnsssrrsssnnsnnsanassssssiss
[996@]< S@>eccccass

CURRENT MINIMUM SPACE IS5 9794 WORDS

[F97B7]€ SBrasssssssasansssissnisnessensesss

CURRENT MINIMUM SPACE IS 9794 WORDS
[98@Bl< 9@>
ASSEMBLY COMPLETE: 9@ LINES
i ERRORS FLAGGED ON THIS ASSEMBLY

Meanwhile, the printer has been printing the assembled listing (if we
had responded CONSOLE: , the assembled listing would have replaced the
Assembler”’s usual screen display). The assembled listing appears
approximately as shown below:

PAGE - (

Current memory available: 1@613

popd |

deaa | e P e ey
daen | ;

Aedg | ; SAMPLE MACRO POPS 16 BIT ARGUMENT
peda | ;

paad | -MACRO POP

Papa| PLA

paad | STA %1

Paad | PLA

paad| STA %141

foda | - ENDM

dden|

Aoea |

2 blocks for procedure code

9834 words left

6502 ASSEMBLER 145

PAGE - 1 PADDLE FILE:ASMDEMO

Pood| +FUNC PADDLE,1 ;ONE WORD OF PARAMETERS

Current memory available; 18356

Boed | — s
oo | i
DOGH | ; SAMPLE GAME PADDLE FUNCTION FOR PASCAL
gggﬁ] i (This functien provided in APFLESTUFF unit.)

@ | H
pEGa | ; FUNCTION PADDLE(SELECT: INTEGER): INTEGER;
Poed | :
peed | ; - -—- --
fped| depd RETURN .EQU] ;TEMP VAR FOR RETURN ADDR
Poad | ;jnote: P..35 hex available
fult o[
dded | POP RETURN ;SAVE PASCAL RETURN ADDR
popd| 68 # PLA
fPa1L| 85 @@ b STA RETURN
fd83| 68 # PLA
fdgs| 85 @1 # STA RETURN+1
gove| 68 PLA ;DISCARD 4 BYTES STACK BIAS
fee7| 68 PLA ; (ONLY DO FOR .FUNC)
fPe8| 68 PLA
d@da| 68 PLA
fega| 68 PLA ;GET LSB SELECT PARAMETER
PPgB| 29 @3 AND #3 ;FORCE INTO RANGE @..13
fO@D | AA TAX
PPRE| A8 PLA sDISCARD MSB SELECT PARAM
PEAF| AD 7¢cC@ LDA @CP7¢ ;TRIGGER PADDLES
PRLZ| AP Gp LoY #¢@ ;INIT COUNT IN Y REG
P@l4| EA HOF ;COMPENSATE FIRST COUNT
P@15| EA NOP
PALG| BD 64CH PREAD2 LDA fC@64,X ;TEST PADDLE
PP19| 1@wx* BPL DONE ;BRANCH IF TIMER DONE
P@LB| C8 INY ;ELSE INC Y EVERY 12 USEC
#@1C| DAEFS BNE PREAD? ;LOOP UNLESS 255 EXCEEDED
@ALE| 88 DEY ;MAKE @ INTO 255 (MAX COUNT)
paLo* gg
PELF| A9 Q¢ DONE LDA #§
fpz1| 48 PHA ;PUSH MSB OF RETURN VALUE={
p@2z| 98 TYA
@23 48 PHA sPUSH LSB OF RETURN VALUE
P24 | AS @1 LDA RETURN+1 ;RESTORE PASCAL RETURN ADDR
26| 48 PHA
pe27| AS @@ LDA RETURN
PE29| 48 PHA
fza| 6@ RIS ;AND RETURN TO PASCAL CALLER
@28 |
#928|

146 APPLE PASCAL OPERATING SYSTEM

LA L

i e

iai

(VI VR UV UV -V VI -V I 1V I - [~V =V =1

- o E o mm em em am o mm e SR B MR S S e e R mm wm o e e e e e e e e o

PAGE - 2 PADDLE FILE: ASMDEMO SYMBOLTABLE DUMP

AB - Absolute LB - Label UD - Undefined MC - Macro
RF = Ref DF = Def PR = Proc FC = Func
PE - Public PV = Private CS - Consts

DONE LB P@LlF| PADDLE FC —-=| POP MG ——-|
PREADZ LB P@16| RETURN AB @990 |

PAGE = 3 PADDLE FILE:ASMDEMO

Current minimum space is 9794 words

PAGE - 4 TTLOUT FILE:ASMDEMO
P00 | «PROC TTLOUT,2 ;TWO WORDS OF PARAMETERS
Current memory available: 19@56
foee | H = — e T T
ued | H
o0wa | ; ROUTINE TO SET OR CLEAR ONE OF THE TTL 1/0 BITS
Paed| 3 (This procedure provided in APPLESTUFF unit)
doed | H
oaed| ; PROCEDURE TTLOUT(SELECT: INTECER; DATA: BOOLEAN);
oEpe | :
ggggl @ade RETURN .EQU @ ;TEMP RETURN ADDR

|
doaa| POP RETURN +SAVE PASCAL RETURN ADDRESS
Pdpd| 68 # PLA
P@@1| 85 @@ # STA RETURN
pe@3| 68 # PLA
f@@s | 85 @1 i S5TA RETURN+1
pide | ;POP PARAMETERS, LAST FIRST
P@pe| 68 PLA ;GET LSB BOOLEAN DATA 1=TRUE
Pa@7| 4a LSR A ;SAVE BOOLEAN IN CARRY
pede| &8 PLA ;DISCARD MSB BOOLEAN DATA
P@99| 68 PLA ;GET LSE SELECT
padal 29 ¢g3 AND #43 sTREAT 1T MOD 4
fagc| 2a ROL A ;DOUBLE, ADD DATA FOR INDEX
P@dD| A8 TAY ;PUT I/0 STROBE INDEX IN Y
PAPE| B9 s58CH LDA PCPAS8,Y ;ACTIVATE 1/0 STROBE
f#@11| 68 PLA ;DISCARD MSB SELECT PARAM
pd12| A5 @1 LDA RETURN+I ;RESTORE PASCAL RETURN ADDR
PAl4| 48 PHA
Bd15| A5 @@ LDA RETURN
PpaL7| 48 PHA

6502 ASSEMBLER 447

{';L_

dols| e RTS ;G0 BACK TU PASCAL 4) The Apple Pascal 6582 Assembler uses the following non-
PPy standard notation for indirect addressing:
PEL9 | -
@y1e| ! i Apple Pascal 65@2 Assembler Standard 6502 Assembler
@aLe| « END sEND. OF ASSEMBLY

LDA @LOCL,Y LDA (LOC1),Y

|

----------------------------------- g LDA @LOC2,X LDA (LOC2,X)
PAGE = 5 TTLOUT FILE: ASMDEMO SYMBOLTABLE DUMP

JMP [GGOVECT JMP (GOVECT)
AB - Absolute LB - Label UD - Undefined MC - Macro | i
RF = Ref DF - Def PR = Proc FC = Func | i
PB - Public PV - Private CS - Consts ' A Pascal Program which

Calls the Assembled Routine
POP MC ——--| HETURN AB QQ@| TTLOUT PR =——=| [The following is a sample Pascal program which uses the external
function and procedure assembled earlier:

T T e o 0 o e = s e o R g0 ¢ B e I
PAGE = & TTLOUT FILE: ASMDEMO PROGRAM CALLASM;

Current minimum space is 9794 words (* DEMONSTRATES CALLING ASSEMBLY LANGUAGE PROCEDURES #*)

Assembly complete: 92 lines VAR 1: INTEGER:

PROCEDURE TTLOUT(SELECT: INTEGER; DATA: BOOLEAN);
EXTERNAL;

[} Errors flagged on this Assembly

FUNCTION PADDLE(SELECT: INTEGER): INTEGER;

I EXTERNAL;
Unly the assembled object code From the preceding assembly listing BEGIN
(the second column of information on PAGE-1 and on PAGE-4) is saved FOR I:= 1 TO 10@@ DO
in the file MYDISK:ASMDEMO.CODE . BEGIN

WRITELN { PADDLE(@#):3,” *+PADDLE(1):3);

TTLOUT(@,0DD (L))

NOTES about the preceding sample assembly listing: END

' END.

1) The location values in the symbol table dump refer to the
locations in the listing.

Compiling, Linking and Running
the Calling Program

To use the Pascal program CALLASM, you must compile the text version
shown above to make a compiled P-code version. This is done from the
Command level by typing C for C(ompile. When you do this, a dialog
similar to the following takes place (our program CALLASM was saved in
the text file named MYDISK:CALLASM.TEXT):

2) The ** "5 {n the listing (see PAGE-1 of the listing, for
example) call attention to the use of a label not yet
defined. The Assembler displays one #* for each hexadecimal
digit to be filled in later-

3) 1f a * appears after the location number at the left of the
listing, it indicates that a forward reference occurring

earlieg in the assembly has been resolved. The number to the
left of the * 1is the location where the reference occurred

while the number to the right is the new contents of that
location. See PAGE-1 of the listing, for example.

COMPILING..s
COMPILE WHAT TEXT? MYDISK:CALLASM
TO WHAT CODEFILE? MYDISK:CALLASM

CU VRV U U TV TV T TV T T TV [T TR 1

momw
L&

148 APPLE PASCAL OPERATING SYSTEM 6502 ASSEMBLER 149

The first response tells the Compiler Lo compile the text that is
found In the file MYDISK:CALLASM.TEXT . The second response tells the
Compiler to save the resulting compiled code in the file
MYDISK:CALLASM.TEXT . Again, we used the same name for the text
version and for the code version of the program, to save us
remembering two different names. (Again, we could have typed the
second response as § .)

If the text version of the Pascal program had been available in the
boot diskette’s workfile SYSTEM.WRK.TEXT (or another workfile
designated by the Filer’s G(et command), the Compiler would
automatically have compiled that text, and would have saved the
resulting code version as SYSTEM.WRK.CODE on the boot diskette.

At this point, if there are no errors in the program, CALLASM is
compiled; the resulting P-code version is stored as MYDISK:CALLASM.CODE
Messages similar to the following will then appear on the screen:

PASCAL COMPILER II.l [B2B]
< - 5

TTLOUT [2533 WORDS]

< 25 T
FPADDLE

€ ll>eus
CALLASM [2515 WORDS]

€ 14 euuns

19 LINES

SMALLEST AVAILABLE SPACE =

[25@4 WORDS)

2515 WORDS

However, CALLASM is still not ready to be rum: the external assembly-
language function and procedure in MYDISK:ASMDEMO.CODE must now be
Linked into the Pascal program. To do this, from the Command level

type an L for L(ink, and a dialog similar to the following will take place:

LINKING. ..

LINKER II.] [A4)

HOST FILE? MYDISK:CALLASM

OPENING MYDISK:CALLASM.CODE

LIE FILE? MYDISK:ASMDEMO

OPENING MYDISK:ASMDEMO.CODE

LIB FILE?

MAP NAME?

READING CALLASM

READING PADDLE

OUTPUT FILE? MYDISK:FINALCALL.CODE

LINKING CALLASM # |
COPYING FUNC PADDLE
COPYING PROC TTLOUT

(Your main Pascal program)

(Press RETURN for no map file)

(Final product; note .CODE)

At last! The file FINALCALL.CODE now contains your compiled Pascal
program CALLASM together with the linked-in assembly-language routines
PADDLE and TTLOUT. You may now X(ecute the program FINALCALL.

150 APPLE PASCAL OPERATING SYSTEM

(The routine to link in)

(Press RETURN for last file)

= = R R W

E

ORI W MR R R W R W R R e L L L e

ASSEMBLER INFORMATION

SYNTAX OF ASSEMBLY FILES

A1l objects declared before the first .PROC or .FUNC are available for
use throughout the assembly. No code is allewed to be generated
before the first .PROC or .FUNC . The symbol table is reduced at the
beginning of each .FROC or .FUNC to the point where it was at the
start of the first .PROC or .FUNC .

each .PROC or .FUNC
«PROC or
text beyond

All assemblies must end with a .END . However,
before the last one is ended by the occurrence of the next
.FUNC . Only the last one should end with a .END , as all
the .END is ignored by the Assembler.

A peneral syntax diagram for all assembly files looks like this:

any non-code code-generating
generating

operations

operations and
directives

ASSEMBLY-FILE SYNTAX

The non=code-generating directives are:

« EQU «MACRO «IF «DEF .LIST «MACROLIST «PAGE

«ABSOLUTE «ENDM -ELSE «REF «NOLIST «NOMACROLIST <TITLE

« INTERFP +ENDC «PATCHLIST
«NOPATCHLIST

The body of a macro definition is a non-code-generating operation.

151

6502 ASSEMBLER

SYNTAX OF ASSEMBLY STATEMENTS

Identifiers

Identifiers are character strings starting with an alpha character.
Other characters must be alphanumeric or the ASCII underline (Y
Only the first eight characters are meaningful to the Assembler even
though more may be entered.

The Assembler makes only one pass through the source. On encountering
an undefined identifier in an expression, something must be assumed
about the nature of the identifier in order for the assembly to
continue. It is therefore assumed that the undefined identifier will
eventually be defined as a label, which is the most probable case.

Any identifier which is not a label must be defined before it is used.

Labels

Unly labels and comments may begin in the first column, with no
preceding spaces. Labels may optionally be followed by a colon.
If a statement has no label, the first column must contain a space.

Labels may be equated to an expression containing labels and/or
absolutes. You must define a label before it is used unless it will
simply be equated to another label.

Local Labels

Local labels must have $ as the first non-space character, and may

be up to B8 digits long. Lecal labels may not occur on the left-hand
side of an equate { EQU).

Local labels are mainly used to jump around within a small segment of
code without having to use up storage area needed by regular labels.
The local label stack may hold up te 21 labels. The local label

stack is emptied each time a regular label is encountered, thus

rendering the previous local labels invalid beyond that point in the
assembly. An example of the use of local labels is shown below, where
the jump to label $@4 is made illegal by the intervening regular label

REALLAB .

@3 5TA &4 ;LEGAL USE OF LOCAL LABEL
BNE $@3
BNE $@4 ;ILLEGAL USE OF LOCAL LABEL
REALLAB .EQU §
S04 LEQU §

1562 APPLE PASCAL OPERATING SYSTEM

L

ARl AR LR R LR LR LA R R R LA

Operators

The following operators can be used in expressions processed by this
Assembler:

For unary operations:
+ plus
- minus
= ones complement (not available on the Apple keyboard)
For binary cperations:
+ plus
minus
exclusive or
multiplication
truncating division (DIV)
remainder division (MOD)
bit-wise OR (not available on the Apple keyboard)
bit-wise AND
equal (valid only in .IF }
not equal (valid only im .IF)

y 1

I —e~ ¥

<>

All operators have the same precedence.

Constants

All constants must start with an integer from O through 9.
For example, the hexadecimal constant FF must be written OFF

The default radix is Hexadecimal. Decimal constants must be

followed by a period (.) -
13
19.

Hexadecimal:
Decimal:

EXAMPLE:

Expressions

Expressions are evaluated by the Assembler from left to right, and all
operators have the same precedence. To override the default, left-to-

right precedence, use angle brackets <like this> .

A telocatable label can be used in an address expression such as

LDA RLABEL45 ; Legal expression with label

but only if the expression ADDS or SUBTRACTS a constant value from the
address of the label. An expression such as
LDA RLABEL*2 ; Illegal expression with label

will not be accepted by the Assembler unless you are assembling using

the .ABSOLUTE directive (discussed later in this chapter) and RLABEL has

previously been defined.

6502 ASSEMBLER 153

LDA #RLABEL+5 ; Illegal use of label as absolute constant E

A relocatable label must not appear in an expression
absolute constant. A statement such as

used to make an

will not be accepted by the Assembler.

The following portion of an assembled listing illustrates expression

syntax as used in the Assembler. The examples are not intended to form
an actual, useful program. '

PAGE - | TEMP 1 FILE:EXPRSYNTAX
feed | -PROC TEMP1 ; SHOWS EXPRESSION SYNTAX B
Current memory available: 1@@es E
Pepa | ; CONSTANTS
PO | '
popd| Gega CONI§ .EQU 1f. '
:gggF gﬂBF OTH@ -EQU @BFH
@F7 ONE@ LEQU F7H
Bawe | v
faead | ; EXAMPLE EXPRESS E
z e IONS

0000 | ’
fdea| As @s LDA 5
P9d2| A5 4D LDA 5+6%7
fdd4| A5 4D LDA <5+6>*7 E
fdda| A5 ga LDA 7%6/4
fdps| A5 @7 LDA T7%<h/4>
PEPA| A5 @1 LDA 65
padc| as g2 LDA 5+11%5 E
AAPE | A5 @7 LABEL LDA 5+<11%5>
ggnﬂ A5 48 LDA OTHP ONER

12| A5 B7 LDA OTHP&ONER B
#d14| AD GE@P LDA LABEL
#@17| AD @opp LDA LABEL-5
PPLA| AD 4@pQ LDA LABEL+<5*CON1g> E

LDA LABEL#*2

ill-formed expression
E(dit,<space>,<esc> [Spacebar pressed here, to continue assembly.] E
PpdLD | LDA LABEL*2
PoID| A9 @5 LDA #5 E
BELF| A9 1C LDA #5%<CONLP / 2> +3

LDA #<LABEL+5>
operand not absolute

E(dit,<space>,<esc> [Spacebar pressed here, to continue assembly. |

154 APPLE PASCAL OPERATING SYSTEM

|
i

WO W W W R W R R W e e oW W

g@azl| A9 LDA #<LABEL+5>
LDA #LABEL
operand not absolute

E(dit,<space>,<esc> [Spacebar pressed here, to continue assembly.]

0922| A9 LDA #LABEL
p923|

LINKAGE TO ASSEMBLY ROUTINES

External assembly-language routines (.PROC"s and .FUNC's) are separately
assembled and often stored in a diskette library file such as the boot
diskette’s SYSTEM.LIBRARY « A Pascal host program that uses such
external assembled routines must have those routines linked from

their library file(s) into the compiled host program’s codefile.

A Pascal host program declares that a routine is external in much

the same way as a Pascal routine is declared FORWARD. A standard
PROCEDURE or FUNCTION heading is provided, followed by the keyword
EXTERNAL. Calls to the external routine use standard Pascal syntax,

and the Compiler checks that each call to the external routine agrees in
type and number of parameters with the original EXTERNAL declaration for
that routine. It is the programmer‘s responsibility to assure that the
assembly-language routine respects the Pascal EXTERNAL declaration.

The Linker checks only that the number of words of parameters agree
between the Pascal EXTERNAL declaration and the corresponding assembly-
language .PROC or .FUNC declaration. For more information see this
manual’s chapter THE LINKER.

When the Pascal host program calls an external assembly-language
routine, passed parameters are pushed on the evaluation stack as they
are encountered in the host program‘s calling statement. The first
parameter is pushed on the stack, highest byte first, then the second
parameter, and so on. Long integers and sets are always passed as the
maximum number of words allocated by the host program’s long integer or
set declaration, each word high byte first. A word indicating the
length in words is pushed last. Strings, records, arrays, and
VARiables are passed by address, pushing the high byte first, then low
byte. The Pascal host program”s EXTERNAL declaration may declare a
VARiable without type. This allows a parameter of indeterminate size to
be passed by address. When all the parameters have been passed, the host
program’s return address (the address to which the program must return
on completing the external routine) is pushed on the stack, high byte
first, then low byte.

6502 ASSEMBLER 155

In use, the assembly-language routine must save the return address,
and must push it on the stack again just before returning to the calling

program. The passed parameters are available on the stack in the
reverse order to the order in which they were originally pushed on the Ei
stack.

The conventions of the surrounding system concerning register use and EE
calling sequences must be respected by writers of assembly-language
routines. On the Apple, all registers are available, and zero-page
hexadecimal locations ¥ through 35 are available as temporary

variables. However, the Apple Pascal system alsc uses these locations E!
as temporaries, so you should not expect data to remain there from '
one execution of a routine to the next. You can save variables in

non-zero page memory by using the .BYTE or .WORD directives in your :
routine to reserve space. E

For external assembly-language functions (.FUNC’s) only, two additional
conventions must be recognized: E

1) At the function®s entry time, the Pascal host program pushes
two words (four bytes) of zeros on the evaluation stack after
any passed parameters are put on the stack and before the |
return address is pushed on the stack.

2) At the function’s exit time, the .FUNC must push the Ffunctiaon
result (a scalar, real, or pointer, maximum two words), high EE
byte first, just before pushing the return address on the stack. '

For an example of an external assembly-language procedure, an external
assembly-language function, and a Pascal host program which calls these
routines, see the EXAMPLE earlier in this chapter. The EXAMPLE also
demonstrates the handling of the return address, passed parameters, and
returned function value in assembly-language routines. The external
routines in that example are manually Linked into the Pascal calling
program. For information about installing a routine intc the system -
library, see this manual®s chapter UTILITY PROGRAMS. E

156 APPLE PASCAL OPERATING SYSTEM

r

MO W W W U W LR R R e e W W oW

THE ASSEMBLER DIRECTIVES

AN OVERVIEW

Assembler directives (also referred to as "pseudo-ops") let you tell
the Assembler to do various functions other than provide directly

executable code. The following directives are common to all versions
of the UCSD Adaptable Assembler, including the Apple Pascal 6502

Assembler, but may differ from individual manufacturer”s standard
syntax.

In the following descriptions of directives, square brackets [like this]
are metasymbols that denote optional elements which you may supply.
Angle brackets <like this> are meta-symbols that denote required
elements which you must supply. If an element type is not shown, it
cannot be used in that situation.

EXAMPLE:

[label] LASCII "<character string>"
This notation indicates that you may supply a label, but it is
not necessary, and that between the required double quotes you
must supply the character string to be converted (not necessarily
the words "character string"). The bracket metasymbols are not
to be be typed-

The following terms represent general concepts in the explanation of
each directive:

TERM: DEFINITION:

value Any numerical value, label, constant, or
expression.

valuelist A list of one or more values separated by
COmMAS «

identifierlist A list of one or more identifiers separated
by commas.

Any legal expression as defined under SYNTAX
OF ASSEMBLY STATEMENTS.

A list of one or more identifier:integer pairs
separated by commas. The colon=integer is
optional in each pair and the default is 1.

expression

identifier{:integer]
list

Small examples are included after each directive definition to show you
the specific syntax and form of that directive. The EXAMPLE assembly-

language routine earlier in this chapter is used to show the combined
use and detailed examples of directive operations.

6502 ASSEMBLER 157

ROUTINE-DELIMITING DIRECTIVES

Every assembly must include at least one PROC or .FUNC, and one .END "
even in the case of stand-alone code which will not be linked inte a
Pascal host (e.g., the interpreter). The most frequent use of the
Assembler, however, will be small routines intended to be linked with

a Pascal hest. In this case, .PROCs and .FUNCs are used to identify
and delimit the assembly code to be accessed by a Pascal external
procedure or function. The .END appears at the end of the last

routine and serves as the final delimiter.

References to an assembly-language .PROC or .FUNC are made in the
Pascal host program by use of EXTERNAL declarations. At the time of

this declaration the actual parameter names must be given. For
example, if the Pascal host’s declaration is:

PROCEDURE FARKLE(X,Y:REAL);
EXTERNAL;

the associated declaration for the assembly-language .PROC would be
«PROC FARKLE, 4

A PROC, .FUKC, or any assembly routine should be inserted inte the
SYSTEM.LIBRARY so that 1t can be referenced by the Linker and linked
into the Pascal host program at R(un time. An alternate method would
be to execute the Linker and tell it what files to link in. Either
method works. However, if the Pascal host is updated and the assembly
routines have not been installed in the SYSTEM.LIBRARY, the Linker
will have to be executed again after each host program update.
Therefore, we suggest that the routines be inserted into the
SYSTEM.LIBRARY to avoid this repetition. 1If the Linker is called
automatically, using the R(un command, it will automatically search
the SYSTEM.LIBRARY for the appropriate definition of the assembly
reutine and link the two together.

The EXAMPLE earlier in this chapter shows the use of assembly-language
routines from a Pascal host program and demonstrates the manual
linking process. More information on linking appears in this manual’s
chapter THE LINKER. For information on using the system librarian to
install a routine into SYSTEM.LIBRARY , see this manual®s chapter

UTILITY PROGRAMS.

«PROC Identifies a procedure that returns no value. A .PROC is

ended by the occuirence of a8 new .PROC , .FUNC , or -END .

FORM: LPROC <identifier>[,expression]
[expression] indicates the number of words
of parameters expected by this routine.
The default is 0.

EXAMPLE: «PROC DLDRIVE,2

158 APPLE PASCAL OPERATING SYSTEM

|

-
-

E
E:
i
e
e
-

i
B

RO ORI W W W W W W W W oW

Two words of

.FUNC Identifies a function that returns a value.

space to be used for the function value will be placed on

the stack after any parameters. A .FUNC is ended by the

occurrence of a new .FROC , -~FUNC , or .END .

FORM: +FUNC <identifier>[,expression]
[expression] indicates the number of words
of parameters expected by this routine.

The default 1is 0.
EXAMPLE: «FUNC RANDOM, &
+END Used to denote the physical end of an assembly.
FORM: « END
EXAMPLE: -END

LABEL DEFINITIONS AND
SPACE ALLOCATION DIRECTIVES

«ASCIL Converts character values to ASCII equivalent byte

constants and places the equivalents into the code streams

FORM: [label] .ASCII "<character string>"
where <character string> is any string of
printable ASCII characters, including a space.
The length of the string must be less than B0
characters. The double quotes are used as
delimiters for the characters to be converted.
If a double quote is desired in the string, it
must be specifically inserted using a .BYTE .

EXAMPLE: «ASCII "HELLO"

for the insertion of AB"CD the code must be
constructed as:

DASGIL "AB"
«BYTE 22 3 An ASCIT "
+ASCII "o

Note: The 22 is the hexadecimal ASCII code for a double quote.

6502 ASSEMBLER 159

«BYTE

«BLOCK

« WORD

Allocates a byte of space into the code stream for each

value listed. Each value actually stored by the routine
must have a value between -128 and +255. 1If the value is
outside of this range an error will be flagged. Assigns

the associated label, if any, to the address at which the
byte was stored.

FORM: [label] sBYTE [valuelist)
the default for no stated value is {.
EXAMFLE: TEMF .BYTE 4

the associated output would be: @4

Allocates a block of space into the code stream for each value

listed. Amount allocated is in bytes. Associates the

label (if present} with the starting address of the block
allocated.

FORM: [label] .BLOCK <length>[,value]
<length> is the the number of bytes to hold the <value>

specified. The default for no stated value is {.

EXAMPLE: TEMP .BLOCK 4,6

the associated output would be:

g6
g6 { four bytes with the value @6)
6
e

Allocates a word of space in the code stream for each value
in the valuelist. Associates the declaration label with
the word space allocation.

FORM: [label]

«WORD <valuelist>

EXAMPLE: TEMP .WORD ,2,4,+04

the associated output would be:

ooag
ddg2
daps

(words with these values in them)

-

APPLE PASCAL OPERATING SYSTEM

WO R W O W W O W W oW W e

AR]

«EQU

-0RG

«ABSOLUTE

EXAMPLE: Al JWORD A2
A2 «EQU 3 u S denotes LC value
<WORD 5.

The statement A2 JEQU § assigns the current

value of the location counter (LC) to the label A2 .

If the value of the location counter is 5@ at the
.EQU , the associated output would be:

IET

(assignment due to the wvalue of L2)

@P@5 (assignment due to the .WORD 5)

Asgigns a value to a label. Labels may be equated to an
expression containing labels and/or absolutes. One must
define a label before it is used unless it will simply be
equated to another label. A local label may not appear
on the left-hand side of an equate (.EQU).

<label> <value>

FORM: «EQU

EXAMPLE: BASE .EQU R6

Takes the operand of .0RG as the offset, relative to the
start of the assembly file, where the next word or byte of
code is to go. Words or bytes of zeros are produced to get
the current location counter (LC) to the correct value.
FORM:

+ORG <value>

EXAMPLE: -ORG dndaa

If a ABSOLUTE occurs before the first .PROC then all
«0ORG s are interpreted as absolute memory locations. The
user must take responsibility for the correct loading of
the produced code file. The use of .ABSOLUTE has the
effect of cancelling the generation of relocation
information. Further, any defined (i.e., non forward-
referenced) labels may be treated as absolute numbers.
Thus such labels may be multiplied and divided, etc.
+ABSOLUTE must occur before the first .PROC and is set for
the entire assembly.

FORM: -ABSOLUTE

EXAMPLE: <ABSOLUTE

6502 ASSEMBLER 161

« INTERP Interpreter relative locations are specified by the use of
- INTERP in an expression. Further labels may defined as
interpreter relative in the manner shown in the example.
The rules regarding the use of such labels are the same as
for any other specially defined labels (e.g., .PUBLIC and
+PRIVATE). Locations whose values depend on interpreter

relative labels or expressions are listed in a fourth
relocation list at the end of the assembly procedure.

EXAMPLE: STUFF .EQU - INTERP+25

Certain interpreter entry points may be useful, using an
instruction such as

LDA @. INTERP+n
with these values of n:

n=0 Address of the execution error routine; displays

error message using the error number in the A register.

n=2 Address of the BIDS jump table; handles {nput and output

n=4 Address of SYSCOM; system’s communications area of the
P-machine.

MACRO FACILITY DIRECTIVES

A wacro i3 a named section of text that can be defined once and
repeated in other places simply by using its name. The text of the
macro may be parameterized, so that each invocation results in a

different version of the macro contents. The entire macro definition
may precede the first .PROC or .FUNC of the assembly file.

At the invocation point, the macro name is followed by a list of
parameters, each terminated by a comma (except for the last one, which
is terminated by end of line or the comment indication { j). The text
of the macro definition, modified by substituting the invocation
parameters, is inserted (conceptually speaking) by the Assembler at the
invocation point. Wherever %n (where n is a single decimal digit
greater that zero) occurs in the macro definition, the text of the n-th
invocation parameter is substituted. Leading and trailing blanks are
stripped from the parameter before the substitution. If the macro
definition includes a reference to a parameter not provided in a
particular invocation (too few parameters or no parameter before a
terminating comma), a null string is substituted.

A macro definition may not contain another macro definition. A
definition can certainly, however, include macro invocations. This
"nesting" of macro invocations is limited to five levels deep.

The expanded macro is always included in the listing file (unless

-NOMACROLIST 18 in effeect at the point of {nvocation). Macro
expansion text is flagged, in the listing, by a # just left of each

162 APPLE PASCAL OPERATING SYSTEM

i

I

LEL;

expanded line. Comments occurring in the macro definition are not
repeated in the expansion.

+MACRO Indicates the start of a macro definition and gives it an
identifier.
« ENDM Indicates the end point of a macro definition.
FORM: «MACRO <identifier>
N ; (macro body)
« ENDM
EXAMPLE: «MACRO HELP
STA %1 } < comment >
LDA 2 ; < comment >
« ENDM
The assembly listing beginning at the point where this macro
was invoked may look like this:
HELP ALPHA,BETA
i STA ALPHA
LDA BETA
The statement HELP calls the defined macro and sends it two
parameters, ALPHA and BETA. These parameters are in turn
used in forming the macro expansion (flagged in the listing
by # signs) that follows the invoking statement. In the
expansion, the first calling-statement parameter (variable
ALPHA) is substituted for the definition”s identifier %1 ,
and the second parameter (variable BETA) is substituted for
the identifier %2 .
The following portion of an assembled listing illustrates the
syntax used when defining and invoking macros. The procedure
itself is not meant to be an actual, useful program.
PAGE - 1 TEMP2 FILE:MACROCALL
fep | .PROC TEMP2 ; SHOWS SYNTAX OF MACRO CALLS
Current memory available: 1@@88
faea | ; CONSTANTS
g |
#900| oppa CoNl@ .EQU 1¢.
fo0d | dpnF OTH@ .EQU @EFH
Pe@a| @pr7 ONEg .EQU @F7H
peea|
papd| ; MACRO DEFINITIONS
paad |
fean | MACRO M2
Bapg | CLC
pand | LDA PREDEFL+%1

6502 ASSEMBLER 163

aoee | i
Beg0 | S
s

| MP
0000 (oA
goed | M2
popd| LDA
poe| LDA
2000 | LDA
PoE0 | JMP
Po0a | . ENDM
faea|
ggggl AS @5 PREDEFL LDA
@p@z |
ppp2|
pe@2 |
ggaz|
PaP2| 4C PEPd)
ddds] A9 g ﬁgi
pagE? | # M2
poE@7 | 18 it CLC
po@8| AD 3¢ # LDA
PUPER| A9 55 # LDA
fe9D | A9 @6 # LDA
PEBF| AS @1 # fna
PRLL| 4C *&xk f g
Bo14 |

a2
pa14] 18 e
PELS| A
aa!a{ D @s@e it LDA
PeL8|
p@18|
pp1a|
P@Lg| TESTM
JMP

not enough operands
E(dit,<space>,<esc>

pE18|

Pe18| AS @F ﬁ iﬂi
Po1a| 4 M2
fg1a| 18 ¥ cLC
PPLE| AD Papg i LDA

%64 APPLE PASCAL OPERATING SYSTEM

il

+MACRO TESTM

#5472

%2
i3
4
F
%b

5

MACRO CALL WITHIN A MACRO DEF‘N

A FRE-DEFINED LABEL

i MACRO CALL WITH ALL PARAMETERS

& NO LEADING OR TRAILING SPACES

TESTM PREDEFL,<5*CON1@+6>,#55,#6,1,LABEL?

PREDEFL
#5+<5*%CON 1 §+62>
<5%CON1@+6>

PREDEFL+<5*CON L @#+6>
#35

ite
1

LABEL2

5

-
»

SIMPLE MACRO CALL

PREDEFL+5

3 MACRO CALL WITH NUL PARAMETERS

,CON1d, ,

AND LEADING & TRAILING SPACES

XX ,@F@H, PREDEFL

[Spacebar pressed here, to continue assembly.]

#5+COoN 10

CON1Q

PREDEFL4CON1{

i
i
E
E
E
E

W T T W W

LDA
{11 formed operand

E(dit,<space>,<esc? | Spacebar pressed here, Lo continue assembly.]

PELE| # LDA
PPLE| AD #*%k # LDA XX
g@z1| A5 FP i LDA @F@H
@pz23| 4Cc pooR # JMP PREDEFL
g6 |

dd26] «END

el L el e L=

CONDITIONAL ASSEMBLY DIRECTIVES

to selectively exclude or include sections of
When the Assembler encounters a «IF directive,

In the simplest case, if the

until a

Conditionals are used
code at assembly time.
it evaluates the associated expression.
expression is false, the Assembler simply discards the text
.ENDC is reached. If there is a +ELSE directive between the .IF and
.ENDC directives, the text before the .ELSE is selected if the

expression is true, and the text after the .ELSE if the condition is
false. The unassembled part of the conditional will not be included

in any listing. Conditionals may be nested.

1 I =1 I 1)

The conditional expression takes one of two forms. The first is the
normal arithmetic/logical expression used elsewhere in the Assembler.
This type of expression is considered false if it evaluates to zero;
true otherwise. The second form of conditional expression is
comparison for eguality (indicated by) or inequality (indicated
by <>). One may compare strings, characters, Or arirhmetic/logical

expressions.

L=l

m

the beginning of the conditional.

+IF Identifies
L
« ENDC Identifies the end of & conditional .IF
« ELSE Identifies the altermate to the .IF 1f the conditional

expression is equal to ¢ then the else portion is used.

FORM: [label] .IF <expression>
[«ELSE]
. ; (only if there is an else)
«ENDC

where the expression is the conditional expression to be met.

(VT V-V U VR Y

4502 ASSEMBLER 165

EXAMPLE:

«IF LABEL!-LABEL2 iArithmetic expression.
. i This text assembled
. only if subtraction
result i{s non-zero

+IF "Z1" ="STUFF" ;Comparison expression.
This text assembled

if subtraction above
was true and if text

of first parameter
(assume we’re in macro)

-
e W We wE W WE wE

. is equal te "STUFF".
- ENDC Terminates nested cond.
«ELSE
. 3 This text assembled 1if
. i subtraction result was
. i Zero.
«ENDC Terminates outer level

LU

of conditional.

HOST-COMMUNICATION DIRECTIVES

The directives .CONST , .PUBLIC , and .PRIVATE allow the sharing of
information and data space between an assembly routine and the host
program which uses that routine. These external references must
eventually be resolved by the Linker. Refer to this manual’s chapter
THE LINKER for further details.

«CONST

-PUBLIC

Allows globally declared constants in the host program to be
accessed by the assembly routine. .CONST can only be used in
a4 program to replace 16-bit relocatable objects.

FORM: « CONST <identifierlist>

EXAMPLE: (see example after .PRIVATE)

Allows a variable declared in the global data segment of
the host program to be used by both the assembly-language
routine and the host program.

FORM: «PUBLIC <identifierlist>

EXAMPLE: { see example after .PRIVATE)

166 APPLE PASCAL OPERATING SYSTEM

-
B

3 PRIVATE Allows variables of the assembly routine to be stored in

L

=3

1V I ¥ R T

VI VI VI T I V1 I =V I T 1

the host program”s global data segment and yet be inaccessible
to the host program. These variables retain their wvalues for
the entire execution of the program.

FORM: +PRIVATE <identifier[:integer] list>

The integer is used to communicate the number of words to
be allocated to the identifier. The default is one word.

EXAMPLE: { for .CONST, .PRIVATE, and .PUBLIC)
Given the following Pascal host program:

PROGRAM EXAMPLE;
CONST SETSIZE=5@: LENGTH=8@;

VAR I,J,F,HOLD,COUNTER,LDC: INTEGER ;
LST1:ARRAY [@..9]) OF CHAR;

BEGIN

END .
and the following section of an assembly routine:

«CONST LENGTH

«PRIVATE PRT,LST2:9
« PUBLIC LDC,I,J

This will allow the constant LENGTH to be used in the assembly
routine almost as if the line LENGTH .EQU 8#. had been
written. (Recall the limitation mentioned above for using
.CONST identifiers.) The wvariables LDC,I and J are to

be used by both the Pascal host and the assembly routine,
while the varlables PRT and LST2 are to be used only by the
assembly routine. Further, the LST2:9 causes the variable
LST2 to correspond with the beginning of a nine-word block

of space in the Pascal host”’s global data segment.

EXTERNAL REFERENCE DIRECTIVES

Separate routines may share data structures and subroutines by linkage
from one assembly routine to another assembly routine. This is made

possible through the use of .DEF and .REF . These directives cayﬁe
the Assembler to generate link information that allows two separately

6502 ASSEMBLER 167

TIdentifies a label used in the current routine which refers

f DEF } in
to a label declared as available (by means o
another routine’s .PROC or .FUNC . During the linking

process, corresponding .DEFs and .REFs are matched.

assembled routines to be linked together. «REF

By using .DEF and .REF ,
one assembly routine may call subroutines found in another assembly
routine. One routine placed in a library file such as the boot

diskette’s SYSTEM.LIBRARY can contain a large number of frequently

used subroutines which are all available to other routines.

w

Note: The .PROC and the .FUNC directives also generate a .DEF |
with the same name. This allows a heost assembly
routine to call external .PROCs and .FUNCs if the host
assembly routine has defined them in a .REF .

S— - L

The use of .DEF and .REF is similar to that of .PUBLIC . .DEFs and
-REFs associate labels between two assembly routines rather than

between an assembly routine and a Pascal host program. Just as with
-PRIVATE and .PUBLIC , these external references must eventually be

1 -REF <identifierlist>
resolved by the Linker. If such resolution cannot be accomplished, . FORM:
the Linker will indicate the offending label Naturally, the | N
1. I . i i .
Assembler cannot be expected to flag these errors, aince,1t has no EXAMPLE: The following sketched-out assembly g

knowledge of other assemblies.

The host assembly routine must be linked to its external assembly
subroutines BEFORE that host assembly routine can be linked into a

routine declares a .REF for the external label
pOIT (DOIT was declared available for such
reference by the .DEF in the previous example) .
It then uses that label just as 1f it referred to

within the routine itself.
Pascal host program or UNIT as an EXTERNAL procedure or function. a labelled subroutine

| .PROC SAMPLE

-DEF ldentifies a label that is defined in the current routine JHEF DOTE
as being available for use (by means of .REF) from .PROCs I :
or .FUNCs in other assembly-language routines. J'i',[.{ Do1T
Kote: The .PROC and the .FUNC directives also generate a .DEF :
with the same name. This allows a host assembly routine "
to call external .PROCs and .FUNCs if the host assembly S

routine has defined them in a .REF .

. LE must be
e -DEF <identifierlist> Note: The assembly rToutine containing PROC FARKI mzl
}inked from its library codefile into the host assim 1¥ i
SAMPLE can be nke
EXAMPLE: The following sketched-out routine declares a .DEF routine containing .PROC SAMPLE before

T or programs
for the labels DOIT and THINK . The subroutines in as an EXTERNAL procedure to a Pascal UNI pProg

bearing the labels DOIT and THINK may then be used l
by other assembly routines (see example for .REF).

LISTING CONTROL DIRECTIVES

The listing control directives determine what is sent to the output
file that is specified at assembly time, in response to the prompt

-PROC FARKLE, 3
-DEF DOIT,THINK

L TN OUTPUT FILE FOR ASSEMBLED LISTING: (<CR> FOR NONE)
DOIT LDA - If no listing output file is specified (by just pressing the RETURN
R'i‘s T key), then all listing control directives are simply ignored as

irrelevent.

THINK LDY

RTS

<END

]
L VNN VRN VRt VRN VRt VRt VR T VR T TR 1)

L/ [

168 APPLE PASCAL OPERATING SYSTEM 6502 ASSEMBLER 169

+LIST
and
« NOLIST

«MACROLIST
and

« NOMACROLIST

« PATCHLIST
and

«NOPATCHLIST

170

APPLE PASCAL OPERATING SYSTEM

)

Allows selective listing of assembly routines. Listing
goes to the specified output file when a .LIST is
encountered. The .NOLIST is used to turn off the LIST

option. Listing may be turned on and off repeatedly within
an assembly. .LIST is the default state.

FOBRM: «LIST or «NOLIST

Allows selective listing of macro expansions. In general
an assembled listing will contain the textual expansion of
a macro if the .MACROLIST option was in effect when the
macro was defined. On the other hand, an assembled
listing will not contain the textual expansion of a macro

if the .NOMACROLIST option was in effect when the macro was
defined. These options may be used repeatedly throughout

an assembly, to list the expansions of certain macros
selectively.

i lml o e L

Macro expansion text is flagged in the listing by a # to
the left of each expanded line. Comments occurring in the
macro definition are not repeated in the expansion. The
assembled listing of the EXAMPLE earlier in this chapter
shows the macre POP defined on PAGE-{ » and listings of the
macro expansion appear on PAGE-1 and PAGCE=4 .

L

L

When assembling nested macro invocations, listing of
textual expansion continues until the Assembler encounters
the first macro defined with .NOMACROLIST in effect.
Listing does not resume until that macro’s invocation is
complete, regardless of the listing state of the macros
invoked by the non-listing macro.

VI VI VA 1 I V1 T V=1 I 1 R 1]

The .LIST and .NOLIST options take precedence over the
+MACROLIST and .NOMACROLIST options. The Assembler
defaults to the MACROLIST state.

FORM:

«MACROLIST or «HOMACROLIST

EXAMPLE: « NOMACROLIST

Allow control over listing of back-patches made to the code
file. These options may be used repeatedly throughout an
assembly.

When an undefined label is encountered, the assembled

listing shows ocne * for each hexadecimal digit to be
filled in later. For example:

PEL9| 1@%* BPL DONE

«PAGE

<TITLE

When the forward reference is resolved, the back-patch is
listed in the form

gale* @p
@@LF| A9 d@ DONE LDA #@

where the number to the left of the asterisk is the address
of the patched location and the number to the right of the
asterisk is that location’s new value. See PAGE-1 of the
assembled listing of the EXAMPLE, earlier in this chapter,
for an illustration of back-patch listing.

«PATCHLIST is the default state.

FORM: «PATCHLIST or «NOPATCHLIST

EXAMPLE: «NOPATCHLIST

Allows the programmer to explicitly ask for a top of form
page break in the listing.

FORM: «PAGE

EXAMPLE: «PAGE

Allows the titling of each page if desired. At the start of
each procedure the title is set to blanks and must be reset if
title is desired. The title is only cleared at the start

of the file. In the EXAMPLE assembly listing earlier in

this chapter, the title SYMBOLTABLE DUMP was not set by a
«TITLE directive. That heading is always used on pages
containing symboltable dumps. Upon assembling a further
procedure the heading printed returns to what it was before
the symboltable dump.

FORM: «TITLE “<title>"

where <title> is any string of printable ASCII characters,
including a space. The length of the string must be less
than 8@l characters. The double quotes are used as
delimiters for the string, so a title may not include the
double quote character.

EXAMPLE:

.TITLE "QRC12 INTERPRETER"

6502 ASSEMBLER 1M1

|

|""1j
RSN ™ LABEL DEFINITIONS AND
SPACE-ALLOCATION DIRECTIVES

« INCLUDE Causes the indicated source file to be included at that point. E I

Lai

" A f chars.
- : [label] JASCIT "¢character string> Inserts ASCII o
RORMs «ABELEDE L ELanagp [label] <BYTE [valuelist] Inserts byte of value.
:} f value.
B : [label] BLOCK <length>[,value] Inserts block o
where the filename SpEC]f-iES an assembly- E 1 [1abel] JWORD <valuelist> Inserts word of value.
language textfile to be included. <label> <EQU <value> Assigns value to label.
, JORC evalues Next byte at start of
If you don’t add the suffix .TEXT the system will add it for assembly file + value.
you. The last character of the filename must be the : LABSOLUTE Precedes lst PROC; all

last non-space character on that line (no comment may follow

. byte at
on the same line}). ORGs put next byte

abs. location = value.
« INTERP lst loc. of interpreter,

in relative-location

expressions.

CORRECT EXAMPLE: « INCLUDE SHORTSTART.TEXT

CORRECT EXAMPLE: «INCLUDE SHORTSTART.TEXT
3 CALLS STARTER

IR TR TR T

INCORRECT EXAMPLE: .INCLUDE SHORTSTART.TEXT ; CALLS STARTER

MACRO FACILITY DIRECTIVES

«MACRO cidentifier> Begins a macro definition.
« ENDM Ends a macro definition.

The Include-file’s text is treated by the assembler just as
if you had typed that text into the original file at the
position of the .INCLUDE directive. For example, if the

included file contains a .END , the assembly is terminated
at that point.

L

CONDITIONAL ASSEMBLY DIRECTIVES

[1label] -IF <expression> Begins condit”l assembly.
If true, assembles next
Note: For a list of Assembler error messages, see the appendix at the [.FLSE] text [up to .ELSE];

end of this manual.

ASSEMBLER DIRECTIVE SUMMARY

if false, only text
after a .ELSE .«
-ENDC Ends condit’l assembly.

IR LA

METASYMBOL NOTATION HOST-COMMUNICATION DIRECTIVES

; .CONST <« tifierlist> Takes value from global
Square brackets [like this] surround optional elements which you may 0 faenErEteri const in Paacﬂlghﬁﬁt-
supply. Angle brackets <like this> surround required elements which 1 PUBLIC <identifierlist> Uses a global variable

you must supply. The metasymbol brackets and the brief definition at

from the Pascal host.
the end of each line are not to be typed.

+PRIVATE <identifier[:integer] 1list> Variable not accessible
to the Pascal host.
Default :l word/idenmt.

EXTERNAL COMMUNICATION DIRECTIVES

ROUTINE DELIMITING DIRECTIVES

«PROC <identifier>[,expression] Begins a procedure. -DEF <identifierlist> Makes label available
-FUNC <identifier>[,expression] Begins a function. to other routines.
-END Ends entire assembly. .REF <identifierlist> Label refers to another

routine’s .DEF“d label.

L VBNV VRV VRt VRtV

172 APPLE PASCAL OPERATING SYSTEM

6502 ASSEMBLER 173

LISTING CONTROL DIRECTIVES

«LIST and «NOLIST Turns assembly listing
on and off.
Turns listing of macro
expansions on and off.
Turns listing of back-
patches on and off.
« PAGE Puts page-feed in listing.
TITLE '"<title>" Titles each page of eur-
rent <PROC or .FUNC .

+MACROLIST and .NOMACROLIST

«PATCHLIST and .NOPATCHLIST

FILE DIRECTIVE

«INCLUDE <filename> Includes named text file

in the assembly.

Note: Additional information can be found in this manual’s chapters
THE LINKER (Linker information), UTILITY PROGRAMS (installing routines
in SYSTEM.LIBRARY), and in the TABLES appendix (Assembler error messages).

174 APPLE PASCAL OPERATING SYSTEM

w W W W W W W W

wm IF N

THE LINKER

6502

A
A

SSEMBLER 175

L

"

- The following diskfiles allow you to invoke the Linker automatically,
using the R{un command:

INTRODUCTION

The Linker is invoked automatically if needed when you type R for R(um,

or is invoked explicitly by typing L for L(ink, when at the outermost
Command level. The Apple Pascal Linker lets you combine code files
which may be compiled P-code or assembled machine code, into the sy;tem
workfile or another specified codefile. This provides a way to
incorporate certain useful routines into your programs without having to
rewrite or even recompile or re-assemble these routines. For example,
you might wish to use a fast assembly-language routine for some "real

time" application. This routine could be assembled separately, stored
in a library, and eventually accessed via the Linker.

To link in routines (either procedures or functions), a Pascal calling
program declares those routines to be EXTERNAL . This notifies the
Compiler that the routines may be called, but are not provided yet.
The Compiler will inform the system that linking is required before
execution. The EXAMPLE in this manual’s chapter THE 65@2 ASSEMBLER
shows an assembly-language procedure and function, a Pascal calling
program, and the linking process needed to combine the two portions.
For more details about the Linker information stored with codefiles,
see this manual’s appendix, FILE FORMATS.

The Linker is also used to link in certain kinds of Pascal UNITs. A
UNIT is a group of related routines which will be used together to
perform a common task. Any Pascal files which reference UNITs or
EXTERNAL routines, and which have not yer been linked, may be compiled
and saved but will need to be linked before they can be executed.

The UNITs that are provided with the Apple Pascal language, such as
TURTLEGRAPHICS and APPLESTUFF , are special INTRINSIC UNITs, which are
"prelinked" and are USEd directly from SYSTEM.LIBRARY without linking.

For more information on Pascal UNITs, see the Apple Pascal Language

Reference Manual. For information on linking from one assembly
routine to another, see this manual®s chapter THE 652 ASSEMBLER.

DISKFILES NEEDED

The following files allow you to use the Linker explicitly:
SYSTEM.LINKER {any diskette, any drive; required)

Host codefile needing
external routines

(any diskette, any drive; default
is boot diskette’s code workfile
SYSTEM.WRK.CODE, any drive)

(any diskettes, any drives; default
is boot diskette’s library file
SYSTEM.LIBRARY, any drive)

Library codefiles holding
external routines

176 APPLE PASCAL OPERATING SYSTEM

E

I

RO LR LR LR LR LR LR LR W W

(any diskette, any drive; default
is boot diskette’s workfile
SYSTEM.WRE.CODE or .TEXT, any drive)

Host program needing
external routines

SYSTEM.COMPILER (any diskette, any drive; required
if host program is a textfile)
SYSTEM.EDITOR (any diskette, any drive; optionalj;
to fix errors found by Compiler)
SYSTEM.SYNTAX (boot diskette, any drive; opticnal
messages given on entering Editor)
SYSTEM.LINKER (any diskette, any drive; required)
SYSTEM.LIBRARY (boot diskette, any drive; required
to contain the needed routines)
SYSTEM.PASCAL (boot diskette, boot drive; required

between Compiling, Linking and
eXecuting steps)

(boot diskette, boot drive; required
if program uses long integers, does
file I/0 using real numbers or SEEK,
or USES Intrinsic Units}

(any diskette, any drive; required
only if program uses WSTRING or
WCHAR from TURTLEGRAPHICS)

SYSTEM.LIBRARY

SYSTEM.CHARSET

Any time the Linker is invoked, SYSTEM.LINKER must be available on any
diskette in any disk drive. This file is normally found on diskette
APPLE2: . When the LINEER prompt line appears, SYSTEM.LINEER is no longer
necessary, and the diskette containing SYSTEM.LINEER may be removed from
the system to make room for other diskettes.

If you attempt to R{un a text workfile, first the Compiler is invoked,
which requires that the file SYSTEM.COMPILER be available in any
diskette in any disk drive. SYSTEM.COMPILER is normally found on
APPLE2: and also on APPLEfi: . Then, following successful compilation,
the Linker is called (if linking is needed), using SYSTEM.LINKER .

The Linker automatically tries to find any needed UNITs or EXTERNAL
routines by locking in the Eile SYSTEM.LIBRARY , which must be on the
boot diskette (APPLEl: or APPLE@:) but may be in any disk drive.
Finally, following successful compilation and linking the program is
executed. If SYSTEM.LIBRARY is required for execution, it must be in
the boot drive on the boot diskette.

Note: The system returns to the Command level for an instant between

any two portions of the R(un sequence. Therefore, you must normally
leave the boot diskette in the boot drive during the entire sequence.

LINKER 177

If the workfile has already been compiled into its code version, R{un
will not call the Compiler, and SYSTEM.COMPILER is not needed. If you
invoke the Linker by typing L , you can link routines that are found
in any available disk file. In that case, the file SYSTEM.LIBRARY may
not be needed.

Multi-drive note: On multiple-drive systems, diskette APPLEl: is
normally your boot diskette. If APPLEL: is in the boot drive, and
APPLE2: is in a non-boot drive, your system will have available all

the diskfiles it needs to E(dit, C(ompile or A(ssemble, L(ink, X(ecute
and R(un.

Two-drive note: To L(ink when the host and library files are not
already on APPLEl: or APPLE2: , you can use the Filer to T{ransfer

the needed files onto APPLEZ: before linking. Alternatively, if the
COMMAND prompt line is showing, if L(inking is your only task, and if
all your host and library files are on another diskette such as
MYDISK: , you could put MYDISK: in the boot drive and APPLEZ: in the
non-boot drive. When the linking process is complete, the system will
return to the Command level. Since your boot diskette is not the boot
drive, you will be prompted to put it in.

One-drive note: To R(un a text workfile that needs linking to an
external routine, you will have to use the Filer to T(ransfer
SYSTEM.LINKER from APPLEZ: onto your boot diskette APPLEf: . With
this version of APPLE@: in the disk drive, your system will have
available all the diskfiles it needs to E(dit, C(ompile or A(ssemble,
L(ink, X(ecute and Run. Unfortunately, this will leave only 17 blocks
free on APPLE@: for your text and code workfiles, etc. To make more
room on your boot diskette, you may wish to remove the files
SYSTEM.SYNTAX (use the compiler error messages shown in the Apple
Pascal Language Reference Manual, instead), SYSTEM.CHARSET (only
needed if your program uses WCHAR or WSTRING from TURTLEGRAPHICS), and
even SYSTEM.FILER (can be read in from any diskette, as long as that
diskette is in the drive when you invoke the Filer).

USING THE LINKER

There are two different ways to invoke the Linker: by typing L for
L(ink or by typing R for R(un, both from the outermost Command level
of Pascal.

If the Pascal program in the current text workfile contains EXTERNAL
declarations, or USES UNITs which are not INTRINSIC UNITs, typing R
for R(un from the outermost Command level automatically invokes the
Linker after the Compiler. The Linker automatically uses as its host
file the code file where the Compiler saved the code that resulted
from a successful compilation (even if that file is not the code

178

APPLE PASCAL OPERATING SYSTEM

"
R OWR AR AR WA LR R LR W LR LA LR G W L

ii.“

workfile SYSTEM.WRK.CODE). When invoked by the R{un command, the
Linker automatically searches the file SYSTEM.LIBRARY. which must be
on the boot diskette, for the routines or UNITs specified, and links
them into the workfile. If the UNIT or EXTERNALly declared routine is
not present in SYSTEM.LIBRARY, the Linker will respond with an

appropriate message:

UNIT, '

PROC,

FUNC,

GLOBAL, 1
or PUBLIC <identifier> UNDEFINED

TYPE <SP>(CONTINUE), <ESC>(TERMINATE}

You can press the spacebar, and the Linker will proceed, trying to
1ink whatever routines or UNITs are available in SYSTEM.LIBRARY .
Later, you can use the Linker explicitly te link in the remaining
routines or UNITs. If the file SYSTEM.LIBRARY is not available on the
boot diskette, this message appears:

NO FILE *SYSTEM.LIBRARY
TYPE <SP>{CONTINUE), <ESC>(TERMINATE)

If the Linker fails to find a file with the exact filename specified
at any point and that filename does not end in .CODE or in .LIBRARY,
it then adds the suffix .CODE to the filename, and tries again. In
this case, its own internal specification told it to look for
*SYSTEM.LIBRARY . After this message, the Linker does not allow you
to specify a different library file for your routine or UNIT, so there
is little point in continuinpg. Just press the ESC key to go back to
Command level.

The Linker may also be invoked explicitly, and, in fact, must be

invoked explicitly in cases where

(1) the host file into which UNITs or EXTERNAL routines are to
be linked is not the code file resulting from a successful
compilation initiated by the R{un command, or

(2) the UNITs or EXTERNAL routines to be linked reside in
files other than the boot diskette’s SYSTEM.LIBRARY .

In order to invoke the Linker explicitly, you type L for L({ink at the
Command level and receive the prompt:

LINKINGs « »

LINEER II.1
HOST FILE?

[ad4]

LINKER 179

The hostfile is usually the Pascal program codefile into which the
external routines or UNITs are to be linked. (In linking between two

assembly routines, the hostfile is the routine which used .REF to
declare certain labels as external.)

If you just press the RETURN key in response to the prompt, the Linker
uses the boot diskette’s workfile SYSTEM.WRK.CODE as the hostfile. If
the R(un command has just caused the Compiler to save a compiled
codefile, that file is taken as the hostfile even if it is not
SYSTEM.WRK.CODE . You may also respond by typing the file
specification of any other host codefile. If the Linker cannot find a

file with the exact filename you typed and that filename does not end
in .CODE or in .LIBRARY, it adds the suffix .CODE to the filename and

tries again. For this reason. if you respond by tvping the non-
existent filename

MYDISK:MYFILE.CODE

the Linker returns the message
KO FILE MYDISK:MYFILE.CODE

The Linker always displays the full name of the last file it tried to
Opens

The Linker then asks for the name of the first library file in which

the needed Pascal UNITs or EXTERNAL routines (or .DEF assembly
subroutines) are to be found:

LIB FILE?

You should respond by typing the file specification of any codefile
containing a Pascal UNIT or EXTERNAL routine that you want linked into
the Pascal host program. (In linking between two assembly routines.
the library file contains the routine which used .DEF to declare
certain labels as available for external use by the host routine.)

The Linker looks first for the exact filename that you type, and then
(if the search was unsuccessful) adds the suffix .CODE and looks

again. In any case, it always displays the name of the file actually
opened. When the specified file has been found, you are given the same
prompt again, asking for the filename of another file containing a
needed UNIT or routine. Up to eight library files may be referenced in
one linking operation. Typing #* (and then pressing the RETURN key)

in response to a request for a 1ibfile name will cause the Linker to
reference SYSTEM.LIBRARY on the boot diskette.

EXAMPLE:

LIB FILE? *
OPENING SYSTEM.LIBRARY

180 APPLE PASCAL OPERATING SYSTEM

i‘la

—

- -— - - - — -

VUV NV T Y T TV Y R TV T TR T TR T TR T TR T TR TR Y

For information on LIBRARIES and the LIBRARIAN see this manual’s
chapter UTILITY PROGRAMS. If a host codefile or a library codefile is
not of an appropriate type, the Apple will display an error message.
These files must contain either compiled Pascal P-code or assembled

65@2 assembly code-

When all relevant library files have been specified, answer the next
LIB FILE? prompt by just pressing the RETURN key to proceed. The
Linker will now prompt with:

MAP FILE? i

If vou respond by typing a file specification, the Linker writes a

"mapfile" to the file that you have just specified. MNote that the
suffix .TEXT is appended to the specified filename unless it already
ends in .TEXT or a period (.) is the last letter of the filename.

The mapfile contains relevant Linker information regarding the linking
process. Responding to this prompt by simply pressing the RETURN key
causes no mapfile to be written. This 1s the response you will
normally use. The mapfile is a diagnostic and system programming tool,
and is not required for most uses of the Linker.

Note: The output codefile (see below) is opened with the [@#] filesize
and the mapfile is opened AFTER opening the output codefile. If your
system tries to put both files on the same diskette, it may be unable
to open the mapfile since the output codefile may then occupy all the
remaining diskette space. This does not stop the linking process, but
you will have no mapfile. You can solve this problem by sending the
mapfile to another diskette, to CONSOLE: , etc.

The Linker now reads all segments required to start the linking
process. Then you are prompted to type a file specification for saving
the linked code output:

OQUTPUT FILE?

(this will often be the same filename as that of the host file, but
you may not use the § same-name option offered by the Compiler and
Assembler). It is not necessary to add the suffix .,CODE ; that suffix
is automatically supplied if you don®t type it. After the output file
specification has been typed, press the RETURN key and linking will
commences Responding with no filename (by pressing the RETURN key
only) causes the linked output to be saved in the boot diskette’s
workfile, SYSTEM.WRK.CODE .

Note: unless you specify a different filesize, the output codefile is
opened with the [@#] filesize.

During the linking proces., the Linker will report on all segments
being linked and on all extermal routines being copied into the output
codefile. The linking process will be stopped if any required
segments or routines are missing or undefined. You will be told what
was missing, by messages as described at the beginning of this
section, and allowed to terminate or continue the linking process.

LINKER 184

UTILITY PROGRAMS

182 APPLE PASCAL OPERATING SYSTEM LINKER 183

INTRODUCTION

In the Apple Pascal operating system, the most often used program
portions can be selected from the various prompt lines. Other
programs, written to accomplish less commonly needed tasks, are
available through the X{ecute command, and new features can he added
to the operating system at any time in this way. Several of Apple
Pascal’s additions to the operating system, called Utility Programs,
are described in this chapter.

FORMATTING NEW DISKETTES

Before a new diskette (or one used in a system other than Apple Pascal)
can be used with the Apple Pascal system, it must first be

"formatted". This means that the diskette is erased, timing marks are
recorded on the diskette for the system’s reference, addresses are
stored to identify each sector and block, and zerces are stored in all
data locations. Then, the diskette’s bootstrap program is stored in
blocks @ and 1 (on the outermost track). Finally, a diskette directory
is written, and the diskette is given the volume name BLANK: .

DISKFILES NEEDED

The following diskfiles allow you to use the diskette formatting
utility program:

FORMATTER.CODE (any diskette, any drive; required
only teo start)

FORMATTER« TEXT (any diskette, any drive; required

only to start)

Diskette(s) to
be Formatted

(any drive; insert each diskette when
prompted, remove when prompted for
next diskette to be formatted)

The file FORMATTER.CODE is normally found on diskette APPLE3: .
you termipate the formatting utility program, your boot diskette
should be in the bootr drive. If it is not there, the system will tell
you to

When

PUT IN APPLEIL:

(if APPLEL: is your boot diskette).

One-drive note: You can start the diskette formatting utilicy by
X{ecuting FORMATTER with APPLE3: in the drive. When the utility’s

first prompt line appears, you can then remove APPLE3: from the drive
and put in the first diskette to be formatted. Do not remove the
diskette being formatted until you are again prompted with

184

APPLE PASCAL OPERATING SYSTEM

WO OO OW O OWOW WO W W WO

m&mmmmmwmmmwmwwu

"FORMAT WHICH DISK?". Put the boot diskette back in the drive before you

quit the utility program.

2 boot diskette in the boot
~drive note: You will normally place your
z:?ver and place APPLE3: in the other drive to X(ecute APPLE3:FORMATTER .
»

£ line appears on
he diskette formatting utility's first prompt pp
g::nszrzen, you can then remove APPLE3: from its drive and put in the

first diskette to be formatted.

USING THE UTILITY

From the Command level, with diskette APPLE3: in any avallable drive,
type X for X(ecute. When you are prompted

EXECUTE WHAT FILE?
respond by typing
APPLEJ : FORMATTER

(Note that you do not need to specify FORMATTER.CODE ; the .CODE suffix is

added automatically 1f you don”t type it.) The system then
executes FORMATTER.CODE, and displays the following message:

APPLE DISK FORMATTER PROGRAM

FORMAT WHICH DISK (4, 5, 9..12) 7

You may now remove diskette APPLE3: from its drive, if you wish. Place
in any available disk drive the new or used diskette that you wish to
format. Then type the volume NUMBER of that disk drive. For example,
if you put your new diskette in driwve #5: , you should respond by typing

5

and pressing the RETURN key. First, the program checks the diskette
to be sure you are not accidentally re-formatting (and thereby
erasing) a diskette previously formatted by the Apple Pascal system.
If you forget and leave APPLE3: in the specified drive, for example,
you will be warned by the question
DESTROY DIRECTORY OF APPLE3 ?
If you type N for No, you will again be asked "FORMAT WHICH DISK?".
If all goes well, the disk whirrs and clacks, and this message appears:
NOW FORMATTING DISKETTE IN DRIVE 5

When formatting is complete, you will be prompted to specify the next
diskette to be formatted:

FORMAT WHICH DISK (4, 5, 9..12) 7

UTILITY PROGRAM 185

Again, put in any drive the next diskette to be formatted, and then E —! use your new library file aur_cn:latica‘ll}'. you must store your library
type that drive’s volume number. on the boot diskette and name it SYSTEM.LIBRARY .

When you have formatted all the diskettes you wish to format, respond E i
to the prompt

FORMAT WHICH DISK (4, 5, 9..12) 7 E i i DISKFILES NEEDED
| = .
by just pressing the RETURN key to quit the formatting program. Be sure The Tollowing diektiles allow you to:cse:tha: ibeaclan:utiiity:
that your boot diskette is in the boot drive before you quit the |
formatting utility program, or your system may "hang". (If that happena,E I
put your boot diskette in the boot drive and press the RESET key.) |

LIBRARY.CODE (any diskette, any drive; required
only to start)

If the program has trouble formatting a diskette, this message is
displayed:

Link Codefile(s) (any diskettes, any drives; * specifies
containing UNITs boot diskette’s SYSTEM.LIBRARY, any
and routines to drive; each file must be avallable

ERROR: UNABLE TO FORMAT DISK. put in new library until next prompt for LINE CODE FILE)

gﬁ&gﬁﬂ%éiaﬂgﬂg%g, Output Codefile for (any diskette, any drive; * specifies
storing new library boot diskette’s SYSTEM.LIBRARY, any

Check the obvious causes, such as no diskette in that drive, or drive; must be available throughout)

improper insertion of the diskette. Occasionally, this message is

given when a used diskette is re-formatted. If you suspect that is
the only cause of trouble, just try re-formatting the diskette again
until the old information is completely erased.

THE SYSTEM LIBRARIAN

The file LIBRARY.CODE is normally found on diskette APPLE3: . When
you Q(uit or A(bort the librarian utility program, your boot diskette
should be in the boot drive. If it is not there, the system will
tell you to

PUT IN APPLEL:
LIBRARY.CODE is a utility program on diskette APPLE3: that allows you E a
to link separately compiled Pascal UNITs and separately compiled or . (if APPLEL: is your boot diskette).
assembled routines into a library file. If your library file is named
SYSTEM.LIBRARY and is on the boot diskette, the R(un command will - a One-drive note: On single-drive systems, one approach is to use
automatically Link needed UNITs and external routines from your library ! the Filer to T(ransfer all necessary files onta your boot ?jskette hefu;e
into the program being R(un. UNITs which are labelled INTRINSIC (see X(ecuting LIBRARY.CODE . This is safe because the boot diskette (and the
the Apple Pascal Language Reference Manual) are found in your library necessary file SYSTEM.PASCAL) is available when the system returns to
and used without Linking. E 3 COMMAND level after using the librarian. However, you can start the
librarian by X(ecuting APPLE3:LIBRARY with APPLE3: in the drive. When
the librarian®s firat prompt line appears, you can put any other diskette
in the drive. For one-drive use, the Output Code file and all Link Code
a files must be on the same diskette. If that diskette is not the boot
diskette, put your boot diskette back into the drive before you Q(uit the
librarian wtility program.

1f the R(un command does not find a needed item in the boot diskette’s
SYSTEM.LIBRARY, you can either L(ink the item in manually (see this

manual®s chapter THE LINKER) or you can put the item into a new boot E
diskette library file named SYSTEM.LIBRARY . To add a new UNIT or

routine to the boot diskette”s SYSTEM.LIBRARY (or to delete one, or

even just to move one within the library), it is first necessary to

create a new, empty library file. Next, you must link each item that ! I
you want from the original SYSTEM.LIBRARY intc the new library file.

You may then add new items by linking from other codefiles into the

new library file being created. In general, your new library file is !

not created with the filename SYSTEM.LIBRARY . Before the system can

I
186 APPLE PASCAL OPERATING SYSTEM ! UTILITY PROGRAM 187

R R BB R R R O R ..

Two=drive note: You will normally place your boot diskette in the boot !
drive, and place AFPLE3: in the other driwve. When the utility’s first
prompt line appears on the screen, you can then remove APPLE3: from {ts
drive and put in any other diskettes as needed.: The disketre !
containing the Output Code file must remain in its drive throughout

use of the librarian urilicy.

All note: If the Output Code file’s diskette is removed from its drive E
while using the librariam, all displays will indicate that the new
library is still being put together correctly. However, the indicated
transfers of items from the input Link Code files to the Output Code
file are not actually carried out, even if the Qutput Code file’s
diskette is placed in a drive just before Q{uitting the program.

EXAMPLE: INSTALLING A UNIT
OR ROUTINE INTO A LIBRARY

Suppose you wish to create a new library file, called NEW.LIBRARY , on
diskette MYDISK: . You want this new library file to contain all the
items currently in the boot diskette”s APPLEl:SYSTEM.LIBRARY , and you
wish to add a regular UNIT or assembly-language routine called PILFER
from the file MYDISK:UPILFER.CODE.

Une-drive note: If yours is a one-drive system, you must first use the
Filer to T(ransfer the file UPILFER.CODE from MYDISK: to your boot
diskette APPLELl: . Then Q(uit the Filer. From here on, substitute

APFLEl: wherever the example says MYDISK: .

APPLE3:
prompted

From the Command in any available disk drive, type

X for X(ecute.

level, with
When you are

EXECUTE WHAT FILE?
respond by typing
APPLE3:LIBRARY

(Note that you do not need to specify LIBRARY.CODE; the .CODE suffix is
supplied automatically.) The system then executes LIBRARY.CODE,
and soon displays the message

PASCAL SYSTEM LIBRARIAN II.1 ([BI1]

At this point, you may remove APPLE3: from its drive. HNext the

program prompts you for the name of an
OUTPUT CODE

FILE ->

188 APPLE PASCAL OPERATING SYSTEM

— e — p— — —

I L Y Y U T T T TR TV T TR T TR T TR T TR T 7

L

which will become your new library file. For this example, with
MYDISK: in any available drive, respond with the name

MYDISK:NEW.LIBRARY
One=drive note: you should respond APPLEl:NEW.LIBRARY .

This filename is used exactly as you type it; no suffix is added by
the system. The diskette containing the Output Code file must remain
in its drive throughout use of the librarian.

The program now asks for the name of a

LINK CODE FILE =->
which will provide the first source of UNITs and routines te link into

NEW.LIBRARY . The correct response here, with APPLEl: in any drive, is
APPLELl:SYSTEM.LIBRARY

(You can also type * to specify the boot diskette’s SYSTEM.LIBRARY .)
The screen next displays the "slot number", segment number (in parentheses),
name, and length in bytes of each UNIT or routine currently in the input
Link Code File (right now, SYSTEM.LIBRARY). There are a maximum of 16
"slots", each containing one code or data segment, in any Apple Pascal
program or library file. Note that an Intrinsic UNIT may occupy two
slots, one for the code segment and one for the data segment. The number
of bytes given for an item is its length in the library. This length
includes the number of bytes the item will occupy when linked into your
program, plus a considerable number of bytes of Linker information that
is not placed in your program.

The screen now looks something like this (you may, of course, have to
use CTRL-A to see the right half of the display):

SLOT TO LINK AND <SPACE>, = FOR ALL, ? FOR SELECT, N(EW FILE, Q(UILT,
A(BORT

LINK CODE FILE => APPLEL:SYSTEM.LIBRARY

@#-(3@) LONGINTI 2452 B @
1-(31) PASCALIO 1238 9= i
2-(29) TRANSCEN 1168 13- @
3-(22) APPLESTU 662 11- @
4-(2¢)) TURTLEGR 52¢2 12= I
5-(21) TURTLEGR 386 13- @
b= @ 14= @
7= 1 15- @

OUTPUT CODE FILE -> MYDISK:NEW.LIBRARY
CODE FILE LENGTH - 1|

UTILITY PROGRAM 189

You now type the slot number, a number from @ through 15 taken from the
leftmost column of the Link Code File display, of an item that you wish
placed in the new library file. Then press the spacebar to terminate
your entry. Next, when you are prompted

SLOT TO LINK INTO?

type the number of the slot which the previously specified item should
occupy when it is placed in the Output Code File (i.e. NEW.LIBRARY). And
again, press the spacebar to terminate your entry. At this time, the
transfer of the specified item is carried out.

NOTE: you may abandon your attempt to make a new library at any time,
simply by typing A for A(bort instead of a slot number.

For each item placed in the new library file, the Librarian reads that
item from the specified slot of the input Link Code File and stores it
in the specified slot of the Output Code File. Items may be placed in
any available library slot, in any order. After each item is
transferred, the librarian changes the display for the current state of
the Qutput Code File, which is your new library file. If you attempt
to put two input items into one output slot, this message appears:

Lf you type Y , the item previously placed in the specified slot will be E
replaced by the item currently being moved. Type N to abandon this move.

WARNING - SLOT xx ALREADY LINKED. PLEASE RECONFIRM (Y/N) -

Note that the old item is NOT removed from the library file you are making
even though it no longer appears in any display of the file’s contents. E
This extra code, which makes your new library file larger than it needs to
be, will disappear when you make another new library from this one.

To copy every item from the old SYSTEM.LIBRARY into your new library

file, you may follow this sequence (press the spacebar to terminate each
entry):

ELOT TO LINK INTO?
%LOT TO LINK INTO? 1
SLOT TO LINK INTO? 2
SLOT LIM&L INTO?

4

SLOT LINK INTO? &

SLOT LINK INTO? 5

3 B
TO 3

190 APPLE PASCAL OPERATING SYSTEM

WO R R R LR R R U

=

E : ! When all of the items that you want from this input Link Code File

Or you may use ome of the other options given in the prompt line.

Type an equals sign (=) to quickly copy every item from its slot in the
input Link Code File into the same slot in the Output Code File. If you
type a question mark (?) the librarian will ask you about each input
item in turn:

COPY SLOT @7

Type ¥ if you wish the item in slot § to be copied into slot ¥ of your
new library file, or type N if you do not wish to copy that item. When
you are using the = or the ? to copy items, each item copied from a slot
in the input library will automatically be placed in the slot of the same
number in your new output library.

have been copied into the Output Code File, a new input file is
requested by typing N for N(ew file. You are again prompted for a

LIKK CODE FILE ->

In this example, a separately compiled regular Pascal UNIT called PILFER
is assumed to exist In a codefile called UPILFER.CODE , but the process
would be identical if PILFER were a separately assembled machine-
language procedure.

Type the name of this new input Link Code File:
MYDISK:UPILFER
One-drive note: You should type APPLEl:UPILFER

The librarian first looks on the specified diskette for a file whose
filename is exactly as you typed it. If there is no file with that exact
filename and that filename does not end in .CODE , the suffix .CODE is
added to the filename and the search is repeated. If the search is srill
unsuccessful, one of the following messages is displayed:

1/0 ERROR # 1¢
1/0 ERROR # 9

(your file was not found)
(your diskette was not found)

In either case, you are prompted to try again. The only way to escape

the program at this point is by typing a correct file specification or
by pressing the RETURN key and then typing A for A(bort.

UTILITY PROGRAM 191

When you correctly type the name of this new Link Code File, the
following display appears:

LINK CODE FILE -> MYDISK:UPILFER.CODE

g- @ 8- @
1=] 9=]
2-] 1@#-(25) PILFER 362
3=] 11- 1]
=] 12=)
5= @ 13- @
=] L4= @
7= @ 15~ @

In this example, the Unit PILFER occurs in UPILFER.CODE’s slot number 1§
and is to be linked into slot number 7 (any unused slot is equally good)
within NEW.LIBRARY . To accomplish this, you should respond (pressing
the spacebar after each response):

19
SLOT TO LINK INTO? 7

The final display of the output library segment table is thus:

OUTPUT CODE FILE => MYDISK:NEW.LIBRARY
CODE FILE LENGTH - 39

@-(30@) LONGINTI 2452 a- @
1-(31) PASCALIO 1238 9- @
2-(29) TRANSCEN 1168 1@- @
3-(22) APPLESTU 662 11- [t}
4=(2@) TURTLEGR 52@2 12- 1]
5-(21) TURTLEGR 386 13- 1
f—] 14— [
7-(25) PILFER 362 15- @

T m m s s M DN M

The new library’s length in blocks is displayed and in this example is BQE

Once the needed items from all input Link Code Files have been put
into your new library’s Output Code File, you lock the new library by
typing Q for Q(uit. This question appears at the bottom of the
screen:

NOTICE?

This gives you the chance
file. The notice will be

to place a copyright notice in your library
displayed when a library map is produced for

192 APPLE PASCAL OPERATING SYSTEM

FIRT)

i A L LA A A W W

IR W IR

R IR

your file (see the next section of this chapter), and provides an
identifying line. You might type

COPYRIGHT 1979 APPLE COMFUTER AND ME

for example (any message, up to the end of the current typing line).
If you do not want a copyright in your library file, simply press the
RETURN key. When the COMMAND prompt line re-appears, your new library

is complete.

USING THE NEW LIBRARY

Before you can use your new library, the old SYSTEM.LIBRARY on your
boot diskette should be either removed or renamed. Then your new
library file must be T(ransferred onto your boot diskette, and its
name C(hanged from NEW.LIBRARY to SYSTEM.LIBRARY . You should then
I(nitialize the system so that the system will "learn" about the new
library“s contents and diskette position.

SHORTHAND FILENAMES

In response to the initial prompt "OUTPUT CODE FILE ->" we could have
just as easily said SYSTEM.LIBRARY followed by another SYSTEM.LIBRARY
in response to the prompt "LINK CODE FILE ->". 1If you do this,
however, the original SYSTEM.LIBRARY will be removed automatically
upon completion of the linking process. Typing just * 1In response
to "OUTPUT CODE FILE =>" and again in response to "LINK CODE FILE ->"
is an abbreviated way to indicate that the old SYSTEM.LIBRARY will
simply be replaced by the new SYSTEM.LIBRARY .

The system only "learns" about the new material in SYSTEM.LIBRARY
when the system is booted. If you specified SYSTEM.LLBRARY or *
the Output Code File, the message

as

PLEASE RE-INITIALIZE SYSTEM

appears after you respond to the NOTICE? prompt. Just press the

Apples RESET key.

UTILITY PROGRAM 193

LIBRARY MAPPING

The library mapping utility program produces a map of a library file
{or any codefile) and lists the Linker information maintained for each
segment of the file. In the case of segments which are Pascal UNITs
the map file will also contain the interface section of the UNIT. See
this wmanual’s chapter THE LINKER for more information. See the Apple
Pascal Language Reference Manual for greater detail about UNITs and
linkage to external routines.

DISKFILES NEEDED

The following diskfiles allow you to use the library mapping ucility
program:

LIBMAP.CODE

o WM W W ™M ™

(any diskette, any drive; required
only to start)

Library Codefile(s)

(any disketrtes, any drives; * specif‘lei
to be mapped

boot diskette’s SYSTEM.LIBRARY, any

drive; each file must be awvailable

until next prompt for LIBRARY NAME)

Map output textfile (any diskette, any drive, or anv other
output device; default is CONSOLE: ;
must be available throughout)

The file LIBMAP.CODE is normally found on diskette APPLE3: . When you
terminate the library mapping utility program, your boot diskette
should be in the boot drive. If it is not there, the system will tell
you to

PUT IN APPLEL:

(if APPLEl: is your boot diskette).

One-drive note: On single-drive systems, one approach is to use
the Filer to T(ransfer all necessary files onto your boot diskette
before X(ecuting LIBMAP.CODE . This works well because the boot diskette
(and the necessary file SYSTEM.PASCAL) is available when you return to
COMMAND level after using the utility. However, you can X(ecute
LIBMAP.CODE with APPLE3: in the drive. When the first prompt line
appears, you can put any other diskette in the drive. If you are
storing the Map Output textfile on diskette, you must place all the

194 APPLE PASCAL OPERATING SYSTEM

WO W W W W W W W W W oW oW oW oW

input Library codefiles on the same diskerte as the Map Output
textfile. If you specify the Map Output File Name as PRINTER: or
CONSOLE: you may put in the drive, one at a time, the diskettes
containing the input Library codefiles, leaving each diskette in the
drive while Library files on that diskette are being mapp?d. Put
the boot diskette back in the drive before you quit the library

mapping programs

Two-drive note: You will normally place your boot diskette in the boot
drive, and place APPLE3: in the other drive. When the utility’s first

prompt line appears on the screen, you can then remove APPLE3: from its
drive and put in any other diskettes as needed. If you are storing
the Map Output textfile on diskette, that diskette must remain in its

drive throughout the mapping procedure.

USING THE UTILITY

With the COMMAND prompt line showing, and with diskette APPLE3:
available disk drive, type X for X(ecute. When the prompt

in any

EXECUTE WHAT FILE?
appears, respond by typing
APPLE3:LIBMAP

(Note that you do not need to specify LIEMAP.CODE ; the suffix .CODE
is supplied automatically if you don"t type it). Soon this messape
appears

LIBRARY MAP UTILITY II.1 [A2]

and the program prompts you to
ENTER LIBRARY NAME:

When you respond by typing an input Library {or any codefile) file
specification, the program first attempts to find the file exactly as
specified. If this search fails, the suffix .CODE is added and the
search is made again. If the specified file or diskette is not found,
this message appears:

BAD FILE
ENTER LIBRARY NAME:

Other errors give the message

NOT A CODE FILE
ENTER LIBRARY NAME:

UTILITY PROGRAM 195

1f you respond by simply typing an asterisk (*), this specifies the
file SYSTEM.LIBRARY, on the boot diskette in any drive, as the input
Library file .

EXAMPLE: MAP OF SYSTEM. LIBRARY

The library mapping utility is usually used to list library
definitions; but the option is also available to include Linker

information such as intra-library symbol references. Should this
feature be desired, type a Y when queried

LIST LINKER INFO TABLE (Y/N)?

LIBRARY MAP FOR APPLE@:SYSTEM.LIBRARY

COPYRIGHT 1979 APFLE COMPUTER INC.

Segment #3@:

System version = IL.1, code type is 6502
LONGINTI library unit (LINKED INTRINSIC)

TR TR TR

If you respond by typing a Y , you will also be asked

TYPE DECMAX = INTEGER([36];
STUNT = RECORD CASE INTEGER OF
2:(W2:INTEGER [4]);

3:(W3: INTEGER[B]);
&3 (W4 INTEGER([12]));
5:(W5:INTEGER[16]);

]

)

LIST REFERENCED ITEMS (Y/N)?

A space (or pressing the RETURN key) is considered an N .

You are now prompted to specify a
6: (WH: INTEGER [26]);
7:(W7:INTEGER [24]
8:(WB:INTEGER[28]);
9: (W9:INTEGER [32]);
1@: (W1@: INTEGER [36])
END;

MAP OUTPUT FILE NAME:

T

Note that if you don”t add the suffix .TEXT to the filename, the
system automatically will add it for you. To suspend this suffix-
adding feature, you must type an extra period after the filename.

Responding by pressing only the RETURN key sends the map output to
CONSOLE: , by default. PROCEDURE FREADDEC (VAR F: FIB; VAR D: STUNT; L: INTEGER);

y e : D: DECMAX: RLENG: INTEGER);

Several libraries may be mapped in succession. These maps will all be PROCEPURS WWEITHDELLVAR ¥a: BLH:D .
sent to the same Map Output File specified for the first input Library —
(let
To guit the library mapping utility, press the RETURN key the next Segment #31:
time you are prompted teo System version = II.1, code type is Undefined

PASCALIO library unit (LINKED INTRINSIC)

ENTER LIBRARY NAME:
PROCEDURE FSEEK(VAR F: FIB; RECNUM: INTEGER);

Be sure your boot diskette is in the boot drive before you quit this PROCEDURE FREADREAL (VAR F: FIB; VAR X: REAL); :
utility. PROCEDURE FWRITEREAL(VAR F: FIB; X: REAL; W, D: INTEGER);

Segment #29:

System version = II.l, code type is P-Code (most sig. lst)
TRANSCEN library unit (LINKED INTRINSIC)

{$)

FUNCTION SIN(X:REAL):REAL;
FUNCTION COS(X:REAL):REAL;
FUNCTION EXP(X:REAL):REAL;
FUNCTION ATAN(X:REAL):REAL;
FUNCTION LN(X:REAL):REAL;
FUNCTION LOG{X:REAL):REAL:
FUNCTION SQRT(X:REAL):REAL;

W R o O e

LU VR VRNY VIY VI VN 1 IO 1V R V1 T 1 1~V R =1

196 APPLE PASCAL OPERATING SYSTEM

UTILITY PROGRAM

197

Segment #22:

System version = II.1, code type is 6502
APPLESTU library unit (LINKED INTRINSIC)
{$ 1}

FUNCTION PADDLE (SELECT:
FUNCTION BUTTON(SELECT: INTEGER): BOOLEAN:
PROCEDURE TTLOUT (SELECT: INTEGER; DATA: BOOLEAN);
FUNCTION KEYPRESS: BOOLEAN:

FUNCTION RANDOM: INTEGER;

PROCEDURE RANDOMIZE;

PROCEDURE NOTE(PITCH,DURATION: INTEGER);

INTEGER) : INTEGER;

Segment #20:
System version = II.1, code type is 6582
TURTLEGR library unit (LINKED INTRINSIC)

TYPE
SCREENCOLOR=(none,white,black,reverse,radar,blackl,
green,violet,whitel,black2,orange,blue,white2};

PROCEDURE INITTURTLE:

PRUCEDURE TURN (ANGLE: INTEGER);

PROCEDURE TURNTO (ANGLE: INTEGER);

PROCEDURE MOVE(DIST: INTEGER):

PROCEDURE HMOVETO(X,Y: INTEGER);

PROCEDURE PENCOLOR (PENMODE: SCREENCOLOR);
PROCEDURE TEXTMODE;

PROCEDURE GRAFMODE;

PROCEDURE FILLSCREEN (FILLCOLOR: SCREENCOLOR) ;

PROCEDURE VIEWPORT (LEFT ,RIGHT,BOTTOM, TOP: INTEGER);

FUNCTION TURTLEX: INTEGER;

FUNCTION TURTLEY: INTEGER;

FUNCTION TURTLEANG: INTEGER;

FUNCTION SCREENBIT (X,Y: INTEGER): BOOLEAN;

PROCEDURE DRAWBLOCK{VAR SOURCE; ROWSIZE,XSKIP,¥SKIP,WIDTH,HEIGHT,
XSCREEN,YSCREEN,MODE: INTEGER);

PROCEDURE WCHAR (CH: CHAR);

PROCEDVRE WSTRING(S: STRING);

PROCEDURE CHARTYPE(MODE: INTEGER) ;

Segment #21:

System version = I1.l, code type is P-Code (least sig. 1st)
TURTLEGR data segment

————

198

APPLE PASCAL OPERATING SYSTEM

j SYSTEM RECONFIGURATION

N

L

(Ut VRt TR TR T VT TRV TRV TR ¥ ¥

=
=
A

The Apple Pascal Operating System keeps certain information about the

configuration of your system in a file called SYSTEM.MISCINFO .

During each system initialization this file is read into memory, and

from there it is used by many parts of the system, particularly by the

Editor.

SYSTEM.MISCINFO comes already set up to work correctly with your
Apple’s keyboard and its TV or monitor display, and you can operate
tEi system without ever having to study this section of the manual.

In addition, the language system diskecrte APPLE3: contains a Eilg
named SOROC.MISCINFO , which contains the configuration inEarmal:mn1
necessary to run the Apple Pascal system with a Soroc 10129 extertﬁ
terminal, and another file named HAZEL.MISCINFO , which cuntaini ;
configuration information for a Hazeltine 15@@ external terminal. 1:
use either of those terminals, it is only necessary to rename the o
SYSTEM.MISCINFO, and then change the name of either SOROC.MISCINFO or
HAZEL.MISCINFO (the one corresponding to your terminal) to)
SYSTEM.MISCINFO . Finally, you must read the next section of this
chapter, CHANGING GOTOXY COMMUNICATION, which tells you how to bind a
new GOTOXY routine into SYSTEM.PASCAL . That section has a complete
example for setting up the Apple to use a SOROC 1012 terminal.

You only need to read the rest of this section if you are going to use
the Apple Pascal system with an external terminal, and that external
terminal is neither a Soroc IQL2¢ nor a Hazeltine 15@@.

DISKFILES NEEDED

The following diskfiles allow you to use the system reconfiguration
utility program:

{any diskette, any drive; required to
start, and also required to be in
same drive any time the T(each

command is selected)

SETUP.CODE

Output codefile, creates (boot diskette, any drive; optional)

NEW.MISCINFO [l block]

The file SETUP.CODE is normally found on diskette APPLE3: . All
systems will normally start the reconfiguration program by X(ecuting
APPLE3:SETUP with APPLE3: in any available disk drive.

e
IMPORTANT: The T(eaching portion of this utility is a segment

procedure overlay, which means the system must re-access SETUP.CODE in
its original disk location when you type T for T(each. If you

UTILITY PROGRAM 199

select the T(each command, you mst first be sure the diskette
containing SETUP.CODE (usually APPLE3:) is still in the drive it
occupied when SETUP.CODE was X(ecuted. 1If it is not there when you
type T for T(each, the system may "hang", and may even cause damage
to the information on other diskettes in the system. Tt is not
necessary to keep APPLE3: in its drive after you have completed the
T(each sequence, or if you do not use the T{each command.

When you E(xit the reconfiguration utility program, your boot diskette
should be in the boot drive. 1If it is not there, the system will
tell you

PUT IN APPLEL:

(1f APPLEl: is your boot diskette).

One-drive note: You will normally put APPLE3: in the disk drive to
begin, and leave it there while changing the setup information. When
you are ready to Q{uit the reconfiguration utility and do a Dfisk
update, you can remove APPLE3: from the drive and put in your boot
diskette. Your boot diskette must be in the drive 1f you do a D(isk
update, which creates the file NEW.MISCINFO on the boot diskette. Put
the boot diskette in the drive before you E(xit the reconfiguration
utility program.

Two-drive note: You will normally place your boot diskette in the boot
drive, and place APPLE3: in the other drive to begin. Ordinarily, you

should leave these disks in their drives throughout the use of the
reconfiguration utilicy.

USING THE UTILITY

If you are going to use an external terminal, certain information
needs to be initially set up by you to conform to your particular
hardware configuration or to your taste or convenience. Most of this
information concerns the nature of your terminal and keyboard,
although there are a few miscellaneous fields.

The system reconfiguration utility is run by entering the Command
level of the system and, with APPLE3: in any available disk drive,
typing X for X(ecute. When the prompt message

EXECUTE WHAT FILE?

appears, respond by typing the filename

APPLE3:SETUP

200

APPLE PASCAL OPERATING SYSTEM

m oo oW oW omm

m o

N
L

mowommm

">

Ll el la | |
W A W L

VR UURE T VR TR VIR T TR T

i

—
|

(Note that you do not need to specify SETUP.CODE ; the .CODE suffix is
auromatically added to any filename you type.) You should then see

the following:

INITIALIZING: ssssonsvnnscnsssssssnsnnnnnnns

SETUP: C(HANGE T(EACH H(ELP Q(UIT [S.2]

All commands to the SETUP program are invoked by typing a single
letter chosen from the promptline

SETUP: C(HANGE T(EACH H(ELP Q(ULT

Type H for H(elp in finding out what the commands at this level do.
Type T if you wish the program to T(each you how to use the
reconfiguration utility. This command tells you how to enter non-
printing characters, how to avoid making a prompted change, how to
delete a typing error, how to change the default radix, and other

ugseful information.

<

« If you type T for T(each, you must first be sure tﬁat
:ﬁgggg?nfs sti{l inyihe drive it occupied when"APPLE3:SETUP.CDDL was
X(ecuted. If it is not there, the system may hang", and may even .
cause damage to the information on other diskettes in the system. t
is not necessary to keep APPLE3: in its drive after you have completed
the T(each sequence, or if you do not use the T(each command.

Type C if you wish to C(hange or examine the various items of the
system’s information about your hardware configuration. .Yc-u may
either change a single item that you specify from the LIST OF ALL
SETUP PARAMETERS (at the end of this section); or you may choose to
have the program step through all the parameters, letting you examine
or change each one. The T(each command gives a full explanation o

all of these options.

when you wish to make your configuration changes permanent

i ol The reconfiguration utility’s

and leave the reconfiguration program.
(Q(uit command offers several options:

D(isk update: creates the file NEW.MISCINFO, on the boot diskette
in any drive. This filename must later be changed to
SYSTEM.MISCINFO before the mew setup can be used by the
system. No message is given if the boot diskette is not
found, but no file NEW.MISCINFO is created. You are then
returned ta the Q(uit level of the reconfiguration program.

M{emory update: places the definitions in memory, where they
change the system setup until the next boot, RESET, or
initialization. You are then returned to the Q(uit level
of the reconfiguration program.

UTILITY PROGRAM 204

——

e et —

R(eturn: takes you back to the main prompt line of the
reconfiguration program, in case you are not done.

MISCELLANEQOUS INFORMATION

HAS CLOCK Value: TRUE or FALSE

)

i(elp: explains the Q{uit options, and then returns you to the

Q{uit level of the reconfiguration program. Will be FALSE for the Apple. No provision has been made for

with accessory real-time clocks.
E(xit: returns you to the operating system”s Command level. operation a ¥

Put your boot diskette back in the boot drive before
you type E .

STUDENT Value: TRUE or FALSE

The operation of the reconfiguration utility is self teaching (just
type T for T(each from the main SETUP prompt line), so the rest of

this section explains the various items of information that this
utility was designed to change.

If true, tells the system to simplify certain parts of the system
for novice use. E.g., an error detected while compiling sends
student back to the Editor without choice.

EXTERNAL TERMINAL REQUIREMENTS

By using an Apple Communications Interface Card and an external terminal
such as the Soroc IQl2¢, it becomes possible to do text and program
editing in upper and lower case characters, on a large (8§ characters by
24 lines) screen. For maximum effectiveness, the Editor requires a
reasonably powerful CRT terminal with the following features:

HAS 85104 Value: TRUE or FALSE

This is always FALSE on an Apple.

HAS BYTE FLIPPED MACHINE Value: TRUE or FALSE

CLEAR TO END OF LINE Must be FALSE for the Apple. |

CLEAR TO END OF SCREEN

GOTOXY ADDRESSING - go directly to a given row and column on the screen

GENERAL TERMINAL INFORMATION

NDFS = non-destructive forward space (the inverse of back- HAS SLOW TERMINAL Value: TRUE or FALSE.

space)

When this field is true, the system issues abbreviated promptlines
and messages. Suggested setting: 6@@ baud and under — True,
otherwise False. This is normally FALSE on the Apple.

LF = down one line (and if at the bottom of the screen
scrolls up)

RLF = reverse line feed (up one line; not required to
reverse scroll)

HAS RANDOM CURSOR ADDRESSING Value: TRUE or FALSE
The Soroe IQL2¢, DEC VT52 and Hazeltine 150@ are examples of such
terminals. The main advantage of using an external terminal with the
Apple Pascal system is that it can provide upper and lower case for
text editing, and allows you to see the system”s entire eighty-
character line at one time. For most programming purposes, an external
terminal is completely unnecessary.

Only applies to video terminals. See Section 4.7 in order to
allow the system to make use of this feature. On the Apple,
this field is TRUE.

The reconfiguration utility does not tell the system how to do random-
dccess cursor addressing on an external terminal (For those terminals

which have this capability). To allow the system to use that feature,
please refer to the next section, CHANGING GOTOXY COMMUNICATION.

HAS LOWER CASE Value: TRUE or FALSE

This is normally FALSE for an Apple, although it may be true if
yYou have an external terminal with lower case.

Note: A parameter value of "NUL" (ASCII @) usually means the parameter
does not apply to the system being setr up.

momom oo oMo oMm OO Y O W e
LU LR LRt L T I T T T T 1T O =1 I 1T R =V R 7 S T)

-

202 APPLE PASCAL OPERATING SYSTEM UTILITY PROGRAM 203

SCREEN WIDTH Value: The number of characters

per line of a terminal.

For most external terminals, this should be B@. For the Apple
with no external terminal, setting a value of 79 allows almost all
of the system”s B@-character window to bhe viewed (with the help of
CTRL-A), while causing some prompt lines to be displayed in a
shortened form that is better suited to a 4@-character screen.

SCREEN HEIGHT Value: The number of lines per display

screen of a video terminal.

Set to { for a hard copy terminal or other terminal in which
paging is not appropriate. Some terminals may require you to set
the sereen to one more than the number of available sereen lines
to insure proper scrolling. This is set to 24 for the Apple.

NONPRINTING CHARACTER Value: Any printing character.

Specifies what should be displayed by the terminal to indicate the
presence of a non-printing character. Recommended setting: ASCIL 7 .

The number of nulls to send
after a vertical cursor move.

VERTICAL MOVE DELAY Value:

Many types of terminals require a delay after certain cursor
movements which enables the terminal to complete the movement
before the next character is sent. This number of nulls will be
sent after carriage returns, ERASE TO END OF LINE, ERASE TO END OF
SCREEN and MOVE CURSOR UP. This number is @ on the Apple.

CONTROL KEY INFORMATION

You may choose which control keys suit your particular keyboard
arrangement and your taste. Apgain, this section has already been set
up for your Apple.

Some keyboards generate two codes when certain single keys are
pressed. Lf that is the case for any of the keys mentioned here, it
must be noted in the field PREFIXED [<fieldname>] which has either the
value TRUE or the value FALSE. The prefix for all such keys must be
the same and must be noted in the field LEAD IN FROM KEYBOARD. This
feature may also be used to access control functions with two-
character sequences if your keyboard is unable to generate many
control characters. As an example, suppose your keyboard had a vector
pad which generated the value pairs ESC-U , ESC-D , ESC=L and ESC-R

204 APPLE PASCAL OPERATING SYSTEM

L R R

RO W OWR R R R LR W R e i W W

L

for the keys for Up-arrow, Down-arrow, Left-arrow and Right-arrow,

respectively. Assume also that all other keys on the keyboard

generate only single codes. Then the user would give the following

fields the following values:
KEY FOR MOVING CURSOR UP ASCITI U
KEY FOR MOVING CURSOR DOWN ASCII D
KEY FOR MOVING CURSOR LEFT ASCIT L
KEY FOR MOVING CURSOR RIGHT ASCII R
LEAD IN FROM KEYBOARD ESC
PREFLXED [KEY FOR MOVING CURSOR UP] TRUE
PREFIXED [KEY FOR MOVING CURSOR DOWN] TRUE
PREFIXED [KEY FOR MOVING CURSOR LEFT] TRUE
PREFIXED [EEY FOR MOVING CURSOR RIGHT] TRUE

KEY FOR STOP

Console output stop character. The STOP character i{s a toggle; when
pressed, the key will cause output to the file “OUTPUT® to cease.
When the key is depressed again, the write to file "OUTPUT® will
resume where it left off. This function is wvery useful for reading
data which is being displayed faster than one can read. Suggested
setting: CTRL-S

KEY FOR FLUSH

Console output cancel character. Similar in concept and usage to the
STOP key, the FLUSH key will cause ocutput to the file “QUTPUT” to go
undisplayed until FLUSH is pressed again or the system writes to file
"KEYBOARD®. Note that, unlike the STOP key, processing continues
uninterrupted while output poes undisplayed. Suggested setting:
CTRL-F

KEY FOR BREAK

Typing the character BREAK will cause the program currently executing to
be terminated with a run-time error immediately. Suggested setting:
something difficult to hit accidentally. This is set to ASCII @ on the
Apple which, in this case, represents CTRL-@ .

KEY TO END FILE

Console end of file character. When reading from the files KEYBOARD
or INPUT or the unit CONSOLE: , this key sets the Boolean function EOF
to TRUE. See the description of the EOF intrinsic in the Apple Pascal
Language Reference Manual. Suggested setting: ASCII ETX (CTRL-C)

UTILITY PROGRAM 205

KEY TO DELETE CHARACTER

Each time you press this key one character is removed from the current
line, until nothing is left on that line. Suggested setting: ASCII BS
(left-arrow key, or CTRL-H)

KEY TO DELETE LINE

Depressing LINE DELETE will cause the current line of input to be
erased. Sugpested setting: CTRL=X

The rest of this section contains information
only of interest to users who are using video
display terminals with a selective erase
capability and may be safely ignored by users
having any other kind of terminal, such as
hardcopy terminals or storage tube terminals.

KEY TO MOVE CURSOR UP

KEY TO MOVE CURSOR DOWN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT

These keys are used by the screen oriented editor to control the basic
motions of the cursor. If the keyboard has a vector pad, set these
fields to the values it generates. Otherwise, we suggest that you
choose four keyboard keys which lie in the pattern of a vector pad,
and use the control codes which correspond to them. For example, the
keys "0", ".", "K" and “;’ on most keyboards encircle an imaginary
vector pad. You may wish to use a prefix character before such keys
as described above.

On the Apple, of course, the right-arrow and left-arrow keys serve

for right and left cursor motion. Because of their vertical
orientation, CTRL-0 and CTRL-L have been chosen for up and down motion
of the cursor.

EDITOR "ESCAPE" KEY
The key which, in the system screen oriented editor, is to be used to

escape from commands, reversing any action taken. Suggested setting:
ESC

206 APPLE PASCAL OPERATING SYSTEM

OO oo oo oo oo o oW e

=

ul

UV UV UV Y VI VTV R T VR T VO T TR T TR T T TRV

i\

EDITOR "ACCEPT" KEY

The key which, in the system screen oriented editor, is to be used to
accept commands, making permanent any action taken. Suggested
setting: ASCII EIX (CTRL-C).

VIDEO SCREEN CONTROL CHARACTERS

This section describes the characters which, when sent to the terminal
by the computer, control the terminal®s actions. You should consult
the manual for your terminal to find the appropriate values. If a
terminal does not have one of these characters, the field should be
set to # unless otherwise directed.

Some screens require a two-character sequence to exercise some of
their functions. If the first character in all of these sequences is
the same, it can be set as the value of the field LEAD IN TO SCREEN
and for each <fieldname> which requires that prefix, the user must set
the field PREFIX[<fieldname>] to TRUE. For example, suppose ERASE TO
END OF LINE and ERASE TO END OF SCREEN were respectively performed by
the sequences ESC-L and ESC-5 but all the other sereen controls

were single characters. The user would then set the following fields
to the following values:

LEAD IN TO SCREEN ASCII ESC
ERASE TO END OF LINE ASCII L
ERASE TO END OF SCREEN ASCII S
PREFIXED [ERASE TO END OF SCREEN] TRUE
FPREFIXED [ERASE TO END OF LINE] TRUE

ERASE TO END OF SCREEN

The character which erases the screen from the current cursor position
to the end of the screen.

ERASE TO END OF LINE

The character which, when sent to the screen, erases all characters

from the current cursor position to the end of the line the cursor is
on.

ERASE LINE

The character which, when sent to the screen, erases all the
characters on the line the cursor is currently on.

UTILITY PROGRAM 207

*

ERASE SCREEN

The character which, when sent to the screen, erases the entire
SCreens

BACKSPACE

The character which, when sent to the screen, causes the cursor
to move one space to the lefte.

MOVE CURSOR HOME
The character which moves your cursor to the upper left of the current

page. IMPORTANT: If your terminal does not have such a character,
ser this field to CARRIAGE RETURN, ASCII mnemonic CR.

MOVE CURSOR UP
MOVE CURSOR RIGHT

The characters which move your cursor non-destructively one space in
those directions.

LIST OF ALL SETUP PARAMETERS

Parameter Default value for SYSTEM.MISCINFO

Fleld Name on APPLEQ: or APPLEl:

BACKSPACE left-arrow key {CTRL-H)
ELITOR ACCEPT KEY CTRL~C

EDITOR ESCAPE KEY ESC

ERASE LINE NUL (ASCII @)
ERASE SCREEN CTRL-L

EKASE TO END OF LINKE CTRL=]

ERASE TO END OF SCREEN CTRL=-K

HAS 851(@A FALSE

HAS HBYTE FLIPPED MACHINE FALSE

HAS CLOCK FALSE

HAS LOWER CASE FALSE

HAS RANDOM CURSOR ADDRESSING TRUE

HAS SLOW TERMINAL FALSE

KEY FOK BREAK NUL (ASCII @)
KEY FOR FLUSH CTRL-F

EEY FOR STOP CTRL~-S

KEY TO DELETE CHARACTER left=arrow key (CTRL=H)
KEY T0 DELETE LINE CTEL=-X

208 APPLE PASCAL OPERATING SYSTEM

W

L

L UB VRN VY Ut U VR TV I 1T R Y T R ™|

KEY TO END FILE

KEY TO MOVE CURSOR DOWN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT
KEY TO MOVE CURSOR UP
LEAD IN FROM KEYBOARD
LEAD IN TO SCREEN

MOVE CURSOR HOME

MOVE CURSOR RIGHT

MOVE CURSOR UP

NON PRINTING CHARACTER

PREFIXED
PREFIXED
PREFIKED
PREFIXED
PREFIXED
PREFIXED
PREFLXED

[DELETE CHARACTER]
[EDITOR ACCEPT KEY]
[EDITOR ESCAPE KEY]
[ERASE LINE]

[ERASE SCREEN]

[ERASE TO END OF LINE)

[ERASE TO END OF SCREEN]

PREFIXED
PREFIXED
PREFIXED
PREFIXED
PREFIXED
PREFIXED
PREFIXED
PREFIXED
PREFIXED
PREFIXED
PREFIXED
PREFIXED

[KEY FOR BREAK]

[KEY FOR FLUSH]

[KEY TO MOVE CURSOR DOWN]
[KEY TO MOVE CURSOR LEFT]
[KEY TO MOVE CURSOR RIGHT]
[KEY TO MOVE CURSOR UP]
[KEY FOR STOP]

[KEY TO DELETE CHARACTER]
[KEY TO DELETE LINE]

[KEY TO END FILE]

[MOVE CURSOR HOME)]

[MOVE CURSOR RIGHT]
PREFIXED [MOVE CURSOR UP]
PREFIXED [NON PRINTING CHARACTER)
SCREEN HEIGHT

SCREEN WIDTH

STUDENT

VERTICAL MOVE DELAY

CTRL-C

CTRL-L

left-arrow key (CTRL=H)
right-arrow key (CTRL-U)
CTRL-0D
NUL
NUL
CTRL-Y
CTRL=-\,
CTRL-_
?
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
24

79
FALSE
¢

(ASCII @)
(ASCII @)

UTILITY PROGRAM 209

CHANGING GOTOXY COMMUNICATION DISKFILES NEEDED

The following diskfiles allow you to use the utility for changing
GOTOXY communication with the screen.

The GOTOXY procedure, which allows the Apple Pascal operating system to
communicate with the video screen, is already set up correctly for the
Appie. GOTOXY is included in the system as one of the intrinsic

procedures in the Apple Pascal language. See the Apple Pascal Language

Reference Manual for more details about the intrinsic GOTOXY . This E’

idiu.

BINDER.CODE (any diskette, any drive; required
only to start)

'I

portion of the manual is only presented for your reference, as you will

not normally need to change the GOTOXY procedure unless you want to use SYSTEM.PASCAL (boot diskette, any drive; required |
an external terminal. to start) ;
If you are going to use an external terminal, you should first read the Codefile containing (any diskette, any drive; required
previous section of this chapter, SYSTEM RECONFIGURATION, then follow new GOTOXY procedure throughout; for SOROC IQ12¢ use

the directions given there for creating a new boot diskette file

SOROCGOTO.CODE; for Hazeltine
SYSTEM.MISCINFO .

15¢% use HAZELGOTO.CODE)

1

Luli‘ilu

The program BINDER.CODE on diskette APPLE3: alters the file SYSTEM.PASCAL

on the boot diskette. You are prompted to provide "GOTOXY", a procedure IE_ OQutput codefile, creates (boot diskette, any drive; required
n

NEW.PASCAL [36 blocks] throughout; can later be used to

which must be created and bound into the system (only once) in order to
replace SYSTEM.PASCAL)

make the system communicate correctly with your external terminal’s scree

The file BINDER.CODE is normally found on diskette APPLE3: . When the
utility for changing GOTOXY communication terminates, your boot
diskette should be in the boot drive. If it is not there, the

system will tell you

On diskette APPLE3: there are examples of Pascal GOTOXY procedures
already written for two of the more popular external terminals. The
file SOROCGOTO contaims the correct GOTOXY procedure for the Soroe
10123, and the file HAZELGOTQ contains a GOTOXY for the Hazeltine

15¢@. These procedures have already been compiled into their .CODE
versions, but the .TEXT versions have been included also, to give you a
mode] which can be modified for use with other terminals.

PUT IN APPLE]:

(if APPLEl: is your boot diskette).

If the GOTOXY cursor-addressing procedure for your terminal is not
already on APPLE3:, you must create one (by modifying SOROCGOTO.TEXT)
and compile it. The procedure may NOT be named GOTOXY.

One-drive note: First, use the Filer to T{(ransfer APPLE3:BINDER.CODE
and the file containing your new GOTOXY procedure (for a SOROC IQ12@,
this would be APPLE3:SOROCGOTO.CODE) onto your boot diskette. You are
The GOTOXY procedure sends the cursor to a point on the screen then ready to X{ecute BINDER with your boot diskette in the drive.
determined by a specified pair of coordinates (XCOORD,YCOORD). The
procedure assumes the following: Two-drive note: You will normally place your boot diskette in the boot
drive, and place APPLE3: in the other drive. You are then ready to

l« A video screen terminal X{ecute APPLE3:BINDER .

2. An Apple Pascal system

3. The upper left-hand corner of the screen is X=@, Y=0

4. GOTOXY corrects for bad input data: X-coordinates must
be limited to the number of characters per line
(integers in the range @ through 79 for a SOROC IQ12¢);
Y-coordinates must be limited to the number of lines
per screen (integers in the range @ through 23 for a
SOROC IQl2@}.

-

EXAMPLE: SETUP FOR SOROC 1120

You are about to create a new boot diskette, so you should first make
a copy of the current boot diskette APPLELl: .

m m

Now, from the Command level, with all the necessary files in the

lah i 5
In writing your own Pascal GOTOXY procedure, here are two common errors: available disk drives, type X for X(ecute. Answer the question

VU VRV R VR TR TR T TR T

Possible error: Possible cure: E - EXECUTE WHAT FILE? |
|

Nil memory reference Remove the program heading by typing the file name
at compile time and try again E a APPLE3: BINDER |
Value range error (*#5U~-*) should be the first f
when executing BINDER thing in the GOTOXY file |

i

210 APPLE PASCAL OPERATING SYSTEM . UTILITY PROGRAM 21

One-drive note: You have T(ransferred BINDER.CODE to your boot
diskette, APPLEl: . You should type

APPLE]1:BINDER

(Note that it is not necessary to specify BINDER.CODE ; the .CODE suffix

is automatically added if you don’t type 1t).
soon show this ticle:

The screen will

APPLE GOTOXY BINDER

The program now looks for the old file SYSTEM.PASCAL, which must be on
your boot diskette in any drive. 1If you see this message

ERROR: NO FILE SYSTEM.PASCAL
PRESS SPACE TO CONTINUE

your boot diskette was probably not in any drive. You should put your
boot diskette in the boot drive and press the Apple”s spacebar to
return to Command level. Then you can try to X(ecute the program
again.

When the program has successfully found the boot diskette file
SYSTEM.PASCAL , it prompts you to specify the

FILE WHICH CONTAINS GOTOXY?
For this example, you should respond by typing
APPLE3: SOROCGOTO

(for a different terminal, this would be the new GOTOXY procedure you
compiled after modifying SOROCGOTO.TEXT for your terminal). The
program looks first for a file whose filename is exactly as you typed
it. If that search is not successful, the suffix .CODE is added to
the filename and the search is made again. When your file is found,
the disks whirr, and messages appear saying

COPYING SEGMENT
COPYING SEGMENT
COPYING SEGMENT
COPYING SEGMENT
COPYING SEGMENT
COPYING SEGMENT
COPYING SEGMENT

5

W E W R e S e

and so ons When the COMMAND prompt line reappears, the copy of
APPLEl: has the new file NEW.PASCAL on it. This file is the old
SYSTEM.PASCAL with the new GOTOXY procedure for your terminal bound
into it. Before the system can use this new file, the old file

212 APPLE PASCAL OPERATING SYSTEM

i W W W | |

SYSTEM.PASCAL must be removed from the disk (or at least renamed) and
NEW.PASCAL must be given the name SYSTEM.PASCAL . To do this all at
once, type F to enter the Filer, and then type T for T(ransfer.
The following dialog will then do the job:

TRANSFER? NEW.PASCAL
TO WHERE? SYSTEM.PASCAL[36]
REMOVE OLD APPLE1:SYSTEM.PASCAL 7 Y
APPLE1:NEW.PASCAL
==> APPLEL:SYSTEM.PASCAL

(Remember that the Apple produces [by typing CTRL-K, and] by
typing SHIFT-M .) A copy of NEW.PASCAL has now replaced the old
SYSTEM.PASCAL and that copy was renamed at the same time to
SYSTEM.PASCAL .

You can now R{emove the originmal file NEW.PASCAL from the boot
diskette. Finally, to avoid confusion, C{hange the name of this new
boot diskette from APPLEl: to SOROCL: and label the diskette with this
name.

At this time, you should also replace the file SYSTEM.MISCINFO on
SOROC1: with the file called APPLE3:S0ROC.MISCINFO (for a different
terminal, this would be the NEW.MISCINFO you generated with the SETUP
program, described in the previous section of this chapter, SYSTEM

RECONFIGURATION). This dialog will do it all at once:
TRANSFER? APPLE3:SOROC.MISCINFO
TO WHERE? SOROC1:SYSTEM.MISCINFO[L]

REMOVE OLD SOROC1:SYSTEM.MISCINFO ? ¥
APPLE3:S0R0OC.MISCINFO
-=> SOROCL:SYSTEM.MISCINFO

Note: the information you have just changed in making SOROCL: will not

affect the system until you reboot the system with SOROCl: in the boot
disk drive.

UTILITY PROGRAM 213

REMOVING LINEFEED FROM RETURN

Various printers used with the Apple Pascal system have different
requirements for dealing with RETURN (carriage return, or ASCII CR)
characters. Some printers require that a linefeed character follow
every RETURN character, while other printers automatically supply
their own linefeed following every RETURN character.

The file which contains the system’s hardware configuration
information, SYSTEM.MISCINFO, does not have any information about the
printer’s requirements. The Apple Pascal system normally sends out a
linefeed after every RETURN character. This matches the requirements
of most printers. However, on some printers this may cause double
spacing between lines, and some printers are unable to work properly
if sent these RETURN+linefe-d combinations. For printers that do not
work properly when sent a linefeed after every RETURN character, the
Apple Pascal system provides the Linefeed utility program.

DISKFILES NEEDED

The following diskfile allows you to use the utility program for
preventing a linefeed from being sent to the printer after every
RETURN character.
LINEFEED.CODE (any diskette, any drive; required
only to start; changes memory only,
no change to any permanent file)

The file LINEFEED.CODE is normally found on diskette APPLE3: . When
the Linefeed utility program terminates, your boot diskette should be
in the boot drive. If it is not there, the system will tell you to

PUT IN APPLE]:

(if APPLE1l: is your boot disketre).

One-drive note: You can first use the Filer to T(ransfer the file
LINEFEED.CODE from APPLE3: onto your boot diskette. You are then
ready to X(ecute LINEFEED with your boot diskette in the drive.
works well because the boot diskette (and the necessary file
SYSTEM.PASCAL) is available wheu you return to COMMAND level after
using the utility.

This

Two-drive note: You will normally place your boot diskette in the hoot
drive, and place APPLE3: in the other drive. You are then ready to
X(ecute APPLE3:LINEFEED .

244 APPLE PASCAL OPERATING SYSTEM

N

!
(i

m
i‘i‘

N
L

=

M N M-

i i i

UL

rE

USING THE UTILITY

From command level, with APPLE3: in any available drive, type
X(ecute. Answer the question

X for

EXECUTE WHAT FILE?

by typing
APPLE3:LINEFEED

One-drive note: You have T(ransferred LINEFEED.CODE to your boot
diskette, APPLEl: for example. You should therefore type

APPLEL:LINEFEED

(Note that you do not need to specify LINEFEED.CODE ; the .CODE suffix
automatically added if you forget to type it.) The system then
executes LINEFEED.CODE . No messages are displayed, and the COMMAND
prompt line reappears.

After running this utility, until the next system boot, RESET, or
initialization, a linefeed is no longer sent to the printer after
every RETURMN character. This utility can be used to cure double
spacing and other printer troubles associated with linefeeds.

EASIER USE OF THE UTILITY

If you use the same printer constantly, and it always needs to have no
linefeed sent after RETURN characters, you will have to execute
LINEFEED.CODE every time you start the system. You could T(ransfer
LINEFEED.CODE permanently to your boot diskette, and that would
certainly make things simpler, but you would still have to remember to
X(ecute LINEFEED evervtime you start the system.

Fortunately, there is an easler way: make yours a "turnkey" system,
which automatically executes LINEFEED.CODE everytime you start the
system. To do this, simply T(ransfer the file LINEFEED.CODE from
APPLE3: to your boot diskette, and then C{hange its filename on the
boot diskette to SYSTEM.STARTUP . That®s all there is to it. Every
time you boot your system using that boot diskette, the file
SYSTEM.STARTUP will be automatically executed.

UTILITY PROGRAM 245

is

" |
i

USING THE UTILITY

From Command level, with APPLE3: in any available disk drive, type X
for X(ecute. When you see this question

CALCULATOR

This utility turns your Apple into a VERY simple calculator capable of
addition, subtraction, multiplication, and division only. Results are
expressed in scientific notation, rounded to six digits and followed
by a power-of-ten indicator from E37 to E-37. Input numbers must not
be expressed in scientific notation, and should not contain more than
36 digits.

Sl
i

EXECUTE WHAT FILE?

o
i

respond by typing

APPLE3:CALC

\
1 B
1w

One-drive note: If you have T(ransferred CALC.CODE from APPLE3}: to
your boot diskette, as suggested, you will respond by typing (assuming
APPLEl: is your boot diskette, for example)

DISKFILES NEEDED

The following diskfile 1s needed in order to use the calculator
utility program:

L
LII‘

APPLE1:CALC

CALC.CODE {any diskette, any drive; required

1 s the . ff
onle 5 Bradt) (Note that you do not need to specify CALC.CODE ; the .CODE suffix is

added automatically if you don”t type it.) After this response,
CALC.CODE is executed, and this prompt appears just below the top
screen line saying EXECUTE WHAT FILE? :

The file CALC-CODE is normally found on diskette APPLE3: . When you
quit the calculator program, or when any error terminates the program,
your hoot diskette should be in the boot drive. If it is net there,
the system may "hang" in more or less dramatic ways, or you may see
the message

-1

You may now type any simple mathematical expression, using only these

PUT IN APPLEL: operators:

+ addition

- subtraction

® multiplication
/ division

(if APPLEl: 1s your boot diskette). Even after correctly responding
to this message, you will often have to re-initialize the system (by
pressing the RESET key) before the system will respond normally to
commands again.

All multiplications and divisions are carried out before additions and
subtractions are executed. Use parentheses to keep portions of the

expression unambiguous. When the expression is as you want it, press
the RETURN key to see the result. Here are a few illustrative examples:

Mmoo Om R
TR T T T

One-drive note: On single-drive systems, the safest approach is to use
the Filer to T(ransfer the file CALC-CODE from APPLE3: onto your boot
diskette before X(ecuting CALC . This is best because the boot
diskette (and the necessary file SYSTEM PASCAL) is available when you
return to COMMAND level after quitting the utility or after any error

5 & *
temminates the program. However, vou can start the caleculator utility >(2+3)E;EBEE1
with APPLE3: in the drive. When the utility’s First prompt appears, 4
you should then put your boot diskette in the drive. Be sure the hoot —>5/8

diskette is in the drive before you quit the calculator utility

DEORTI: T Yo N S RIS DIVISION BY ZERO: TRY AGAIN

->19.2357/2873.456
6.69427E=3

VR VY

Two-drive note: You will normally place your boot diskette in the boot
drive, and place APPLE3: in the other drive. You are then ready to

X(ecute APPLE3 CALC .
=>4PP. 2341 2. 37+4 5. 78=-595.98+1 6. P

-1.2160¢E2

E m om omw
M |

=>45%=2
"(" MISSING: TRY AGAIN

=>45%(=2)
=9. #3PAGEL

L
|

UTILITY PROGRAM 217

216 APPLE PASCAL OPERATING SYSTEM

Responding to the prompt =-> by just pressing the RETURN key
terminates the calculator utility and returns you to the operating

system’s Command level. Be sure your boot diskette is in the boat
drive before you quit the program in this way.

Occasionally, you may run into a problem like this:
-»372

UNIMPLEMENTED INSTRUCTION
st 1, pé 19, 1# 92
TYPE <SPACE> TO CONTINUE

After a message like this last one, you should make sure your boot
difkette is in the boot drive, and then press the Apple’s spacebar.
This causes the system to be re-boated, and you can then X(ecute the
calculator utility again.

UTILITIES SUMMARY

FORMATTING NEW DISKETTES
l. X({ecute APPLE3:FORMATTER

2. When asked FORMAT WHICH DISK? , put a new diskette in any drive
and type that drive‘s volume number.

3. To quit, press the RETURN key in response to FORMAT WHICH DISK?

THE SYSTEM LIBRARIAN

l. X(ecute APPLE3:LIBRARY

2. When asked for an OUTPUT CODE FILE —> » type a filename for the
new library file. E.g., MYDISK:NEW.LIBRARY

3. When asked for a LINK CODE FILE -> » type the name of the file

which contains the first items to Eeg-s

put in the new library.
APFLE] :SYSTEM.LIBRARY

4» To transfer an item from the source Link Code File to the new
library Output Code File, type the item’s Link Code File slot
number (@ to 15) and press the spacebar. When asked SLOT TO LINK
INTO? , type the number of the
the Qutput Code File and press the spacebar.

5. Type N to begin taking items from a N(ew Link Code File.

218 APPLE PASCAL OPERATING SYSTEM

slot you want the item to occupy in

T

W =

U

i

Tl
i

U U R T U TR TR TR TR TR T

(=]

A\

When all desired items have been transferred to the new library,
lock the new library by typing Q for Q(uit. When asked NOTICE? ,
type a copyright message or press RETURN.

To use the new library, it must be placed on your boot diskette
and it must be named SYSTEM.LIBRARY

LIBRARY MAPPING

3.

¥(ecute APPLEJ:LIBMAP

When prompted to ENTER LIBRARY NAME: , type the name of the

library or other code file whose contents you wish to see mapped.
E.g., APPLEl:SYSTEM.LIBRARY

When asked LIST LINKER INFO TAELE? , press the spacebar or RETURN
key unless you want that information.

When prompted for a MAP OUTPUT FILE NAME: , type the name of the
diskette file or other device to which you wish the map sent.
Just pressing the RETURN key sends the map to CONSOLE: .

When prompted again to ENTER LIBRARY MAME: , type the name of the
next library file whose contents you wish mapped, or press the
RETURN key to quit the program.

SYSTEM RECONFIGURATION

1.

To use your system with an external terminal, make a copy of
APPLEl: for use as your new boot diskette. Give this new boot
diskette a different name, such as SOROCl: or BRIAN: .

terminal
new boot

If your
to your

is a Soroc IQ12@, T(ransfer APPLE3:S0ROC.MISCINFO
diskette and change its filename to SYSTEM.MISCINFO

terminal
new boot

If your
Lo Your

is a Hazeltine 15@@, T(ransfer APPLE3:HAZEL.MISCINFO
diskette and change its filename to SYSTEM.MISCINFO

If your rerminal is neither of the above, X(ecute APPLE3:SETUP ,
and let the program T(each you how to C(hange the parameters to

suit your terminal. When the parameters are set correctly, Q(uit
and do a D(isk update. This creates the file NEW.MISCINFO on your

boot diskette. Then E(xit the program. Finally, you must

T(ransfer NEW.MISCINFO to your new boot diskette and change this
file’s name to SYSTEM.MISCINFO

Read the next section, which tells how to change the GOTOXY Pascal
procedure to work correctly with your terminal.

UTILITY PROGRAM 219

CHANGING GOTOXY COMMUNICATION

le

Read the previous section on reconfiguring vour system to suit
your external terminal.

X(ecute APPLE3:BINDER

When you are asked FILE WHICH CONTAINS GOTOXY? , type the name of

the codefile containing the new GOTOXY proecedure for your terminal.

One-drive note: this file must be on your hoot diskette.
If your terminal is a Soroc IQl2§, type APPLE3:SCUROCGOTO
Lf your terminal is a Hazeltine L5@@, type APPLEJ}:HAZELGOTO

Lf your terminal Is neither of the above, type the name of the
codefile containing a new GUTOXY procedure that you modified from
APPLE3:50R0OCGOTO.TEXT to suit your terminal and then compiled.

I'his program creates the file NEW.PASCAL on your boot diskette.
You must now T(ransfer MNEW.PASCAL onto the new boot diskette
created in the previous section, and change the name of this file
to SYSTEM.PASCAL . Your aystem will discover the new files
SYSTEM.MISCINFO and SYSTEM.PASCAL the next time you boot with your
new boot diskette.

REMOVING LINEFEED FROM RETURN

1.

The Apple Pascal system automatically supplies a linefeed after
every RETURN character sent to the printer. If your printer does
not work correctly with this arrangement, X{ecute APPLE3:LINEFEED

Until the next boot, RESET, or initializatlon, no linefeed will be
sent to the printer after RETURN characters.

You may wish to put LINEFEED.CODE on your boot diskette, and
change its name to SYSTEM.STARTUP Then this utility will be
executed automatically, each the system is booted.

220 APPLE PASCAL OPERATING SYSTEM

" oE w

L

ul

w
-

AW W W W W R W W W W

o

i

CALCULATOR

.

2.

f -
-

X(ecute APPLE3:CALC

When you are prompted => , Cype any mathematical expression
involving decimal numbers with fewer than 36 digits, and the
Use parentheses (and) to keep
Example:

operators + - * [/
expressions unambiguous.

=>(2.32+.029)*(=1.75/4394.17)
Press the RETURN key to see the result of evaluating the

expression, expressed in scientific notation with six digits and a
power—of-ten indicator. HResult of above example:

-9.355@1E~4 :
-9.355P1E-4 = =9.355@1*(1¢) =

In other notation, - PP@E935501

To quit, press RETURN when prompted ->

UTILITY PROGRAM 221

ARCHITECTURE
~ OF THE P-MACHINE

m m

B mm om m om om®

222 APPLE PASCAL OPERATING SYSTEM UTILITY PROGRAM: 223

TECHNICAL INFORMATION

INTRODUCTION

The Apple Pascal "Pseudo-machine", or "P-machine", a version of the
UCSD Pascal P-machine, is the software-generated "device" which
executes P-code as its "machine" language.
under a form of UCSD Pascal has been programmed to "look like" this
common P-machine, from the viewpoint of a program being executed.

The

This appendix, to be used in conjunction with the next appendix
OPERATION OF THE P-MACHINE, describes the P-machine "hardware,"
communication with the ‘operating system, error handling, and the
mnemonic Instruction set.

HARDWARE EMULATION: REGISTERS

The

an evaluation stack, several registers, and a user memory containing a
program stack and a heap.
Structures, except IPC, which is a pointer to byte-aligned instructions.

The

SF:

IPC:

224

Every computer operating

N I T T I = R 7~ R T~ T 7~ TR~ TR 7 TR TR TR T~)

P-machine supports the following:

l. Variable addressing, including strings, byte arrays, packed

fields, and dynamic variables

Logical, Integer, real, set, array, and string top-of-stack
arithmetiec and comparisons

Multi-element structure comparisons
Several types of branches

Procedure and function calls and returns, including
overlayable procedures

Miscellaneous procedures used by systems programs

P-machine uses lb=bit words, with two 8-bit bytes per word. It has

All registers are pointers to word-aligned
registers, sometimes referred to as "pseudo—variables", are:

evaluation Stack Pointer. A pointer to the
evaluation stack (one byte beyond the last
Apple, the evaluation stack uses a portion
stack, starting in hex memory location LFF and growing down toward
hex location 1@#@. It is used to pass parameters, return functiom
values, and as an operand source for many instructiomns. The
evaluation stack is extended by loads, and is cut back by stores
and arithmetic operations.

current "top" of the
byte in use). In the
of the 65§2°s hardware

mm oo oW OO M W M

Interpreter Program Counter. Contains the address of the next
instruction to be executed, in the code segment of the currently
executing procedure.

-

APPLE PASCAL OPERATING SYSTEM

m A A

SEG: SEGment pointer points to the procedure dictionary of the segment
to which the currently executing procedure belongs. (See this
manual®s appendix OPERATION OF THE P-MACHINE for illustrations.)
JTAB: Jump TABle pointer. A pointer to the table of attributes and
jump table entries in the procedure code section of the currently
executing procedure. (See this manual’s appendix OPERATION OF THE
P-MACHINE for illustrations.)

KP: program stacK Polnter. A pointer to the current top of the
program stack. The program stack starts in high user memory and
grows downward toward the heap. (See this manual’s appendix
OPERATION OF THE P-MACHINE for illustrations.)

MP: Markstack Pointer. A pointer to the low byte of MSSTAT, in the
topmost Markstack on the program stack, in the activation record of
the currently executing procedure. Variables local to the current
procedure are accessed by indexing off MP.

NP: New Pointer. A pointer to the current top of the dynamic heap
(one byte beyond the last byte in use). The heap starts in low user
memory and grows upward toward the program stack. It contains all
dynamic variables (see Jensen and Wirth, Chapter 1@8). It is
extended by the standard procedure “new”, and is cut back by the
standard procedure ‘release”.

BASE: BASE Procedure. A pointer to the activation record of the most
recently invoked base procedure (lex level (). Global (lex level @)
variables are accessed by Indexing off BASE.

COMMUNICATION BETWEEN OPERATING
SYSTEM AND THE P-MACHINE

It is sometimes necessary for the operating system and the P-machine
to exchange information. Hence there exists a variable SYSCOM in the
outer block of the operating system, and a corresponding area in
memory known to the P-machine. The fields in SYSCOM actually relevant
to this communication are:

IORSLT: Contains the error code returned by the last activated or
terminated I/0 operation (see I1/0 Error Messages in this manual’s
TABLES appendix, and the Apple Pascal Language Reference Manual’s
description of Apple Pascal’s read and write procedures).

XEQERR : Contains the error code of the last execution error (see
the Error Handling section in this appendix, and Execution Error
Messages in the TABLES appendix).

SYSUNIT: Contains the volume number of the device from which the
operating system was booted (usually the boot disk drive, volume 4).

BUGSTATE: (Not used; intended for future debugging routines.)

ARCHITECTURE OF P-MACHINE 225

GDIRP: Contains a pointer to the most recent disk directory read

in, unless dynamic allocation or deallocation has taken place
since then (see the MRK, RLS, and NEW instructions).

STKBASE, LASTMP, SEG, JTARB:
JTAB registers.

Contains copies of the BASE, MP, SEG and

BOMBE : Contains a pointer to the activation record of the operating
system routine EXECERROR when an execution error occurs (see the
Error Handling section of this appendix}.

BOMIPC: Contains the wvalue of IPC when an execution error occurs.
HLTLINE: (Not used; intended for future debugging routines.) E
BRKPTS: (Not used; intended for future debugging routines.)

CRTINFO.EQF:

Contains the end-of-file character (see discussion of the!
reconfiguration program in this manual®s chapter UTILITY PROGRAMS).

CRTINFO.FLUSH: Contains the flush-output character (see the discussion
of the reconfiguration program in the chapter UTILITY PROGRAMS).

CRTINFO.S5TOP: Contains the stop-output character (see discussion of the
reconfiguration program in this manual®s chapter UTILITY PROGRAMS).

CRTINFO.BREAK: Contains the break-execution character (see discussion
of the reconfiguration program in the chapter UTILITY PROGRAMS).

SEGTABLE: Contains the segment dictionary for the operating system
(segments @, and 2 through 6) and for the currently executing system
or user program (segment l: maln program; 7 through 21l: segment
procedures and regular Undits; 22 through 31: Intrinsic Units)

(see the appendix OPERATION OF THE P-MACHINE for illustrations).

ERROR HANDLING

Whenever an execution error occurs, the P-machine stops executing the
current instruction (ideally leaving the evaluation stack in as nice a
condition as possible) and transfers control to the interpreter”’s XEQERR
routine. This routine does the following:

l. Enters the error code into SY¥YSCOM™.XEQERR ,

E|
n

2. Calculates what MP will be after step 4, and sets SYSCOM™.BOMBP
to that (the size of EXECERROR’s activation record must be
known by the P-machine),

3. Stores the current wvalue of IPC into SYSCOM™.BOMIPC ,

4. Points IPC to a CXP @,2 P-code instruction (call operating
system procedure EXECERROR) and

5. Resumes execution of interpreter code, starting with the CXP .

226 APPLE PASCAL OPERATING SYSTEM

-
=
.

A U LB\ LR VIt TRV VRt Tt TR ¥

|

7

U TIT TRET TR ¥

! OPERAND FORMATS

f a structure may occupy as little as one bit, as
iitgasigK;g i;gxsnBFaboclean, variables in the P-machine are always
aligned on word boundaries. Words consist of two bytes of which the even-
address byte is least significant. All top-of-stack operations ;
expect their aperands to occupy at leas% one word on the evaluation
stack, even if not all the information in a word is valid. The
least significant bit of a word is bit #, the most significant is

bit 15.

BOOLEAN: One word. Bit @ indicates the value (false=@, true=l),
and this is the only information used by boolean comparisons.
However, the boolean operators LAND, LOR, and LNOT operate on all

16 bits.

INTEGER: One word, two’'s complement, capable of representing values
in the range -32768..32767.

A variable declared as INTEGER([n] is
allocated ({n+3) DIV 4) + Z words. Regardless of the wvalue of the
integer, its actual size agrees with its allocated size. Each
decimal digit of a long integer is stored as four bits of Binary
Coded Decimal. The format of long integers is as follows:

LONG INTEGER: 3..11 words.

high byte contains the two least significant
decimal digits (BCD).
"n " AL "

word n (tos-n):

i " " i

L1 i " " L1 ir n Wi

low byte contains the two most significant
decimal digits (BECD).

word 2 (tos-2):

low byte contains the sign (all zeros= plus,
all ones = minus); high byte not used.

word 1 (tos=1):

word @ (tos-@): contains the allocated length, in words.

SCALAR (user-defined): One word, in range @..32767.

CHAR: One word, with low byte containing character. The internal
character set is "extended" ASCIT, with (..127 representing the
standard ASCII set, and 128..255 as a user-defined character set.
REAL: Two words, whose format is implementation dependent. The system
is arranged so that only the interpreter needs to know the

detailed internal format of REALs (beyond the fact that they

occupy twe words). In general, the format for 32-bit real

numbers is as follows:

Word 1 (tos}) Word @ (tos)

A S
r N
Bit: 31 30...23 22..16 and 15..0
Item: Sign Exponent Mantissa

ARCHITECTURE OF P-MACHINE 227

POINTER: One or three words, depending on type of pointer.

Pascal pointers, internal word pointers: one word, containing
a word address.

Internal byte pointers: one word, containing a byte address.

Internal packed field
word 2 (Tos-2):
word 1 (Tos-1):
word @ (Tos-@):

pointers: three words.

word pointer to word field is in.
field width (in bits).

right bit number of Ffield.

SET: @..31 words in activation record, l..32 words on evaluation

stack. Sets are implemented as bit vectors, always with a lower
index of zero. A set variable declared as SET OF muen is
allocated (n+15) DIV 16 words.

When a set is in the activation
record, all words allocated contain valid information (the set’s

actual size agrees with its allocated gize).

When a set is on the eyvaluation stack, it is represented by a word
containing the length (tos), and then that number of words of
information. The set may be padded with extra words (to compare
it with another set of different size, say), the length word
indicating the number of words in the structure padded.
being stored back in the activation record, a set
back to the size allocated to it,

Before
must be forced
by issuing an ADJ instruction.

RECORDS and ARRAYS: Any number of words. Arrays are stored in forward
order, with higher-indexed array elements appearing in higher-
numbered memory locations. Only the address of the record or array
is loaded onto the evaluation stack, never the structure itself.
Packed arrays must have an integral number of elements in each
word, as there is no packing across word boundaries (it 1is
acceptable to have unused bits in each word). The first element in
each word has bit @ as its low-order bit.

STRINGS: 1..128 words. Strings are a flexible version of PACKED
ARRAYs OF char. A string[n] occuples (n DIV 2)+1 words. Byte @
of a string is the current length of the string, and bytes
l..length(string) contain valid characters.

CONSTANTS: Constant scalars,

sets, and strings may be imbedded in
the instruction stream, in

which case they have special formats.

All scalars (excluding reals) greater than 127: Two bytes,
high byte first.

Strings: All string literals take

are word aligned. The first byte is the length, the rest are the
actual characters. This format applies even if the literal should
be interpreted as a PACKED ARRAY OF CHAR .

length(literal)+l bytes, and

Reals and sets: Word aligned, and in REVERSE word order.

228 APPLE PASCAL OPERATING SYSTEM

I
1
E
E':—

e —

I

1
1

w oW W W W W

i

B ™ [1E P-MACHINE INSTRUCTION SET

W |NSTRUCTION FORMATS

N

tions on the P-machine are one or two bytes long, followed by
::3Eri§ four parameters. Most parameters specify one word of

information, and are one of flve basic types:

Unsigned Byte. High order byte of parameter is implicitly =zero.

Signed Byte. High order byte is sign extension of bit 7.
Don’t-care Byte. Can be treated as 5B or UB, as value is always
in the range ¥..127.

Big. This parameter is one byte_lnng when used to ;epresent
values in the range #..127, and is two bytes 1o?g : 22. ,
representing values in the range 128..32767. 1 tje ir
byte is in @..127, the high byte of the paramete; =
implicitly zero. Otherwise, bit 7 of the first y;e
cleared and it is used as the high order byte of the
parameter. The second byte is used as the low order

is
byte.

W: Word.

Any exceptions to these formats are noted in the instruction descriptions.

CONVENTIONS AND NOTATION

The program stack, which starts at user high memory and grows dow?ward,
contains program code segments and activation records for curée3;1¥s
active procedures, and data segments associated with INTRINSI -

The evaluation stack, which starts at hex location LFF and graw?t -
downward toward hex 1@, contains operands and other tenporary 1dﬁto
needed during expression evaluation. When an instruction is ?8 o
"push" an item, that item is placed on the top of the evaluation
{remember that the evaluation stack grows downward).

stack (for example, tos or
word to 256 words, depending

In referring to operands on the evaluation
tos-1), each operand can contain from one
on the ;autext. Also, unless specifically noted to the contrary, i
operands used by an instruction are popped off the evaluation S;ac
(removed from the stack and not put back there) as they are used.

Abbreviations are used widely, but use fairly simple conventions. .
Parameters are written as X or Xn , where X dis UB , SB., D? ¥ : »
or W, and n 15 an integer indicating the parameter position in t i
fnstruction (used in the descriptions to differentiate between severa
parameters that would otherwise have the same name). The term tu:
means the operand on the top of the evaluation stack, .tos;l is ; e
next operand, etc. The Mark Stack Control Word, or MSCW, is simply
called the Markstack.

ARCHITECTURE OF P-MACHINE 229

The next two bytes, low byte first, give the parameter value.

M‘;;’}' Instructions refer to the activation record of a procedure, and E 3 LGCGI
this appendix assumes the reader has a X
. general knowledge of procedure-
Eiiiizflin stack machines, and the concept of stack frames. An e SLDL 1 216 Short load local word. For an
n record as defined in this appendix specifically consists of £ E i SLDL 2 217 instruction SLDL x , fetch the word with
’ - R ¥ offset x in MP activation record and
1) the local variables for the procedure, SLoL 16 231 push it.
2
) parameters passed to the procedure at the time of its invocation E 1 LDL 202 B Load local word. Fetch the word with
» I]
B in MP activation record and
3) space for storin offset
g the value returned by the proc ush it.
procedure is a function, and 4 procedure, if the P
[y
] £
4) the M :) E: - LLA 198 B Load local address. Fetch address o
} a:j ?d;kstau-c' containing addressing information (Static Links) the word with offset B in MP activation
; ; ormation on the calling procedure’s environment when rhe. record and push it.
gﬂgci ure was called (see this manual”s appendix, OPERATION OF .
~MACHINE, for illustrations). E STL 2004 B Store local word. Store tos dinto word

with offset B in MP activation record.

The dynamic chain refers to th
i e callin hai
Markstack Dynamic Links (MSCW.MSDYN) . S e ats

lexical or ancestor chain,

traversed using the
The static chain refers to the

traversed using the Markstack Static Links

(MSCW.MS5TAT).
& Global
The co i
\os labiﬁlzz of :nfinrmatlon in the various instruction descriptions may E SLDO 1 232 Short load global word. For an
as follows: SLDO 2 233 instruction SLDO x , fetch the word with
g & - offset x din BASE activation record and
. ¥ ite.
Column Column CoLsin safom: SLDO 16 247 push it
1 >
3 = 4 LDO 169 B Load global word. Fetch the word with
- offset B in BASE activation record and
Op-Code Decimal Instruction Full Name and O H g
Mnemonic Op-Cod peration push it.
p=lode Parameters of the Instruction
LAO 165 B Load global address. Fetch address

of word with offset B in BASE activation

- 2 ; h ic.
ONE-WORD LOADS AND STORES E record and push it
SRO 171 B Store global word. Store tos into word
: with offset B in BASE activation record.
Constant E
SLDC . .
sLDC T ? Short load one-word constant. For an Intermediate
: : X insr.ru:_:ti-:rn SLDC x , push the opcode, x , E
sLDC 127 127 WEED g hyte: aeko. LoD 182 DB, B Load intermediate word. Fetch word with
offset B in the activation record found
by traversing DB Static Links, and push it.
LDCN
159 Load constant NIL. Push the implementa- E
tion-dependent value of NIL (@, on the Apple). LDA 178 DB,B Load intermediate address. Fetch address
LDCI 199 of word with offset B in the activation
W Load one-word constant. Push W. record found by traversing DB Static Links,
and push it.
STR 184 DB,B Store intermediate word. Store tos into

the word with offset B in activation record
found by traversing DB Static Links.

5
3
5
L
C
=3
=4
5
o
=
C
=
C
L

230 APPLE PASCAL OPERATING SYSTEM ARCHITECTURE OF P-MACHINE 234

Indirect
SIND ¢ 248
SIND 1 249
SIND 2 259
SIND 7 255
IND 163
STO 154
Extended
LDE 157
LAE 167
STE 2@9

UB,B

UB,B

UB,B

Load indirect word. Fetch the word
pointed to by tos and push it (this is
a special case of SIND x , described below).

Short index and load word.
instruction SIND x , index the word pointer
tos by x words, and push the word pointed
to by the result.

For an

Static index and load word. Index
the word pointer tos by B words, and
push the word pointed to by the result.

Store indirect word.
the word pointed to by

Store
tos=1 .

tos into

Load extended word. Fetch the word
with offset B in data segment UB
(from an Intrinsic Unit)} and push it.

Load extended address. Fetch address
of the word with offset B in data segment
UB (from an Intrinsic Unit), and push it.

Store extended word. Store tos
into the word with offset B 1in data
segment UB (from an Intrinsic Unit).

MULTIPLE-WORD LOADS AND STORES
(REALS AND SETS)

LDC

LDM

STM

179

188

189

UB, <block>

UB

UB

Load multiple-word constant. Fetch
word-aligned <block> of UB words in
reverse word order, and push the block.

Load multiple words. Fetch a block
of UB words, whose beginning is pointed
to by tos , and push the block.

Store multiple words. Tos ds a block
of UB words, tos-l 4s a word pointer to a
similiar block. Transfer the block from tos
to the destination block pointed at by tos-l.

232 APPLE PASCAL OPERATING SYSTEM

...--------lllIIIIIIIII——ijll

™)

—

-

[

i

T T T T R TR T T T TR T TR 7

mi m R R R ol

BYTE ARRAY HANDLING

LDB 199

STB 191

STRING HANDLING

LSA 166 UB,<chars>
SAS L7¢ us
IXS 155

Load byte. Index the byte pointer
tos=1 by the integer index tos , and
push the byte (after zeroing high byte)
pointed to by the resulting byte pointer.

Store byte. Index the byte pointer
tos-2 by the integer index tos=1 , and
push the byte tos into the location
pointed to by the resulting byte pointer.

Load constant string address. Push a
byte pointer to the location containing
UB, and then skip IPC past <chars>.

String assign. Tos is either a source
byte pointer or a character. (Characters
always have a high byte of zero, while
Tos=1 45 a destination
byte pointer. UB 1is the declared size of
the destination string. If the declared
size is less than the current size of the
source string, give an execution error;
otherwise transfer all bytes of source
containing valid information to the
destination string.

pointers never dos)

Index string array. Index the byte
pointer tos-l1 by the integer index tos ,
and push the resulting byte pointer if
it is in the range l..current length.

If not, give an execution error.

RECORD AND ARRAY HANDLING

MoV 168 B

INC 162 B

Move words. Transfer a source block of
B words, pointed to by byte pointer tos ,
to a similar destination block pointed to by
byte pointer tos-l .

Increment field pointer. Index the
word pointer tos by B words and push
the resultant word pointer.

ARCHITECTURE OF P-MACHINE 233

XA

IXp

LPA

LDP

STP

164

192

28

186

187

UB1,UB2

Index array. Tos 1s an Integer index,
tos-1 is the array base word pointer, and
B is the size (in words) of an array
element. Compute a word pointer to the
indexed element and push the pointer.

Index packed array. Tos is an
integer index, tos-1 is the array base
word pointer. UBl {s the number of
elements per word, and UB2 4is the field
width (in bits). Compute a packed field
pointer to the indexed field and push the
resulting pointer.

UE,<chars> Load a packed array. Push a byte

pointer to the first location following

the one that contains UB , and then
skip IPC past <chars>.

Load a packed field. Feteh the field

indicated by the packed field pointer tos
and push it.

»

Store into a packed field. Store the
data tos into the field indicated by the
packed field pointer rtos-1 .

DYNAMIC VARIABLE ALLOCATION

NEW

MRK

RLS

158 1

158 31

158 32

New variable allocation. Tos is the
size (in words) to allocate the variable,
and tos-l is a word polnter to a dynamiec
variable. GDIRP is a pointer to a temporary
directory buffer placed in memory directly
above the heap. 1If GDIRP is non-NIL,
set GDIRP to NIL. Store NP into the
word pointed to by tos-l
NP by tos words.

y and increment

Mark heap. Set GDIRP to NIL if
necessary; then store NP into
the word indicated by word pointer tos .

Release heap. Set GDIRP to NIL,
then store the word indicated by the
word pointer tos into NP .

234 APPLE PASCAL OPERATING SYSTEM

=

m m

i EOE

-4

"o

U VIV VI VI TV T VR VI T VI T TR TR TR T 7 VR TR - TR

TOP-OF-STACK ARITHMETIC

Integers
Note: Overflows do not cause an executlon error.

ABI 128 Absolute value of integer. Push the
absolute value of integer tos . Result is
undefined if tos d1s initially -32768.

ADI 139 Add integers. Add tos and rtos-1 ,
and push the resulting sum.

NGI 145 Negate integer. Push the two’s
complement of tos .

SBI 149 Subtract integers. Subtract tos from
tos~-l , and push the resulting difference.

MPT 143 Multiply integers. Multiply tos and
tos-1 , and push the resulting product. This
instruction may cause an overflow if the
result is larger than 16 bits.

sQI 152 Square integer. Square tos , and push
the result. May cause overflow if result is
larger than 16 bits.

DVI 134 Divide integers. Divide tos=l by tos
and push the resulting integer quotient (any
remainder is discarded).

MODL 142 Modulo integers. Divide tos-1 by tos
and push the resulting remainder (as defined
in Jensen and Wirth).

CHK 136 Check against subrange bounds. Insure
that tos=1 <= tos-2 <= tos , leaving tos-2
on the stack. If conditions are not
satisfied, give an execution error.

EQUI 195 Tos-1 = tos =
NEQI 2¢3 Tos=1 <> tos .
LEQI 209 Tos=1 <= tos
LESI 291 Tos-1 < tos -
GEQL 196 Tos=1 >= tos »
GRTI 197 Tos=1l > oS .«

Integer comparisons. Compare tos-l to tos
and push the result, TRUE or FALSE.

ARCHITECTURE OF P-MACHINE 235

e el

|
. ! {3 ADR 131 Add reals. Add tos and tos-1 , and
Non-Integer Comparisons | push the resulting sum.
NGR 146 Negate real. MNegate the real ¢tos , and
EQU 175 UB Tos-l = tos . E ! s push the result.
NEQ 183 uB Tos-1 <> tos . [
LEQ 189 UB Tos-1 <= tos . | SER 15¢ Subtract reals. Subtract tes from
LES 181 UB Tos-1 < tos . . tos=1 , and push the resulting remainder.
GEQ 176 UB Tos=1 >= tos . E s
GRT 177 UB Tos-1 > tos . i MPR Lé4 Multiply reals. Multiply tos and tos-1,
Compare tos=l to tos , and push the and push the resulting product.
result, TRUE or FALSE. The type of .
comparison is specified by UB : E i SQR 153 Square real. Square ©tos , and push the
result.
Contents of Value of UB
Tos=1 & tos for comparison E ‘g DVE 135 Divide reals. Divide tos-l1 by tos ,
and push the resulting quotient.
reals 2
strings b POT 158 35 Power of ten. If the integer tos is
booleans 6 i g in the range @ <= tos <= 38 , push the real
sets 8 (and thus implementation-dependent) value
byte arrays 19 1§ =~ tos . If not, give an execution error.
words 12 This facility allows the rest of the system
E g to be independent of floating point format.
Comparisons using specific values of UB
are shown in the following instruction EQUREAL 175 2 Tos-1 = tos .
descriptions. E 5 NEQREAL 183 2 Tos-1 <> tos .
LEQREAL 18¢ 2 Tos-1 <= tos .
LESREAL 181 2 Tos=1 <« tos .
Reals GEQREAL 176 2 Tos-1 >= tos .
E ! GIRREAL 177 2 Tos-1 > tos -
Note: All over/underflows cause an execution error. Real compariscns. Compare the real tos-1
to the real tos , and push the result,
FLT 138 Float top-of-stack. Convert the integer TRUE or FALSE.
tos to a floating point number, and push a
the result. 2
Strings
FLO 137 Float next to top-of-stack. Tos is5 a
real, tos-l1 is an integer. Convert tos-1l E a EQUSTR 175 4 Tos=l = tos . .
to a real number, and push the result. NEQSTR 183 4 Tag=1 <> Eos »
LEQSTR 18@ 4 Tos=1 <= tos .
TNC 158 22 Truncate real. Truncate (as defined in E a LESSTR 181 4 Tos-1 < tos . |
Jensen and Wirth) the real tos and convert GEQSTR 176 & Tas=1 >= tos s |
to an integer, and then push the result. GRTSTR 177 4 Tos-1 > tos .
= String comparisons. Find the string pointed
RKD 158 23 Round real. Round (as defined in JansenE a to by Word pointer toa~l , compare it
and Wirth) the real tos , then truncate and lexicographically to the string pointed to
convert to an integer, and finally push the by word pointer tos , and push the resulrt,
result. E a TRUE or FALSE.
ABR 129 Absolute value of real. Push the
absolute value of the real tos .
236 APPLE PASCAL OPERATING SYSTEM ARCHIECTURE OF RB-MACHINE 1237

_—#

|
g ‘ 1 = DIF 133 Set difference. Push the difference of
Logical sets tos-1 and tos . (tos-1 AND NOT tos).
LAND 132 Logical and. Push the result of [1 i EQUPOWR 175 8 Tos-1 = tos .
tos=1 AND tos . 1 NEQPOWR 183 8 Tos=1 <> tos .
LEQPOWR 180 8 Tos-1 <= (subset of) tos .
LOR 141 Logical or. Push the result of GEQPOWR 176 B Tos-1 >= (superset of) tos .
tos-1 OR tos . l I i Set comparisons. Compare set tos-]1 to the
set tos , and push the result, TRUE or FALSE.
LNOT 147 Logical not. Push the one’s complement
of tos . ['F I i '
EQUBOOL 175 & Tos=1 = tos .
HEQBOOL 183 6 Tos-1 <> tos . Byte Aﬂ'CWS
LESROOL igﬁ ff: ;Os‘i 5 e '| : g EQUBYT 175 19 , B Tos=1l = tos
LESBOOL 1 ag- < tos . i » - = .
GEQBOOL 176 & Tos=1 >= tos .« NEQBYT 183 1¢p , B Tos=1 <> tos .
GRTHOOL 177 6 Tos=1 > tos . LEQBYT 189 1 , B Tos-1 <= tos . |
Boolean comparisons. Compare bit @ of '1 | i LESBYT 181 1¢ , B Tos-1 < tos .
tos=1 to bit § of tos and push the] GEQBYT 176 144 , B Tos=1 >= tos .
result, TRUE or FALSE. GRTBYT 177 18 , B Tes-1 > tos .
SE‘I’S Byte array comparisons. Compare byte array
l | g tos=l to byte array tos , and push the
ADJ 160 UB Adjust set. Force the set tos to occcupy ‘ result, TRUE or FALSE. <=, <, >=, and > must
UB words, either by expansion (putting zeroes be used with PACKED ARRAYs OF CHAR, only.
"between" tos and tos-1) or compression) I B gives the number of bytes to compare.
(chopping of high words of set), discard the E
length word, and push the resulting set.
SGS 151 Build a singleton set. If the integer E a RECOTdS CJI"‘Id Word AI’!’GVS
tos 1s in the range @ <= tos <= 511 ,
push the set [tos] . If not, give an ﬁgql‘:gg i;g i% » ; %ﬂs-i :} Eos "
execution error. " o8- 0S5 .«
E' g Word or multiword structure comparisons.
SRS 148 Build a subrange set. If the integer I Compare word structure tos-1 to word
tos is in the range @ <= tos <= 511 , and structure tos , and push the
the integer tos-1 {is in the same range, : I E:S"lt:meEfn; FALSE. B gives
push the set [tos-l..tos] (push the set [] ; the number of bytes to compare.
if tos=1 > tos }. If either integer exceeds
the range, give an execution error. . JUMPS |
INN 139 Set membership. If integer tos-1 is E : 3
in set tos , pusE TRUE. If not, push FALSE. Simple (non-case statement) jumps are all two bytes long. The first
byte is the op-code, the second is a SB jump offset. If this offset
UKL 156 Set union. Push the union of sets tos g is non-negative, it is simply added to IPC. (A value of zero for the
and tos=1 . { tos OR tos-1) jump offset will make any jump a two-byte NOP.) If SB 1is negative,
then 5B DIV 2 is used as a word offset inte JTAR, and IPC is set to
IHT 140 Set intersection. Push the intersection I the byte address (JTAB™[SB DIV 2]) - contents of (JTAB[SB DIV 2]).
f £ tos and tos-1 . tos AND tos-1 }E | a
i AR 8 B ! uJe 185 5B Unconditional jump. Jump as
described above.
E i g FJP 161 SB False jump. Jump if tos 1is FALSE.

238 APPLE PASCAL OPERATING SYSTEM ARCHITECTURE OF P-MACHINE 239 |

R R R R R R R R

EFJ 211 SB Equal false jump. Jump {f integer
tos—-1 <> integer tos .

NF.J 212 5B Not equal false Jump. Jump if integer
tos-1 = integer tos -«

XJp 172 Wl,W2,W3, <case table>

Case jump. Wl 1s word-aligned, and
is the minimum index of the table. W2 {is
the maximum index. W3 is an unconditional
jump instruction past the table. The case
table is (W2 - Wl + 1) words long, and
contains self-relative locations.

If tos , the actual index, is not in
the range Wl..W2 , then point IPC at W3 .
Otherwise, use (tos — Wl) as an index into
the case table, and set IPC to the byte
address (casetable[tos-Wl]) minus the
contents of (casetable[tos=Wl]).

PROCEDURE AND FUNCTION CALLS

The general scheme used in procedure/function invocation is

O W W W W

1) Find the procedure code section for the called procedure.
From the table of attributes (JTAB) in the called procedure’s E
code section, find the data size and parameter size of the
called procedure (for more details, see this manual’s appendix,
OPERATION OF THE P-MACHINE). E
1) Copy a number of bytes equal to the parameter size, from the E
evaluation stack’s tos (pointed to by SP) to the beginning

of the space just allocated. This passes parameters to the
new procedure from its caller.

2) Extend the program stack by a number of bytes equal to the
data size plus the parameter size.

4) Build a Markstack, saving 5P, IPC, SEG, JTAB, MP, and a Static
Link pointer to the most recent activation record of the called
procedure’s immediate parent.

5) Calculate new values for 5P, IPC, JTAB, MP, and if necessary,
SEG. Check for program stack overflow.

6) If the called procedure has a lex level of -1 or @ save BASE
on the evaluation stack and calculate a new BASE.

7) Save KP on the program stack and calculate a new KP.

240 APPLE PASCAL OPERATING SYSTEM

CLP

2]
]
- |

(o]
=
=

€3
=
B

3

RO OO R R W R R e e e W e a e

206

207

174

194

245

uB

UB

)

UB

UBl,UB2

Call local procedure. Call procedure
UB , which is an immediate child of the
currently executing procedure and in the
same segment. Static Link of Markstack
is set to old MP.

Call global procedure. Call procedure
UB , which is at lex level 1 and in the same
segment as the currently executing procedure.
Static Link of the Markstack is set to BASE.

Call intermediate procedure. Call
procedure UB in same segment as the
currently executing procedure. The Static
Link of the Markstack is set by looking up
the call chain until an activation record
is found whose caller had a lex level one
less thanm the procedure being called. Use
that activation record”s Static Link as
the Static Link of the new Markstack.

Call base procedure. Call procedure
UB , which 5 at lex level =1 or @#. The
static Link of the Markstack is set to the
Static Link in BASE's activation record.
The BASE 1s saved, after which it is
pointed at the activation record just
created.

Call external procedure. Call procedure
UB2 , In segment UBl . Used to call
any procedure not in the same segment
a5 the calling procedure, including
procedures at lex level -1 or #. 1t works
as follows:

1) Is desired segment in memory?

2a) No: read in segment from disk
using the information in the SEGTABLE,
then build an activation record.

2b) Yes: build activation record
normally.

3) Calculate the Statiec Link for
the Markstack: if the called procedure has
a lex level of -1 or @, set as in CHEP;
otherwise set as in CIP.

ARCHITECTURE OF P-MACHINE 244

Cs5P 158 UB Call standard procedure. Call the "l
standard Pascal procedure UB , where
UB dis used as an index intc the CSP
table in the interpreter. All instructions t

with decimal op-code 158 are examples
of procedure calls using the CSP
instruction.

RNP 173 DB Return from non=base procedure. DB
is the number of words that should be
returned as a function value (@ for
procedures, 1 for non-real functions, and
2 for real functions). Copy DB words
from the bottom of the current procedure’s
activation record, and push them onte the
evaluation stack. Then use the information
in the current Markstack to restore the
calling procedure”s correct environment.

- -

RBP 193 DB Return from base procedure. Move the
saved base into BASE, and then proceed as
in the RNP instruction.

EXIT 158 4 Exit from procedure. Tos is the
procedure number, tos-l dis the segment
number. First, set IPC to point to
the exit code of the currently
executing procedure. Then, if the
current procedure is the one to exit
from, return control to the instruction
fetch loop.

Otherwise, change the IPC of each
Markstack to point to the exit code of the
procedure that invoked it, until the desired
procedure is found.

If at any time the saved IPC of main
body of the operating system is about to
be changed, give an execution error.

SYSTEM SUPPORT PROCEDURES

Note: See the Apple Pascal Language Reference Manual for a more detailed
description of these procedures.

Fl e ™ W ™ m

242 APPLE PASCAL OPERATING SYSTEM

|
=

‘ Byte-Array Procedures

| i FLC 158 1§

Ll

SCHN 158 11
3 MVL 158 @2
MVR 158 @3

IV VR T T

»

Fillchar{dst, len, char). Tos (char)
is the source character. Tos-1 (len) is the
number of bytes in the destination array
which are to be filled with the source char.
Tos=2 (dst) is a byte pointer to the first
byte to be filled in the destination PACKED
ARRAY OF CHARacters. Copy the character
from teos into tos-1 characters of the
destination array.

Scan{maxdisp, mask, char, start, forpast).
Tos (forpast) is a two-byte quantity (usually
the default integer §#) which is pushed, but
later discarded without being used in this
implementation. Tos-1 (start) is a byte
pointer to the first character to be
scanned in a PACKED ARRAY OF CHARacters.
Tos-2 (char) is the character against which
each scanned character of the array is to be
checked. Tos=-3 (mask) is § if the check is
for equality, or 1 if the check is for
inequality. Tos-4 (maxdisplacement) gives
the maximum number of characters to be scanned
(scan to the left if negative). If a character
check yields TRUE, push the number of
characters scanned (negative, if scanning to
the left). If maxdisp is reached before
character check yields TRUE, push maxdisp .

Moveleft(src, dst, numbytes). Tos
(numbytes} gives the number of bytes to move.
Tos=1 (dst)} is a byte pointer to the
destination array’s first byte which will
receive a moved byte. Tos-2 (src) is a byte
pointer to the source array’s first byte which
will be moved. Copy tos bytes from the
source array to the destination array,
proceeding to the right through both arrays.

Moveright{src, dst, numbytes). Tos
{(numbytes) pives the number of bytes to move.
Tos=-1 (dst) is a byte pointer to the
destination array’s first byte which will
receive a moved byte. Tos-2 (src) is a byte
pointer to the source array’s first hyte which
will be moved. Copy tos bytes from the
source array to the destination array,
proceeding to the left through both arrays.

ARCHITECTURE OF P-MACHINE 243

H...
[.1

Compiler Procedures Miscellaneous

.

BPT 213 B Breakpoint. Not used (acts as a NOP)Y -

. M 158 @9 Time. Fop two pointers to twe integers,
intended for future debuggiﬂg routines. T1 @ P p B

and place in those integers a 3Z=bit
indication of the current time. (Since
the Apple has no real=-time clock, this
instruction acts as a NOP. Apple sets
both integers to zero.)

TRS 158 @8 Treesearch(fep, fep2, name). Tos-2 (fcp)
1s a byte pointer to the root of a binary tree
Tos (name) is a byte pointer to a location
which contains the address of an 8=character
name that you wish to find or to place in the
tree. Search the tree, looking for a record
with the required name. Store the address of
the last node visited, on completion of the
search, inte the location pointed to by
byte pointer tos-1 (fcp?), and push the
result of the search:

v
=T

XIT 214 Exit the operating system. Do a
"cold boot" of the system, like the
operating system’s H(alt command.

NOP 215 Ho operation. Sometimes used to reserve
space in the code for later additions.

@ if the last node was a record with
the search name,

1 if the search name should be & new
record, attaching to the last tree
node by the Right Link,

=1l if the search name should be a new
record, attaching to the last tree
node by the Left Link.

This is an assembly-language binary tree
search used by the Compiler. 1t is fast, but
does NOT do type checking on the parameters.
The binary tree uses nodes of type

& & & & &

CTP = RECORD
NAME: PACKED ARRAY [l..8] OF CHAR;
LLINK, RLINK: ~CTP;
other information

END ;

1DS 158 @7 Idsearch. Used by the Compiler to parse
reserved words and identifiers.

W oE W OmOmommmmmmm W

U

244 APPLE PASCAL OPERATING SYSTEM ARCHITECTURE OF P-MACHINE 245

* OPERATION OF THE P-MACHINE

246 APPLE PASCAL OPERATING SYSTEM . ARCHITECTURE OF P-MACHINE 247

INTRODUCTION

The Apple Pascal system
is an interpreter-based
Compiler emits code for

is a version of the UCSD Pascal system, which
implementation of Pascal. This means that the

a "Pseudo-machine” or "P-machine” which {ig
emulated at run time by a program written in the machine language of the
host. For the Apple, this P-machine emulation program is the

interpreter, written in the Apple’s 65@2 machine language and £
the boot diskette’s file SYSTEM.APPLE . R 0 Foved dn

The Apple Pascal operating system and various utilities are themselves
written in Pascal and run on the same Interpreter. Thus the entire
system can be moved to a new host machine by rewriting the interpreter
for the new host. Every host computer operating under a version of UCSD
Pascal has an interpreter that makes the host computer "appear", from
the viewpoint of a program being executed, to be this same P-machine.
This appendix describes the "run-time"™ or " - " enn

of the Apple Pascal P-machine. For more in?::;:Eigg ;;gﬁt gﬁ;irunment
"hardware" of the P-machine, see this manual’s previous appendix,
ARCHITECTURE OF THE P-MACHINE.

At the end of this appendix is a skeleton version of a large Pascal
program, referred to throughout the appendix as "The Program". The main
body of this appendix is a top-down description of "The Program"’s
diskerte codefile, and its execution under the Apple Pascal system.

We will make occasional use of a helpful coincidence: "The Program"
briefly sketches out a very early version of the Apple Pascal operating
system. The current Apple Pascal operating system has been extended
and changed in many ways from "The Program" shown in the examples.
quuver, this will not prevent you from understanding the mechanisms

of the P-machine’s operation, which are accurately described.

THE SYSTEM CODEFILE

SEGMENTS

If "Ine Progran" were expanded to the complete Apple Pascal operating
system, it would consist of at least 1§,PP@ lines of Pascal and compile
to more than 10@,@0Q bvtes of code —- just a bit too big to fit all at
once into the memory of an Apple. Therefore, "The Program" is overlayed
using "segments", which let you explicitly partition a program into
portions, only some of which need be resident in mafn memory at a time.

See the Apple Pascal Language Reference Manual for details about
segments.

Segments used within a program portion must be declared before the body
of the outer program portion. To let an inner segment call an outer=

248 APPLE PASCAL OPERATING SYSTEM

-

ol B W B8 B X

O U T T VT T T 7T T T)

Y

program procedure, the outer program portion can declare the called

procedure FORWARD before declaring the segment. An example of this

appears in "The Program', where the segment procedure COMPILER uses the
outer program’s procedure CLEARSCREEN, which was declared FORWARD.

Segmenting a program does not change its meaning in any fundamental
sense. When a segment procedure is called (for instance, line A of "The
Program" calls the COMPILER segment procedure), the Iinterpreter checks
to see if that segment is already on the program stack, due to a
previous (and still active) invocation of the segment. If it is,
control is transferred and execution proceeds; 1f not, the appropriate
code segment must be loaded onto the program stack from disk before the
transfer of control takes place. When no more active invocations of the
segment exist, its code is removed from the program stack. For
instance, in "The Program", the code for the COMPINIT segment is not
present on the stack either before or after tne execution of line A.
fact, the COMPINIT segment is only present on the stack during the
execution of "The Program""s line B.

In

A CODEFILE ON DISKETTE

The diskette codefile resulting from compilation of "The Program" is
diagrammed in Figure 1. The codefile consists of a segment dictiomary
followed by a sequence of code segments. The main program generates one

code segment, and each segment procedure generates another code
segment. The ordering of code segments (from low address to high

address) is determined by the order that one encounters segment
procedure bodies in passing through "The Program".

high diskette addresses

i s s s sYEEREE RS S SSESSE S S S E s I

Segment #@ PASCALSYSTEM | ‘
| Segment #4 EDITOR | |
| —=] | Code
| Segment #3 COMPILER | ‘ Segments
| |
| Segment #2 COMPINIT |
S | |
| Segment #1 USER PROGRAM | |
| SEGMENT DICTIONARY | €===— Segment
]: eamnEESEE | Dictionar}r

low diskette addresses

FIGURE 1 COMPLETE CODEFILE OF "THE PROGRAM"

OPERATION OF P-MACHINE 249

Each code segment begins on a boundary between diskette blocks (the t —! high diskette addresses
512-byte disk allocatlion quantum used by the Apple Pascal operating
system). Each segment may occupy many, many blocks; the code for thess ===sssssssssssssssssSssssssssssssessssss=== | ——
segments is only hinted at in the much-abbreviated version shown in "The l‘ g Number of procedures | Segment number i !
Program". | in this segment | of this segment | |
* An overview of the relationship between Figures 1 through 7 | === I Procedure #l PASCALSYSTEM I]I
(to be discussed in the following pages) is given in Figure 8 at ' E | e | | Procedure
the end of this appendix. It is helpful to study Figure 8 ar this | == Procedure #2 CLEARSCREEN | | Dictionary
point for a better understanding of the following sections. [| —— = = | |
l— a | = Procedure #3 | |
. S R - I |
THE SEGMENT DICTIONARY beE b ey L
| O | procedure dictionary | |
The segment dictionary, in the first block of a codefile, contains an ' g I| { I i.......u:u.: E— =.====.I |
entry for each code segment in the file (the main program is assigned I N | =
segment #@). The entry includes the segment’s size (in bytes) and its | m—mmm—z] PROCEDURE #1 (outer block of | |
disk location. The disk location is given as the number of blocks to ‘ g | | | PASCALSYSTEM) code [|
the beginning of the code segment, relative to the beginning of the | — - | |
segment dictionary (which is also the beginning of the codefile). This | | Other procedures in code | | Procedure
information is kept in the system communications area (also called . | 1 segment PASCALSYSTEM code | | Code
SYSCOM; see this manual’s appendix, ARCHITECTURE OF THE P-MACHINE) ‘ g | 1 —— ——= | | Sections
during the execution of the codefile, and is used in the loading of non- | == PROCEDURE #3 code | |
present segments when they are needed. The segment dictionary also | | —— = — — |
contains information about the code and data segments of INTRINSIC UNITs ‘ g e PROCEDURE #2 (CLEARSCREEN) code | |
which the program USES. This manual’s &ppendix. FILE mw‘rs. gj\:eg a |-rnn-------'.I------.-nn---nnnaaa-n::n::::::I __i
more detailed account of the information in the segment dictionary.
. low diskette addresses
| o
A CODE SEGMENT FIGURE 2 DETAIL OF THE "PASCALSYSTEM" CODE SEGMENT
Figure 2 is a detailed diagram of "The Program'"’s Segment #@, containing IJ g
the code for the main program segment, PASCALSYSTEM. Each code segment
contains the code for that segment’s ou o well as the code
for each of the (non-segnent) procedures within that segment. Observe A PROCEDURE DICTIONARY
that CLEARSCREEN is the first main-program procedure for which code is !
generated and that it appears at the beginning of the segment. The Each procedure in a code segment is assigned a procedure number,
outer block code, which is generated last, appears last in the code starting at 1 for the outer block (the main program or a segment
segment. Following the code for the various procedures is the code procedure), and ranging as high as 149 . All references to a procedure
segment’s procedure dictionary. are made via 1ts number. Translation from a procedure’s number to the

location of that procedure”s code in the code segment is accomplished |
with the procedure dictionary at the end of the segment. This

dictionary is an array indexed by the procedure number. Each array

element is a self-relative pointer to the code for the corresponding
procedure. Since zero Is not a valid procedure number, the zero=th

entry of the dictionary is used to store the number of the code segment
(even byte) and the number of procedures in that code segment (odd byte).

(1

E
E

Y

250 APPLE PASCAL OPERATING SYSTEM OPERATION OF P-MACHINE 251

A R A A R R R R R O R R R R R

A PROCEDURE CODE SECTION

A more detailed diagram of the code section for a single procedure
within a code segment is seen in Figure 3. That figure shows the code
section for procedure CLEARSCREEN, in "The Program"’s main-program code
sepgment, PASCALSYSTEM. Each procedure’s code section consists of two
parts: the procedure code itself (in the lower portion of the section)
and a table of attributes of the procedure. These attributes are:

LEX LEVEL: Odd byte. GSpecifies the depth of absolute lexical
nesting for the procedure. (E.g., the Lex Level (LL) of

PASCALSYSTEM = -1, LL of COMPILER or CLEARSCREEN = (,
LL of COMPINIT = 1 , etc.)

PROCEDURE NUMBER: Even byte. Refers to the number given to this
procedure In the procedure dictionary of the parent code

segment. For example, CLEARSCREEN is Procedure #2 (see
Figure 2).
ENTER IC: A self-relative pointer to the first instruction to be

executed for this procedure.
EXIT IC: A self-relative pointer to the beginning of the block of

procedure instructions which must be executed to terminate
procedure properly.

PABAMETER SIZE:

The number of bytes of parameters passed to a
procedure

from its caller.

DATA SIZE: The size of the activation record (see the later
sections of this appendix for details) in bytes, excluding
the Markstack and PARAMETER SIZE.

Between these attributes and the procedure code there may be an
optional section of memory called the "jump table". 1Its entries are

addresses within the procedure code. JTAB is a term commonly applied
to the six attributes just discussed and the jump table itself. JTAB

is also one of the system registers, which points to the attributes
and jump table section of the currently executing procedures

252 APPLE PASCAL OPERATING SYSTEM

=N

W G W W W W W &

R A &

| PASCALSYSTEM's |
| Procedure | high diskette addresses
| Dictionary |
| Pointer | |== = ‘ --l
| >| Lex Level | Procedure #
| == - |
| == | Enter IC | }
| | |
| Exit IC | | Table of
[| ‘ Attributes
I Parameter Size | (JTAB)
I et | |
Il 1 1 Data Size |
I e | |
I . (Optional Jump Table) | —]
| 1=l [
| | CLEARSCREEN | | Procedure
| | Code | | Code
|=———>| | I
low diskette addresses
FIGURE 3 DETAIL OF THE "CLEARSCREEN" PROCEDURE CODE SECTION

OPERATION OF P-MACHINE

283

SYSTEM MEMORY USE

APPLE || MEMORY MAP

Figure 4 is a sketch of the Apple I1°s memory, when running under the
Apple Pascal operating system.

This memory map is specific to the Apple 11, and does not apply to any

other computer. It 18 provided for your curiosity only: a primary
task of the transportable Apple Pascal system is to eliminate the

necessity for the programmer to know anything about specific MEmMory
addresses and use.

The Apple Pascal file SYSTEM.PASCAL roughly corresponds to "The

Program"”s resident code segment named PASCALSYSTEM as discussed
throughout this appendix.

254 APPLE PASCAL OPERATING SYSTEM

m m WM m m

m b b L e b e e e e L

- s m m e

Address (Hex)
Apple Language Card (Language Card)
64K (FFFF) | i RS o] I =]
| SYSTEM.PASCAL (Part 2) [=2 | Monitor ROM |
e - —- |
| SYSTEM.APPLE [
56K (E@@@) |- - - - - P-code - - - - |
| Interpreter |¢==>| _ _Interpreter_ _ |
| (written in 65@2 code) | | BIOS I/0 Routines |
52K (Dﬂgg) an:ﬂu..n:s:::—— -0=:| | I
Apple 11 Main Board
52K (Dggﬁ) |=====I=1=ﬂ:hﬂl--=ﬂ==============|
| I/0 Expansion ROM Space |
e |
| I/0 Device Addresses & ROMs |
48K (LEH@)]=======|:EIEI--.I.’=.===-—.=|========I
| SYSCOM |
| -- -|
| SYSTEM.PASCAL (Part 1) |
44K (BAE®Y | The Operating System |
| - |
| [I
| Pascal Program Stack |
| {builds down) |
| I |
| v I
I e | <=— KP (Top of
| {Free Memory) | A Program Stack)
| [
24K (6000) |-———————— |
| High-Res Graphics, Page 2 ‘ (Free
16K (4@@d) | —_—— Memory)
| High-Res Graphics, Page 1 | |
BK (209@) | JEnas I
| [
| = = === = m - = == = | <== NP (Top of Heap)
| Pascal Data Heap A |
| (builds up) |
3K (COd) |-—-]
| Text Screens
[|
| Disk & Console Buffers |
«5K (1FF) | - |
| Evaluation Stack | |
| (builds down) v |
| === e == - = | €== 8P (Top of
25K (1gg) |=————- ——— | Evaluation Stack)
| Zero Page Pascal System Use |
ﬁl{ (@A@) |========::--=|=============_fl|:i
FIGURE 4 MEMORY MAP OF THE APPLE II

WHEN USING APPLE PASCAL

OPERATION OF P-MACHINE 285

A\

The Pascal heap is at the lowest part of memory available to programs;

THE PROGRAM STACK it grows toward high memory. It is used to store dynamic variables,

text files used by the Editor, and other data. The system
Figure 5 is a snapshot of user memory, showing the Pascal program stack communications area (also called SYSCOM), is at the top of memory, above

in some detail, during the execution of a call to procedure CLEARSCREEN L P id d . SYSCOM is accessible both

" ‘ stem”s resident code segment e both to
from "The Program"‘s line C, in segment procedure COMPINIT. ;EEEZily_languase s Il g g s R ERRY
the stack) and to system routines coded in Pascal. SYSCOM serves as an
important communication link between these two levels of the system (for
more details about SYSCOM, see this manual’s appendix, ARCHITECTURE OF
THE P=-MACHINE).

m
11713
& A

high memory addresses

segment for that UNIT.

|

|

|

| |
| |
| COMPILER Activation Record |
| === === === - R |
| |
|

|

|

|

|

|

|

==Eme = ---_-l:xl Kt g

o SYSCOM | <=- Segment Dictionary ke The program stack, growing down from high memory, is used to store three

| @= = =====| Information types of items:

| PASCALSYSTEM |

| Resident Code Segment | E] g l. A Code Segment for each active program segment (see Figures

| | 1, 2, and 3) and for each active UNIT.

| PASCALSYSTEM

: Resident Activation Record . 2. An Activation Record containing local variables and Markstack
------------ - - - . parameters for each procedure activation (see Figure 6).

| Markstack

|'"‘“"==::‘="=“""“""="‘='='“““"= 3. A Data Segment for each INTRINSIC UNIT which requires one,
COMPILER Code Segment @] loaded on the program stack just before the code

q

Markstack When segment procedure COMPINIT is called in line B of "The Program",
:=Z;;;;;I;n — B CUMPINIT's code segment (which includes all the compiler initialization
Code Segment procedures) i{s loaded onto the program stack. The COMPINIT activation

record is then built on top of the program stack.

™

m

| Markstack

MP ==> I-:::r:u.-----n--ﬂ- ammes =

{Top Markstack)

<= KP (Top of
Program Stack)

lil

<=— NP (Top of Heap)
HEAP

[T e Y prpp—.

|
|
|
|
{ Free Memory) |
|
|
|
|
|

|
|
I
|
|
|
I
I

l‘h.

low memory addresses

FIGURE 5 DETAIL OF USER MEMORY DURING EXECUTION
OF PROCEDURE "CLEARSCREER"

m o omomomomm
L b

rE|
VNS

256 APPLE PASCAL OPERATING SYSTEM : OPERATION OF P-MACHINE 257

-IIIIIl------L___J--IIIlllIl-:::___J..

Consider the status of operations in COMPILER, just as COMPINIT is
called in line B. The system registers (see this manual’s appendix
ARCHITECTURE OF THE P-MACHINE) contain the following:

SP: evaluation Stack Pointer. Foints to the current top of
the evaluation stack.

KP: program stacK Pointer. Points to the current top of the
program stack, just beyond COMPILER’s activation record.

IPC: Interpreter Program Counter. Points to the next COMPILER
instruction, immediately following line B.

SEG: GS5EGment pointer. Points to the COMPILER code segment’s
procedure dictionary.

JTAB: Jump TABle pointer. Points to the table of attributes
in COMPILERs procedure code section.

MP; Markstack Pointer. Points to the Markstack in COMPILERs

activation record. Used to find variables local to COMPILER.

The call to procedure COMPINIT causes the operating conditions which
existed in the system registers, just at the time of COMPILER’s call to
COMPINIT, to be stored in COMPINIT’s Markstack in the following manner:

System registers,
at COMPINIT call

Stored in these
COMPINIT Markstack fields

5P _— MSSP (MarkStack Stack Pointer)

IPC —— MSIPC (MarkStack Interpreter
Program Counter)

SEG —— MSSEG (MarkStack SEGment pointer)

JTAB — MSJTAB (MarkStack Jump TABle)

MP — MSDYN (MarkStack DY¥Namic link)

In addition, the MarkStack STATic link field (MSSTAT) becomes a pointer
to the activation record of the lexical parent of the called procedure.
In particular, it points to the MSSTAT field of the parent’s markstack.
In this example, COMPINIT"s MSSTAT is made to point to the MSSTAT field
COMPILER"s Markstack. After building the new procedure’s activation

record on the program stack, new values for the system registers 5P, IPC

SEG, JTAB, and MP are established for the new procedure.

If the called procedure has a lex level of =1 or #, the contents of
register BASE are saved on the evaluation stack, and a new value for
BASE is calculated. Finally, KP is saved on top of the program stack,
and a new value for KP is calculated. These elements are not part of
the COMPINIT Markstack or activation record.

258 APPLE PASCAL OPERATING SYSTEM

m .

E
E
E
K
K

—

Al
&l
X

A & la & &\ &\ &

1

s s s A

-

AN ACTIVATION RECORD

Figure 6 is a diagram of the activation record which is placed on the
stack for COMPINIT.

high memory addresses

=== Inn-n-----[

Other COMPINIT variables

| -

| I |

| |

| BOOL | | Local

| | | Variables

| 1 | |

| - | |

| J | ==| Passed

|----n-:----------nu:awn—:--- | 1:1-4-»---173 rameters

| MSSP | ==1 (if any)

R L

I MSIPC I I

[mmmmmm e e e e o - |

I MSSEG | |

| = = = = = = = == - m - o | | Markstack

| MSJTAB | I
------------- L

]| MSDYN I I

| mmmmmmmm |

[MSSTAT | I

MP —> Iﬂ.l------ = —|

FIGURE 6 DETAIL OF THE "COMPINIT" ACTIVATION RECORD

In the upper portion of the activatlon record, space is allocated for
variables local to the new procedure. For example, COMPINIT s
activation record allocates space for integer variables I and J, as well
as boolean variable BOOL.

Note that in this example no space is needed for passed parameters
because none were passed to this procedure. If parameters are passed,
they occupy space after the last local variable. If the procedure is a
function, space is also reserved (following the last passed parameter)
for storing the function”s returned value.

The lower portion of the activation record is called a "Markstack" (also
sometimes called a Mark Stack Control Word, or M3CW). When a call to
any procedure is made, the current values of the system registers, which
characterize the operating environment of the calling procedure, are
stored in the Markstack of the called procedure. This allows the system
registers to be restored to pre-call conditions when control is

returned to the calling procedure.

OPERATION OF P-MACHINE 259

E

When the call to CLEARSCREEN is made in line € of
another activation record is added to the program stack. Once again the
register values and the appropriate Static Link are stored in the new
Markstack (in CLEARSCREEN’s activation record), and the system
registers are then updated. Note that the new SEG no longer points to
the COMPINIT segment’s procedure dictionary, but to the procedure

dictionary for the PASCALSYSTEM code segment (which contains
CLEARSCREEN) « & procedure E

E
E
E
]

i
E

"The Program",

No code segment for CLEARSCREEN is added to the program stack before
building the activation record, since the code for CLEARSCREEN is
already present on the program stack, in the code segment for
PASCALSYSTEM. The invocation of CLEARSCREEN causes only an activation
record to be added to the program stack. When CLEARSCREEN and COMPINIT
are completed, the COMPILER activation record will again be the top
element on the stack.

MORE ON THE PROGRAM STACK

Figure 7 is a more detailed diagram of the program stack during
execution of an instruction in CLEARSCREEN, including appropriate
pointers for Static and Dynamie Links of CLEARSCREEN“s Markstack.
where the system registers point im the program stack. In particular,
JTAE points to the table of attributes in the CLEARSCREEN procedure code
section which is in the PASCALSYSTEM code segment, IPC points to the
next instruction inside that CLEAKRSCREEN code, and SEG points to the
base of the PASCALSYSTEM code segment’s procedure dictionary. SP points
to the top of the evaluation stack, which is not shown in this diagram.

Hote

OVERVIEW

SUMMARY OF THE FIGURES

Figure 8 illustrates a top-down process by showing the relationships
among Figures 1 through 7.

m ™= m W o oW
Al R LA

260 APPLE PASCAL OPERATING SYSTEM

TR TR TR TR/

IRV TRET TR ¥

mi e

high memory addresses

EEEEESSSSCooooSooos AR EES RS | L= SEG

PASCALSYSTEM Code Segment |

|

I

| (includes CLEARSCREEN code)
| ——
|

|

|

PASCALSYSTEM Activation Rec.|

-_— e e o oam = e = = = = = =

|<=—= JTAB, IPC
I

| — > Markstack |
| EssssEEESsSSoSooSoooSSEsaEREETEEE I
t COMPILER Jode Segment |
| COMPILER Activation Record |
______________ F
| Markstack |
| EsssmsssarNElEEEEEEEEE ST —— |
| ==m=> | 2¢ | & |
N e e | Code
| |COMPINIT Procedure Dictionary| | Segment
> ————————— | of
| | |==>| COMPINIT outer block code | COMPINIT
[1] |==eeean- S u
|1 | COMPINIT procedures code | — |
|11 | COMPINIT local variables | —| Activation
11 | == === c s === = = | | Record
| 11 | COMPINIT Markstack |<=] —| of COMPINIT
| I | I == :ns-n--:.l I
111 | CLEARSCREEN local variables | | —-}
RN - R ——
R MSSP R |, |l
I e []
[] [==—| MSIPG | | | | Activation
|1 | =esimm= 2TH R 2 = S I | | Record
| === MSSEG || | | of
i | womnem e s w e o e |] | | CLEARSCREEN
|=er| MSJTAB || | |
| mmmm e | o
| MSDYN == |
[2ommimm e nnmn - | |
B] | MSSTAT | | =1
| P T S T T] | <= MP = |
| (Free Memory) | & KP v
|]— | (to
low memory addresses evaluation
stack)
FIGURE 7 DETAIL OF THE PROGRAM S5TACK DURING

EXECUTION OF PROCEDURE CLEARSCREEN

OPERATION OF P-MACHINE 261

R R R R R R O R R R R RBRRRRRRRRRRREEEEEEEEEEBEESSSSESSEESEEEERIES

A PROGEAM CODEFILE

s TS SSEaSaEER i
Main PASCALSYSTEM |
Program begment

|
|
| |
| PASCALSYSTEM's |
|
| ==
|
|

Segment Procedures |
EEsSEEEmEsEs—

Segment Dictionary |

_==——=====qun---:¢=—l

Fipure 1
Complete Codefile
of "The Program"

MEMORY MAP

Ia.ﬂ..ﬂﬂﬁﬂ_:::::::::l

I | |

| The Program Stack |-->

v_|

| — -
Figure 4
Memory Map

of the Apple II

[==

A CODE SEGMENT

|...ﬂ::::::::::qq.---===l

| Procedure Dictionary

I
l==============l=nn=====l
|

A PROCEDURE
CODE SECTION

| PASCALSYSTEM code
| outer block section | |==mmm—mme—aa |
| e | | Table of i
| More procedures code | | Attributes |
| in segment sections| | (JTAB) |
| PASCALSYSTEM | B —
| —— | CLEARSCREEN |E
| Procedure code |==> | Procedure
| CLEARSCREEN section | Code
|====---l--u—========== I L i I n
Figure 2 Figure 3
Detail of the Detail of the
"PASCALSYSTEM" "CLEARSCREEN" ﬁ
Code Segment Procedure
Code Section

I A CODE SEGMENT

zmt============;qq;:-n===| [}
| PASCALSYSTEM | |
| Code Segment |==> | { Figure 2) |

e S o

| E

THE PROGRAM STACK

| PASCALSYSTEM

| Activation Record [AN ACTIVATION

| | RECORD

} COMPILER Code Segment | l

- e o e e o o = e = |.------------|

| COMPILER Activation Rec. | | COMPINIT

| = | | Local |

| COMPINIT Code Segment | | Variables |

B I Cm——

| COMPINIT Activation Rec.|=-> | Parameters |

r I E——

| CLEARSCREEN Activ'n Rec. | | Markstack |

|=----ﬂlﬂﬂi========:=:==--l |=an=a--s-nnn#l

Figure 5 Figure 6 EI

Detail of the Program Stack Detail of the i

During Execution of the "COMPINIT"

"CLEARSCREEN" Procedure Activation Record

Figure 7 i

The Program Stack in More Detail

FIGURE 8

RELATIONSHIP OF APPENDIX FIGURES

262 APPLE PASCAL OPERATING SYSTEM i

Al lal

N
B N

L

AR OR R & A’ A Al

N

“THE PROGRAM"

This is "The Program", various parts of which are used as examples
throughout this appendix. As mentioned in the introduction, "The
Program" shows just the partial skeleton of a very early version of
the Apple Pascal operating system. Much of the code is only hinted
at, and many of the segments used in the current version of the Apple
Pascal operating system are missing entirely from "The Program".

PROGRAM PASCALSYSTEM;

VAR
SYSCOM:
CH:CHAR;

SYSCOMREC;

PROCEDURE CLEARSCREEN; FORWARD;

SEGMENT PROCEDURE USERPROGRAM;
BEGIN
END ;
SEGMENT PROCEDURE COMPILER;
VAR
SY,0P: INTEGER;
SYMCURSOR : INTEGER ;

PROCEDURE INSYMEOL; FORWARD;

SEGMENT
VAR
1,J:INTEGER;
BOOL : BOOLEAN ;
BEGIN

I:i=1;
CLEARSCREEN; <
INSYMBOL;

END;

PROCEDURE COMPINIT;

Line C

PROCEDURE INSYMBOL;
BEGIN ... END;

PROCEDURE BLOCEK;
BEGIN END;
BEGIN (*COMPILER*)

COMPINIT;
INSYMBOL ;

END ;

< Line B

(*COMPILER*)
{continued on next page)

OPERATION OF P-MACHINE 263

SEGMENT PROCEDURE EDITOR;
BEGIN +ss END;

PROCEDURE CLEARSCREEN
BEGIN

WRITE (—=mmmmmmmmmmmmmeman)

FILE FORMATS

END;

BEGIN (*PASCALSYSTEM*)
REPEAT
READ(CH) ;
CASE CH OF
“C”":COMPILER; < Line A
"E’ :EDITOR;
“U° : USERPROGRAM
END (*CASE#*)
UNTIL CH = “H"
END.

momomomomommmm

264 APPLE PASCAL OPERATING SYSTEM

TEXT FILES

At the beginning of each text file is a 1@24-byte (two blocks, on
diskette) header page, which contains information for the uae,af the
text editor. This space is reserved for use by the text editor, and is
respected by all portions of the system. When a user program D;ens

TEXT file, and REWRITEs or RESETs it with a title ending in .TEXT :h
1/0 subsystem will create and skip over the initial header page. %hjgﬂ
is done to facilitate users editing their input and/or output data. Th
file-handler will transfer the header page only on a disk-to-disk ’ &
transfer, and will omit it on a transfer to a serial device (thus
transfers to PRINTER:, and CONSOLE: will omit the header page).

Following the initial header page, the text itself appears in subsequent

lﬂZ =Dy X pages {t"ﬂ blocks EaCh‘ on diskette wh P
) ere a xt
4=byte text I te age

[DLE] [indent] [rext] [CR] [DLE] [indent] [text] [CR]...([nulls]
DLE"s (Data Link Escapes) are followed by an indent-code, which is a
byte containing the value 32+(number to indent). The nulls at the end
of the page follow a [CR] in all cases, and are a pad to the end of a
1@24-byte page (because the compiler wants integral numbers of lines
on a page). The Data Link Escape and corresponding indentation code

are optional. 1In a given text file, some lines will have the codes,
and some won“C.

DATA FILES

The formats for Data files are up to the user.

CODE FILES

Codefiles may contain up to 16 segments.
contains information regarding name, kind, relative address and length
of each code segment. This information is called the "segment
dictionary" and is represented as a record:

Block @ of a codefile

RECORD
DISKINFO: ARRAY([@..15] OF
RECORD
CODELENG, CODEADDR:INTEGER
END;
SEGNAME: ARRAY[@®..15] OF PACKED ARRAY[(..7] OF CHAR;
SEGKIND: ARRAY([@..15] OF (LINKED,HOSTSEG,SEGPROC,UNITSEG,

SEPRTSEG,UNLINKED INTRINS,
LINKED INTRINS,DATASEG);

266 APPLE PASCAL OPERATING SYSTEM

...

lv |
E
E

TEXTADDR: ARRAY[@..15) OF INTEGER;

SEGINFO: PACKED ARRAY [@..15] OF
i PACKED RECORD
- SEGNUM: @..255;
MTYPE: {#..15;
= UNUSED: @..1;
__i VERSION : @..7
END;

INTRINS SEGS: SET OF @..31;
{* library information: format undefined *)

COMMENT: STRING
END;

First is an array of sixteen word-pairs, each word-pair describing one
segment of code. CODELENG and CODEADDR give, respectively, the length
of the code segment in bytes, and the block address of the code segment.

first word-
segment 0.

The first and second word in the first block constitute the
pair, which describes the block-location and length of code
Segment ¢ contains the outermost code for the main program. Subsequent
segments contain the code for the program’s various segment procedures
and regular Units (if any), in the order of their appearance in the
programs.

Following this word-pair array is an array of arrays of characters.
This is an array of sixteen elight-character arrays which describe the
segments by name. These eight characters are those which identify the
main program and its segment procedures at compile time.

Following the array of names is an array, again sixteen words long,

of state descriptors. The values in this array indicate what kind of
segment (SEGKIND) is at the described location. The values for this
array, at present, are: LINKED, HOSTSEG, SEGPROC, UNITSEG, SEPRTSEG,
UNLINKED INTRINSIC, LINKED INTRINSIC, and DATASEG. A description of the
segments corresponding to various SEGKINDs follows:

LINKED A fully executable code segment. Either all
external references (UNITs or EXTERNALs or REFs)

have been resolved, or none were present.

A A A Al A

NN

1

4N

FILE FORMATS 267

HOSTSEG The outer block of a Pascal program, if the
program has external references.

SEGFROC A Pascal segment procedure (not used).

UNITSEG A compiled regular UNIT .

SEPRTSEG A separately compiled procedure or function.

Assembly-language codefiles are always of this
type.

UNLINKED INTRINS An INTRINSIC UNIT containing unresolved
calls to assembly-language procedures or functions.

LINKED INTRINS
state.

An INTRINSIC UNIT in its final, ready to-run

DATASEG A specification for the data segment associated
with an INTRINSIC UNIT, telling how many bytes to

allocate and which segment to use.

See the Apple Pascal Language Reference Manual for more information
about Pascal SEGMENTs and UNITs.

After the array of scgment kinds is an array of sixteen integers. If a
segment is a regular or Intrinsic Unit, the value of the corresponding
array element gives the relative block mumber (TEXTADDR) where the
Interface portion of that Unit begins. Array elements corresponding to
non-Unit segments have the value zeros

Next is an array of sixteen words (SEGINFO), each word describing one
segment of code. Bits P through 7 (the rightmost bits) of each word
specify the segment number for that code segment. This specifies the
slot number the code segment will occupy in the system’s SEGTABLE, at
execution time. Bits 8 through 11 identify the "Machine type" which
tells what kind of code is present in the code segment. These machine
types are assigned as follows:

f Unidentified code, perhaps from a previous compiler.
1 P-code, most significant byte first (positive byte sex).
2 P-code, least significant byte first (negative byte sex).

A stream of packed ACCII characters fills the low byte of
a word first, then the high byte. This is the kind of
P-code used by the Apple.

3 through 9 Assembled machine code, produced from assembly-language
text. Machine type 7 identifies machine code for Apple’s
A5@2.

268 APPLE PASCAL OPERATING SYSTEM

=

A A A

Al Ul A W A W A

Al

A Al

=N

Bit 12 (UNUSED) in each word is an unused filler, usually set to zero.
Bits 13 through 15 identify the version number of the system; currently
this is set te the number ome.

Next are two words (INTRINS_SEGS) that tell the system which Intrinsic
Units are needed in order to execute the codefile. Each Intrinsic Unit

in SYSTEM.LIBRARY is identified by a segment number (or two segment
numbers, if the Intrinsic Unit has a data segment). Each of the thirty-
two bits in INTRINS_SEGS corresponds to one of the thirty-two possible
Intrinsic Unit segment numbers. If the n-th bit is set to 1, this
indicates the program will USE the Intrinsic Unit whose segment number in
SYSTEM.LIBRARY is n .

Library information of undefined format occupies most of the remainder
of the segment dictionary block. The "copyright" text supplied by the
Pascal Computer $C option may appear at the very end of the block.

The actual code segments begin in block 1 of the codefile. The internal
format of codefile segments is shown in some detail in the first portion
of this manual®s appendix, OPERATION OF THE P-MACHINE. See that
appendix for more details about codefile segments.

For an unlinked code segment (that is, a segment containing unresolved
external references) the Compiler generates Linker information which
begins at the first block boundary following the last segment of code.
This information is a series of records, one for each

UNIT, routine or wvariable which 1is referenced in, but not defined in the
source. The first eipht words of each record contain the following
information:

LITYPES = (EOFMARK, UNITREF, GLOBREF, PUBLREF, PRIVREF, CONSTREF,
GLOBDEF, PUBLDEF, CONSTDEF, EXTPROC, EXTFUNC, SEPPROC,
SEPFUNC, SEPPREF, SEPFREF);

LIENTRY=RECORD

NAME: ALFHA;

CASE LITYPE:
UNITREF,
GLOBREF,
PUBLREF,
PRIVREF,
SEPPREF,
SEPFREF,

CONSTREF:

(FORMAT: OPFORMAT;

LITYPES OF

(format of lientry.name can be
any of BIG, BYIE or WORD)
(number of refs to lientry.name
in compiled code segment)

(slze of privates in words)

NREFS: INTEGER;

NWORDS: LCRANGE);

GLOBDEF:
{HOMEPROC: PROCRANGE;
ICOFFSET: ICRANGE) ;

{(which procedure it occurs in)
(byte offset in p-code)

FILE FORMATS 269

PUBLDEF: i
(BASEOFFSET: LCRANGE); (compiler-assigned word offset) -
CONSTDEF:
(CONSTVAL: INTEGER); (user’s defined value)

EXTPROC, EXTFUNC,
SEPPROC, SEPFUNC:
(SRCPROC: PROCRANGE; (procedure number in source seg)

bt

NPARAMS: INTEGER); (number of parameters expected) E?i
EOFMARK: -
(NEXTBASELC: LCRANGE) (private var allocation info)
END(lientry); E-
{ |
If the LITYFE is one of the first case variants, then following this -
portion of the record is a list of pointers into the code segment.
Each of these pointers is the absolute byte address within the code
segment of a reference to the variable, UNIT or routine named in the Ei

lientry. These are eight-word records, but only the first NREFs of
them are valid.

TABLES 271

270 APPLE PASCAL OPERATING SYSTEM

-

A

WHEN TO USE .TEXT AND .CODE i

An Apple Pascal filename normally ends with a "suffix" that tells the
system something about the contents of that file. The most common E
suffixes are .TEXT , for files containing text (matural language

Pascal program text, or 65@2 assembly-language text), and .CODE : for

files containing code (compiled P-code or assembled 652 machine code) . E
4

LANGUAGE SYSTEM DISKETTE FILES

The following table shows which files are normally found on each of the
Language System Diskettes needed for Apple Pascal. The ORDER of the
files on any diskette is unimportant. When most files are needed by the
system, it is only necessary that the file be present on ANY diskette in
ANY drive. For exceptions to this rule, see the DISKFILES NEEDED
sections of this manual®s chapter THE COMMAND LEVEL.

Al A

Many Apple Pascal commands deal with various diskette files that you must
specify by filename. In those instances where the file being acted on can

be of only one type (.TEXT , .CODE , etc.) the system allows you to type E g Diskette Diskette
the filename either with or without the suffix. If you forget to add the APPLE@: AFFLE3:
suffix, the system will add it for you. In those instances where a o .
command may apply to files of more than one file type, the following E ﬂ SYSTEM.PASCAL SYSTEM.APPLE
rules apply: -~ SYSTEM.MISCINFO FORMATTER.CODE
SYSTEM.COMPILER FORMATTER . DATA
SYSTEM. EDITOR LIBRARY.CODE
l. Several Filer commands which must distinguish between textfllesi g SYSTEM.FILER LIBMAP.CODE
and codefiles will use the given filename exactly as typed, without SYSTEM.LIBRARY SETUP.CODE
adding any suffix for you. These commands are: T(ransfer, M(ake, SYSTEM.CHARSET BINDER.CODE
C(hange, and R{emove. SYSTEM. SYNTAX CALC.CODE
[a LINEFEED.TEXT
2. The S({ave command automatically supplies the correct suffix =t LINEFEED.CODE
(.TEXT or .CODE) to the version of the workfile being S(aved. SOROCGOTO.TEXT
Therefore, when using this command, don’t specify a suffix. Diskette SOROCGOTO . CODE
E g APPLEL: SOROC.MISCINFO
3. Code segments may be stored in library files which have either HAZELGOTO . TEXT
+CODE or .LIBRARY as their suffix. Commands that use these files SYSTEM. APPLE HAZELGOTO.CODE
must specify the suffix. These include the Librarian utility’s E ﬂ SYSTEM.PASCAL HAZEL.MISCINFO
OUTPUT CODE FILE, and the Pascal Compiler’s Use-Library — SYSTEM.MISCINFO CROSSREF.TEXT
(*$Ufilename*) control option. SYSTEM. EDITOR CROSSREF.CODE
= SYSTEM.FILER SPIRODEMO. TEXT
E g SYSTEM.LIBRARY SPIRODEMO.CODE
SYSTEM.CHARSET HILBERT . TEXT
SYSTEM. SYNTAX HILBERT .CODE
— GRAFDEMO. TEXT
E g GRAFDEMO.CODE
GRAFCHARS . CODE
Diskette GRAFCHARS . TEXT
E g APPLE2: TREE. TEXT
. TREE.CODE
SYSTEM.COMPILER BALANCED . TEXT
= SYSTEM.LINKER BALANCED . CODE
E g SYSTEM.ASSMBLER DISKIO.TEXT
65@@ . OPCODES DISKIO.CODE
65@@ . ERRORS
272 APPLE PASCAL OPERATING SYSTEM l i

TABLES

273

The next portion of the table gives more information about the various -

files provided with the Apple Pascal system.

Filename

SYSTEM-APPLE

SYSTEM.FASCAL

SYSTEM-MISCINFO

SYSTEM.EDITOR

SYSTEM.FILER

SYSTEM.LIBRARY

SYSTEM.CHARSET

SYSTEM.SYNTAX

SYSTEM-COMPILER

SYSTEM.LINKER

274

Contents of File

Interpreter,
written in 65@2

machine language

Command level
portion of

operating system

Information about
terminal in use

Text Editor

Filer

Routines for I/0O,
long integers,
trig. functions,
graphics, etc.

Array providing
upper & lower
case graphie
character set

Compiler error
messages

Pascal Compiler

Linker

APPLE PASCAL OPERATING SYSTEM

Use of File

Executes P-code

on Apple‘s 65{2

prOCESSOT

Lets you pick

E(dic, F(ile,
R(un, etc.

Tells system
about terminal
hardware

Lets you make
& change text

Lets you store,
delete & move

disk files

Many programs
use these

library
routines

Lets you put
text on
graphics
screen

Provides message

in E(ditor
after Compiler
finds an error

Converts Pascal
program text
to P-code

Puts library
routines into
yOur program

ad!

Al

When File Needed

b |
Power-on, H{alt k=
ru
Power-on, H(alt, *®
RESET,
I({nitialize, -
every return F i
to Command T
level
i |
Power-on, H(alt, |
RESET,
I(nitialize

g

Al

E(dit, C(ompile
R(un, A(ssemble

F(ile 1
T s
R(un, X({ecute, ! i

L{ink, Clompile,

if library
routines are r]
used | B]

Used by WCHAR
& WSTRING in E

A

TURTLEGRAPHICS

|

Al

R(un, C(ompile [
followed by b
E(dit after
an error

C({ompile, R(un

L]

L{ink, R{un

-

A A

Al

Al

A

A A A

A A

SYSTEM.ASSMBLER

650¢.0PCODES

65@@ . ERRORS

FURMATTER.CODE
FORMATTER .DATA
LIBRARY.CODE

LIBMAP.CODE

SETUP.CODE

SOROC.MISCINFO

HAZEL.MISCINFO

BINDER.CODE

SOROCGOTO . TEXT
SOROCGUTO.CODE

HAZ ELGOTO . TEXT
HAZELGOTO.CODE

CALC.CODE

LINEFEED.TEXT
LINEFEED.CODE

65@2 Assembler

Instruction set
for Assembler

Assembler error
messages

Utility program
Utility program

Utility program

Utility program

SYSTEM.MISCINFO
for Soroc IQl2¢
terminal

SYSTEM.MISCINFO

for Hazeltine
150 terminal

Utility program

GOTOXY procedure
for Sorocc 1Ql2¢

GOTOXY procedure
for Hazeltine 1580

Utility program

Utility program

Converts H5@2
assembly text
into machine code

Used by the
Assembler

Provides message
after Assembler
finds an error

Formats new
diskettes

Puts new routines
into library

Reveals contents
of library file

Makes new file
SYSTEM.MISCINFO
for use with

external terminal

Eliminates SETUP
for using a
Soroc IQ129

Eliminates SETUF

for using a
Hazeltine 15@@

Makes new file
SYSTEM.PASCAL

with GOTOXY for

external terminal

Used with BINDER
for Soroc IQ12@

Used with BINDER

Alssemble

A(ssemble

A(ssemble

X({ecute FORMATTER

X(ecute LIBRARY

X¥(ecute LIBMAP

X{ecute SETUP

X(ecute BINDER

for Hazeltine 1508

Lets you divide,

mulciply, add &
subtract numbers

Removes linefeed
normally sent to

X{ecute CALC

X(ecute LINEFEED

printer after RETURN

TABLES 275

PASCAL 1/O DEVICE VOLUMES o

Card or Serial Interface Card)

CROSSREF.TEXT These are a collection of small
CROSSREF . CODE demonstration programs, illustrating APPLE 1/O DEVICE SLOTS
SPIRODEMO.TEXT various features of the Apple Pascal p—
;fi:ocgéﬁggignr iznguage. J‘The iirst 5 pairs of files ! i In using an Apple computer with the Apple Pascal operating system,
D show examples of using the Apple Pascal . igh ipment slots are assigned as follows:
HILBERT.CODE graphics features. The next 2 pairs of the Apple”s peripheral equipmen s are g :
gﬁigﬂgzgﬁg files show a simple "tree" algorithm for "‘l i Apple Input/Output Device and Card Apple Pascal
] S.CoD Sorlp dabad Zhe INst Retr of fiiws —e Slot Assigned to That Slot Operating System Use
GRAFCHARS .CODE is a brief example of using random-access
GRAFCHARS . TEXT
TREE.TEXT aran=tilehs .u_—- @ Apple Language Card * Stores interpreter
TREE.CODE Each pair of files consists of a .TEXT u i and 1/0 system
Eitﬂgggz;ﬁ: version which you can read in the Editor, 1 Printer (Communications Interface PRINTER: or #6:
25 . and a .CODE version you can X({ecute. See ,— Card, Serial Interface Card, or
L-:K.IU-TE)('I_' the Apple Pascal Language Reference Manual |l ! Parailel SeAster Taterfice i’.'.-‘clrd)
DISKIO.CODE for more information about these files. -
2 Modem, Apple-to-Apple communication, REMIN: or #7:
i etcs (Communications Interface REMOUT: or #8:
'ihet.::pple ?aacai Dpe;ating system assigns volume numbers and volume names 3 External terminal (Communications CONSOLE: or #1:
o the various t - |
! AP ST EwT e Re T OR o il | i Interface Card. Use of Serial (with echo on input)
— e Interface Card is tolerated.) p
SYSTERM: or 2:
Volume Volume Description of (éithout echo on IBpUt)
Number Name Input/Output Device F: g
i@ (not used) - 4 5th disk drive (Drive 1) diskette name: or #9:
fth disk drive (Drive 2) diskette name: or #10:
#l: CONSOLE: Screen & keyboard (echo on input) “ g (Disk Controller Card)
[N,
#2: SYSTERM: Screen & keyboard (no echo on input) 5 sed diak deive Beive 1 itakatte wme: op- 1t
#3: s a g 4th disk drive (Drive 2) diskette name: or #12:
X haed e (Disk Controller Card)
e TR e Pact dask deive lslog. G, dklve-1) —_ (3] Boot disk drive (Drive 1) * diskette name: or #4:
#5: <diskette name>: 2nd disk drive (slot 6, drive 2) _! ﬂ E“dfgizz g;i::oliziigri; diskette name: or #5:
o PRINTER: Printer (card in slot 1) = 7 Must not contain a disk drive
: MIN: a g (Do not install a Disk
" il fgmate dnpat = Controller Card here.)

(card in slot 2)
8 REMOUT: Remote output

a T
9 s le keyboard and screen CONSOLE: or #1:
#9: <diskette name>: 5th disk drive (slot &, drive 1) e App(only:(if there is no (with echo on input)
#1p: i : == Communications Interface
@ <diskette name>: 6ch disk drive (slot 4, drive 2) - a Card in slot #3) SYSTERM: or #2:
#11; <diskette name>: 3rd disk drive (slot 5, drive 1) (ud thouk acho: on- AgIT)
#12: <diskette name>: 4th disk drive (slot 5, drive 2) ._i ! Note: An asterisk (*) indicates a device which is REQUIRED to be
- present in that slot.
.
i
276 APPLE PASCAL OPERATING SYSTEM o TABLES 277

AR R R R R R R T R R EEEEEEEEEEEEREEEEEEEEEEEEEESEESSRRERSRSSRERRRRRRRRRRREEEEEEEEESSSEES—S—————eE—E—S——=ww———___=—~~A

Note: It is possible to use the Apple Pascal operating system with an
Apple computer system containing only a single disk drive.

Note: If a Communications Interface Card is installed in slot #3, for
use with an external terminal, booting the system automatically loads
the Apple Pascal operating system into a different area of memory (using
some of the Apple’s text-screen memory). This happens whether or not
the external terminal 1s actually connected to the Communications
Interface Card. To return to using the Apple without the external
terminal, you must turn off the Apple”s power switch, remove the
Communications Interface Card from slot #3, and turn on the Apple’s
power again to re-boot the system.

EXECUTION ERROR MESSAGES

When a program or any portion of the Apple Pascal operating system is
running, execution errors are reported by number or by messape, in one

of the following forms:

EXEC ERR # 10
S# 1, P# 7, I# 56
TYPE <SPACE> TO CONTINUE

I0 ERROR: VOL NOT FOUND
s# 1, P# 7, I# 56
TYPE <SPACE> TO CONTINUE

where S# specifies the program’s current segment number, Pf specifies
the procedure number within that segment, and I# specifies the byte
number in that procedure where the error was detected. User I/0 errors
(only) are reported in the more derailed second form only if file
SYSTEM.PASCAL is in the boot drive at the time.

See this manual’s section on Error Handling, in the appendix
ARCHITECTURE OF THE P-MACHINE, for more details. Also see the Apple
Pascal Language Reference Manual’s discussion of the L+ (compiled
listing) compiler option, which describes how to list segment,
procedure, and byte number information when you compile a program.

£

i
d
3

Error Error Message Fatal
Number and Description Error?
@ System error of undefined nmature. FATALEE
1 Invalid dndex, value out of range for string or
subrange (XINVNDX). Does not occur if R- compiler
option used. EE
2 No segment: bad code file (XNOPROC). File reads
correctly from disk, but not a valid segment.
3 Procedure not present at exit time (XKNOEXIT): exit Ef
from a procedure that was not previously called or
active.

278 APPLE PASCAL OPERATING SYSTEM

= om =

|l & A

Al & A (&

ii 11
iiu 12
13
14
15

A A

Stack overflow (XSTKOVR): the program stack and the
heap together have exceeded available user memory.

Integer overflow (XINTOVR). Integer arithmetic gave
a result >16 bits. Long integer arithmetic gave an
intermediate result >36 digits or final result was
assigned to variable of insufficient size.

Divide by zero (XDIVZER).

Invalid memory reference <bus timed out> (XBADMEM):
{not used on the Apple).

User break (XUBREAK): "break" key pressed
(CTEL=-{, on the Apple).

System 1/0 error (XSYIOER): error in attempting
to read an operating system segment from disk.

FATAL

User 1/0 error (XUIOERR): error when user’s program

attempted a blockread, blockwrite, get, or put.
If file SYSTEM.PASCAL available, this error is
further reported as an I1/0 ERROR (see next page).

Unimplemented instruction (XNOTIMP): op-code not
implemented, or CS5P to non-existent routine.

Floating point math error (XFPIERR): error in real
number format, overflow, underflow, etc.

String too long (XS2ZLONG): attempt to store a
source string into a destination string of
insufficient size.

Halt, Breakpoint (without debugger in core) (XHLTHPT):
(not used on the Apple).

Bad Block (not used on the Apple; Apple reports
1/0 ERROR #64, instead).

A fatal error either causes the system to "cold boot" itself or (if the

moA /A

error was totally lethal to the system) forces you to "cold boot" the
system by turning the Apple off and then on again.

cause the system to re-initialize itself (do a "warm boot" by calling
system procedure INITIALIZE), usually afrer you press the Apple’s

spacebar to continue.

All other errors

TABLES 279

1/O ERROR MESSAGES

Error
Number

#
1

11

12

13
L4

15

Error Message
and Description

No error

Diskette has bad block: parity error (CRC).
(Not used on the Apple.)

Bad device (volume) number.

Bad mode: illegal operation. (For example, an
attempt to read from PRINTER:.)

Undefined hardware error. {Not used on the Apple.)

Lost device: device is no longer on-line, after
successfully starting an operation using that
device.

Lost file: file is no longer in the diskette
directory, after successfully starting an
operation using that file.

Bad title: 1llegal filename. (For example,
filename is more than l5 characters long.)

No room: insufficient space on the specified
diskette. (Files must be stored in contiguous
diskette blocks.)

No device: the specified wolume is not on-line.

No file: the specified file is not in the directory
of the specified volume.

Duplicate file: attempt to re-write a file when
a file of that name already exists.

Not closed: attempt to open an already-open file.

Not open: attempt to access a closed file.

Bad format: error in reading real or integer.
(For example, your program expects an integer
input but you typed a character.)

Ring buffer overflow: characters are arriving at

the Apple faster than the input buffer can
accept them.

280 APPLE PASCAL OPERATING SYSTEM

TN

F

L

16 Write=protect error: the specified diskette is
write-protected.

64 Device error: failed to complete a read or write
correctly (bad address or data field on diskette).

E' i The appropriate one of these I/0 error messages is given when execution

FEl OEm] oEEl o RER] EE

s

LE 0]

= e PR W)

L g

A A A A A A W

A A A A

= A

error #1lf} occurs (see previous page), if the file SYSTEM.PASCAL is in
the boot drive. See the Apple Pascal Language Reference Manual for
information about the Apple Pascal function IORESULT, which returns the
error numbers shown above.

6502 ASSEMBLER ERROR MESSAGES

When the 65@2 Assembler discovers an error in your assembly-language

routine, it gives an error message taken from the file 65@@.ERRORS ,
usually found on diskette APPLE2: . If the file 65@@.ERRORS is not

available in any drive, errors will be reported by number, only.

The 65§12 Assembler error message corresponding to each error number
is given in the table below. 5Some people may prefer to gain some
additional diskette space by removing the file 65@@.ERRORS and using
this table instead.

The first portion of this table lists all the general error messages.
Machine errors specific to Apple’s B5f2 are found in the last portion
of the table.

GENERAL ERRORS

l: Undefined label

i Operand out of range

3: Must have procedure name

4: Number of parameters expected

5: Extra garbage on line

6: Input line over B@ characters

7: Not enough .IF's

B: Must be declared in .ASECT before used
9: Identifier previously declared

: Improper format

11: EQU expected

12: Must .EQU before use if not to a label
13: Macro identifier expected

14: Word addressed machine

15: Backward .0ORG currently not allowed
16: Identifier expected

17: Constant expected

18: Invalid structure

TABLES 281

19: Extra special symbol E ‘_‘i 65@2-SPECIFIC ERRORS
2@: Branch too far
21: Variable not PC relative 76: Index register Tequired
22: Illegal macro parameter index E ﬂ 77: "X or Y’ expected
23: Not enough macro parameters e 78: Zero-page address required
24: Operand not absolute 79: Illegal use of register
25: Illegal use of special symbols 8@: Index register expected
26: Ill-formed expression E ﬂ 81: Ill-formed operand
27: Not enough operands . 82: ‘X’ expected for indexed addressing
28: Cannot handle this relative expression 83: Must use “X° index register
29: Constant overflow E ..E
3@: Illegal decimal constant !]. -
31: Illegal octal constant
32: Illegal binary constant . Asc" CHARACTER CODES
33: Invalid key word !-1 Tﬂ
g; ﬁz;ﬁdztiiie:vgiligé genﬁ::::dlimit Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
36: Unexpected end of input a
37: This is a bad place for an .INCLUDE file [l ﬂ g ¢¢ NUL P 64 49 @ 96 60
38: Only labels & comments may occupy column 1 = L gL sod 33 21 | B3 41 A 97 6l a
| 39: Expected local label 2 BE: AER Sk: 22 o 66 42 B 48 €E b
49: Local label stack overflow : 3 @3 EIX 5 23 67 43 ¢ 99 63 ¢
| 41: String constant must be on one line l' _ﬂ 4 @4 EOT 3% 24§ 68 44 D 199 64 d
| 42: String constant exceeds 8§ characters 5 #5 ENQ 37 5 A 69 45 E 11 65 e
| 43: Illegal use of macro parameter : 6 @b ACK 38 26 & W 46 F 142 66 £
, 44: No local labels in .ASECT E. ﬂ x4, 3, 29, 2 L 1p3 67 ‘g
| e M igs Hac pei s
l 46: String expected 1
47: Bad b%nckf parity error (CRC) ' 19 @8A LF 42 24 % 74 4A] 196 6A]
48: Bad unit number E lﬂ 11 g8 VT 43 2B+ 75 4B K 197 6B k
49: Bad mode, illegal operation 2 12 @c FF 44 2C 76 4C L g8 6C 1
5@¢: Undefined hardware error 13 ¢p CR 45 I = 77 4D M 19 60 m
51: Lost unit, unit is no longer on-line - 4 QE s0 46 2E . 78 4E N 11 6E n
52: Lost file, file is no longer in directory E 15 @F 51 47 28/ 89 4F 0 111 6F o
53: Bad title, illegal file name = 16 19 DLE 48 39 ¢ 84 ¢ P 112 79 p
54: No room, insufficient space on disk 17 11 Dpcl 49 31 1 81 51 q 113 71 ¢
55: Mo unit, no such volume on-line - 18 12 bpC2 5¢ 32 2 82 52 R 114 72 ¢
56: No file, no such file on volume E l_ﬂ 19 13 DC3 51 33 3 83 53 8 115 73 s
57 Duplicate file 28 14 DC4 52 34 4 84 54 T 116 74 t
58: Not closed, attempt to open an open file - 21 15 NAK 53 35 S 85 55 U 117 75 u
59; Not open, attempt to access & closed file E ﬂ 22 16 SYN 34 36 6 86 56 V 118 76 v
6@: Bad format, error in reading real or integer = 23 17 ETB 55 37 7 87 57 W 119 77 w
61: Nested macro definitions illegal 24 18 CAN 56 38 8 88 58 X 120 78 x
62: ‘= or ‘<>’ expected - 25 19 EM 57 139 9 49 59 ¥ 121 79 ¥
63: May not .EQU to undefined labels E Lﬂ 26 1A suB 58 3A 99 54 2z 122 74 =
64: Must declare .ABSOLUTE before lst .PROC = 27 15 ESC 59 3B 91 5B | 123 78 {
28 IC FS 69 3¢ < 92 5¢ \ 124 7¢ |
— 29 1Ip GS 61 3D = 93 5D] 125 7D }
E Jg 3@ 1E RS 62 3E > 94 5E ~ 126 7E -
31 IF us 63 3F 1 95 5F _ 127 7F DEL
uoq
ioq
282 APPLE PASCAL OPERATING SYSTEM _ TABLES 283 |

P-MACHINE OP-CODES
Dec Hex Mnemonie Dec Hex Mnemonic Dec Hex Mnemonic n OPERATING SYSTEM SUMMARY

¢ @@ sLpc @
1 @1 sLpC 1

126 7E SLDC 126
127 7JF SLDC 127
128 8¢ ABI i i
129 Bl ABR Y
13@ 82 ADI
131 83 ADR
132 B84 LAND
133 385 DIF
134 86 DVL
135 87 DVR
136 88

137 89

138 B8A

139 BB

149 BC

141 BD

142 BE

143 8F

144 99

145 91

lae 92

147 93

148 94

149

15¢

151

152

153

WD = hoLn B b RO

-
—

—
Ly B2 o=

—
&=
-~

—
o un

=

moE

APPLE PASCAL OPERATING SYSTEM

OPERATING SYSTEM SUMMARY 285

1.

The following commands are available at all levels of the system: Ei"
Ea
CTRL=A Shows the other 4fl-character "page" of screen display.
CTRL-Z Causes the display to follow the cursor right and left.
CTRL- "Break" signal; does a "warm boot". o
CTRL-F Stops program output to the screen or printer until the =
next CTRL=-F, without stopping the program.
CTRL=-5 Temporarily stops any program or process. On the next —
CTRL-S, the program continues. E_:
RESET Does a "warm boot".
Power off-on Does a "cold boot".
=
L
COMMAND LEVEL =
(B
The Command level is reached automatically, each time the system is
booted, RESET, or initialized. It is alsc reached when any program, p—
including any part of the operating system, is terminated. . |
(==
Use the Command level options teo select any of the main subdivisions
of the Apple Pascal operating system. r:
[]
These are the Command level options:
& |
F{ile Deals with the disks and disk files. [T
E{dit Helps you create and change text files.
C{oupile Converts Pascal program text into executable P-code. x
A(ssemble Converts 65@P2 assembly text into 65@2 machine code. | o |
L{ink Combines external routines into a Pascal program. Lo
XK{ecute Loads and runs a utility program or other P-code file.
B{un Executes the workfile, automatically compiling and
linking first, if necessary. L!
D{ebug Not implemented; do not use this option.
U{ser-restart Re-executes the last program or option executed.
I{nitialize Does a "warm boot", lilke pressing RESET. r]
H{alt Does a "code boot", like turning the power on. e
Ll
[)
|
=}
Ll
-
- Ll
286 APPLE PASCAL OPERATING SYSTEM —

cx

FILER

f"j 1. From Command level, select F(iler. When FILER prompt line appears,

ij 2.

you may remove your boot diskette, if necessary.

Use Filer commands to move, save, and erase the workfile and other
disk files.

ﬂ These are the Filer commands:

JAY

I

A A

A A A A

|

A A

T(ransfer

Copies a file or entire diskette to another diskette or

device. Source diskette must be in a drive ta begin.
H{ake Creates a dummy file on diskette.
C{hange Renames a file or diskette.
R{emove Erases a file from its diskette directory.
K(runch Packs all files together on a diskette.
Z{ero Erases a directory and renames the diskette.
Glet Designates a file to be used as the next workfile.
S{ave Saves the workfile on diskette.
New Clears the workfile.
W(hat Tells the original name of the current workfile.
Violumes Shows which devices and diskettes are in the system.
L(ist-dir Shows what files are on a diskette.
E(xt-dir Shows what files are on a diskette, giving more information.
E(ad-blks Tests diskette information for correct recording.
K{amine Tries to fix information reported bad by B{ad-blks.
P(refix Sets the default volume name.
D{ate Sets the current date.
Qfuit Leaves the Filer and returns to Command level. BRe sure

your boot diskette is in the boot drive.

OPERATING SYSTEM SUMMARY 287

EDITOR

1.

From Command level, select the F(iler. Start a N{ew file or G(et

an old file for re-editing (one-drive note: first T(ransfer the
old file onto your boot diskette)}. OQ(uit the Filer.

From Command level, select the E(ditor. Press the RETURN key if
you are beginning a new file. 1Use the Editor commands to I(nsert,
D(elete, X{change, and move rext. When you are through, Q(uit and
U(pdate the workfile.

If this is a program, you may R{un it now. Repeat steps 2 and 3
until the program runs correctly.

From the Command lewvel, select the F(iler. S{ave the workfile.

These are the Editor commands:

e 4

1
E
E
4
I
3
E:

J(ump Moves cursor to file®s B(eginning, E(nd, or preset M(arker.

P(age Moves cursor one page.

F(ind /x/ Moves cursor to mext "x".

I (nsert Inserts typed text at cursor.

Dielete Moving cursor erases text.

Z(ap Erases all text from curser te start of last F(ind,
R{eplace, or I(nsert.

Clopy Inserts B(uffer (last insertion or deletion) or
diskette F(ile at cursor.

X(change Replaces character at cursor by typed character.

i

R(eplace /x//y/ Replaces next "x" by "y".

A(djust Moves line at cursor right and lefrt.

M(argin Formats all text between two blank lines (one paragraph).
S(et Places a M(arker at cursor, or sets E{nvironment options
for A(uto-indent, F(illing, margins, etc.

V(erify Redisplays screen with errors gone.
Qfuic Leaves the Editor. You may U(pdate the workfile, E(xit

without updating, W(rite to any diskette file
before returning to Command level or S(ave to your
original file.

288 APPLE PASCAL OPERATING SYSTEM

(3

FE F=
4 =

Fe= F=l

FE FFE

=i

|

~ COMPILER

A A A

A A A A

|

R}

'

|

A R

l.

2.

3‘

From Command level, select K{un or C{ompile.

If a text workfile exists, that file is compiled automatically.
Otherwise, you are prompted to specify a source textfile and then
to specify a destination codefile.

If the Compiler finds an error, select the E(ditor to fix it.

ASSEMBLER

1.

2.

3‘

From Command level, select A(ssemble.

If a text workfile exists, that file is assembled automatically.
Otherwise, you are prompted to specify a source textfile and then
to specify a destination codefile.

Finally, you are prompted to specify an output textfile for the

assembly listing, If you want one.

If the Assembler finds an error, select the E(ditor to fix {it.

LINKER

Le

2.

From Command level, select R({un or L(ink.

R{un links the compiled workfile to UNITs and routines found in
SYSTEM.LIBRARY, automatically. L(ink prompts you to specify a

host codefile and then to specify as many library codefiles as

needed. Press the RETURN key to stop giving library files.

Next, you are prompted to specify a map textfile for storing Linker
information. Normally, just press the RETURN key to go on.

Finally, you are prompted to specify an output codefile for the
linked program.

OPERATING SYSTEM SUMMARY 289

=

UTILITIES

l. From Command level, select the X(ecute option. When you are
prompted EXECUTE WHAT FILE?, type the name of a utility program.

2., The utility programs enable you to format new diskettes, put

routines into a library file, change the system to use an external
terminal, change printer output, and use your Apple as a calculator.

These are the Utility programs:

FORMATTER Prepares new diskettes for use by Apple Pascal.

LIBRARY Puts UNITs and routines into a library f£ile. E|
LIBMAP Shows the contents of a library file. :
SETUFP Changes the system for use with an external terminal.

BINDER Changes the system for use with an external terminal. -
LIKEFEED Stops the sending of linefeed after RETURN to printers.

CALC Lets you add, subtract, divide, and multiply numbers. =

™ m™m m m m m

Pi

I

et

290 APPLE PASCAL OPERATING SYSTEM

INDEX 29

A

+ABSOLUTE , Assembler
directive 161, 173
activation record 258-260
address field 25
A(djust
Editor command 113 114, 126
APPLESTUFF , Intrimsic Unit 176
APPLEQ, contents of 273
APPLEl, contents of 273
APPLE2, contents of 273
APPLE3, contents of 273
architecture, P-machine 224-245
ASCII character code 283
«ASCII , Assembler
directive 159, 173
A(ssemble ,
outer level command 17, 138
Assembler, 136-174
directives 157-172
directives, summary 172-174
diskfiles needed 13, 136-137
error messages 281-282
example 142-150
introduction 136-138
linkage to assembly
routines 155-156
summary 289
syntax of files 15]
syntax of statements 152-155
use |38-150
assembly file specification
syntax 152
asterisk
and P(refix command 65
as specification for
SYSTEM LIBRARY 193
as volume name
of system disk 28
in assembly listings 148
in file size
specification 30, 44, 137, 139
A(uto-indent, in Editor Enviromment
text formatting
option 98-101, 119

and Editor M{argin command 114

292 APPLE PASCAL OPERATING SYSTEM

B

B(ad Blocks ,

Filer command 61-62, 69
BINDER , utility 210-213
blocks 25
«BLOCK , Assembler

directive 160, 173
boot diskette 14, 56
boot disk drive 14
booting the system 7-8, 12

m & Mm

brackets, as file size specifiers 44

« BYTE , Assembler directive 160,

C

CALC , utility 216-218, 221
diskfiles needed 216
use 217-218
summary 221
caleulator 216-218, 221
C(hange , Filer command 45-47, 68
Changing GOTOXY
diskfiles needed 211
example 211-213
summary 220
code files,
format of 248-253, 262, 266-270
«CODE (versus .TEXT),
when to use 272
cold boot 7, 12
colon, and P(refix option 65
as volume specifier 26, 28
comma, as file separator 33, 45
C(ommand character,
in Editor 115, 120
Command level 5-20
Command level options 16-19
Command options summary 20
commands usable
at all levels 9-10
diskfiles needed 11-16
overall summary 286
the operating system 6-9
commands, Command level
description 16-19
summary 20, 286
commands, Editor
description B9-123
summnary 124-125, 2R8

173

m

fﬂ;!

o & —

I 1 'S

\ T
¥ | T~
(AN

Q:E:

Al

@

HG::

&

a

o

—

=

b

A

commands, Fller
description 34-66
summary 67-69, 287
Communications
Interface Card 6, 202
C(ompile , outer level
command 16, 130
Compiler, 127-132
diskfiles needed 13, 128-130
introduction 128
summmary 289
use 130-132
CONSOLE: , volume name 26,
console, external
hardware requirements, 202-209
in SETUP utility 199-202
«CONST , Assembler
directive 166, 173
copy buffer, in Editor 105-107
C({opy , Editor command 104-107, 128
copying a diskette 42-43
F(rom a diskette file 104-105
from the copy B{uffer 105-107

56

copyright, and library files 192-193

CTRL-4 ,
of text
CTRL-C ,
CTEL-F ,
CTRL-I ,

to see other half
gereen 9, 67, 75
in Editor 78, 87, A8
to flush output 10, 67
TAB key 92, 125
CTRL-K , to make [67, BS, 125
CTRL-L , to move cursor
down 85, 86, 125
CTRL-0 , to move cursor up 85,
CTRL-Q , to move cursor
to left margin 125
CTRL-S5 , to stop execution
temporarily 10, 67
CTRL-X , to erase line 7, 125
CTRL-Z , to auto-follow
cursor 10, 67, 75
CTRL-@ , to warm boot 10
cursor, in Editor 85-86,

124

90-92, 125

data field 25
data files, format of 266
D(ate , Filer command A5-66, 69
D{ebug , outer level
prompt only 19, 20

DEC VT52, external terminal 202
-DEF , Assembler

directive 168, 173
Dielete ,

Editor command 88, 101-103, 126
delimiters, in Editor

for paragraphs 120

with F{ind 95

with R(eplace 110
directives, Assembler

description 157-172

summary 172-174
directory of diskette 25, 56-60
diskette, names 273
diskette directory 25, 56-60
diskettes, contents of 273
diskettes, damaged 61-64
diskette files needed for

Assembler 13, 136-138

Calculator 216

Changing GOTOXY

Communication 211

Command level 11-13

Compiler 13, 128-130

Editor 13, 72

Filer 13, 24

Formatter 184-185

Library mapping 194-195

Linker 13, 176-178

Removing linefeed from return 214

System Librarian 187-188
System reconfiguration 199-200
system, summary 13-14
dollar sign, as destimaticn
file specification
in Fller 36, 67
in Assembler 138
in Compiler 131
in Linker 181
duplicating a diskette 42-43

E

E(dit, outer level command 16, 83
Editor 70-126
brief scenario 77-83
command summary 125-126
commands 89-123
diskfiles needed 13, 72
introduction 72
overall summary 290

INDEX 293

L73

172
173
173

+ELSE , Assembler directive 165,
.END , Assembler directive 159,
{ENDC , Assembler directive 165,
+ENDM , Assembler directive 163,
Enviromment options,

in Editor 118-121, 126
equals sign,

CUTSO0r move

in Editor 92, 103, 125

wildeard in Filer 30-33

wildcard in LIBRARY utility 191
+EQU , Assembler directive 161, 173
error handling by P-machine 226
error messages,

assembly errors 281-282

execution errors 278-279

input/output errors 280
<ESC>, to escape

from Editor command 87
<ETX>, to accept Editor command 87
evaluation stack, P-machine 229
eXchange , Editor command 107, 126
execution error messages 278-279
E(xit , Editor command 122-123, 126
E(xtended directory list,

Filer command 59-60, 69
EXTERNAL routines 153, 176-180
external terminal 6, 199-213,
219-220

F

file types, list of 28

F(ile, outer level command 16, 33

file-specification syntax 29, 67

filenames 30, 6/

Filer 22-69
command summary 67
commands 34-66
diskfiles needed 13,
introduction 24~25

24

overall summary 287
use 33
files 23, 2B-33

diskette file types 28
filenames 30, 67

file size specification 30
maximum number 25

maximum size 98

shorthand filename 30
wildcards 30-31

workfiles 29

294 APPLE PASCAL OPERATING SYSTEM

Eilling, izl
text formatting command 98-101, 125
and M({argin command 114 -

F(ind , Ediror command 93-97, 126 EEE
L{iteral or T(oken search 94
Repeat-factor 94
Same-string option 95 :
Set direction 94 Ei.
Target string and delimiters 95

FORMATTER , utility 184-186, 218
diskfiles needed 184-1B5 1
use 185-186 ¥
summary 218

formatting commands in Editor 98-10

formatting diskettes 1B4-186, 218 i

.FUNC , Assembler directive 159, 172

function calls, P-machine 240-242

i
"

G(et , Filer command 51-52, 68 il

GOTOXY procedure 210-213, 220

greater than character,
in Editor 91-92, 125

—
H i
H(alt , outer level command 19, 20
diskfiles needed 14 -
HAZELGOTO.CODE 210, 211 Al
HAZEL.MISCINFO 199
Hazeltine 1500 6, 202, 210
T
LTS
1]

«IF , Assembler directive 165, 173 M
include-file 132, 140
+ INCLUDE , Assembler

directive 172, 174
I(nitialize,

outer level command

diskfiles needed 14
initializing a diskette 184-186,
input/output devices

by slot number 277-278 o

by volume number 26, 267 i

18
i
19, 20
21l

q
4

input foutput error messages 280-281
I{ngert ,

Editor command 87-88, 97=101, 126
instruction set, P-machine 229-245
« INTERF ,

Assembler directive 162,
interpreter, P-coae 7, 128
INTRINSIC UNMITS 176-180
I/0 error messages 280-281

173

J

J(ump ; Editer command 92-93, 125

K

K{runch , Filer command 49-50, 68

L

L{eft margin,
Editor enviromment option 120
less=than character,
in Editeor 91-92, 125
LIBMAP , utility 194-198, 219
diskfiles needed 194-195
use 195-196
summary 219
LIBRARY , utility 186-193, 218-219
diskfiles needed” 187-18B
example 188-193
use 193
summary 218-219
library files 18B8-195
library mapping 194-198, 219
linefeed, removing from
carriage return 214-215, 220
LINEFEED , utility 214-215, 220
diskfiles needed 214
example 197-198
summary 220
use 215

L(ink, outer level command 17, 178

Linker, 175-181
diskfiles needed
introduction 176
summary 289
use 178=181

13, 176-178

+LIST , Assembler Directive 170, 174
L{ist directory ,
Filer command 56-59, 69

L{iteral or T{oken search, in Editor
using F(ind 94

using R(eplace 109

M

«MACRO , Assembler directive 163,
«MACROLIST ,

Assembler directive 170, 174
M{ake , Filer command 44-45, 68
mapfile 181, 195
M{argin , Editor command 114-116,
markers, in Editor

J{ump command 92-93

S{et command 116-=117
memory map, Apple II, 254-255

173

126

N

N{ew , Filer command 55,
.NOLIST ,

Assembler directive 170,
+NOMACROLIST ,

Assembler directive 170,
«NOPATCHLIST ,

Assembler directive

68
174
174

170, 174

O

op codes, P-machine, 284
operand formats, P-machine 227-228
operating system 2-3, 6

command summary 21

overall summary 285-290

-0RG , Assembler directive 161, 173

INDEX 295

P

P-code 16, 128
P-machine 128, 223264

instruction set 229-245

op-codes 284

operation of 247-264

technical information 224-228
.PAGE , Assembler directive 171, 174
P(age , Editor command 85, 93, 125
paragraph,

as defined by Editor 114-115
P(aragraph margin,

Editor Environment opticn 120
<PATCHLIST ,

Assembler directive 170, 174
"pﬂl.lﬂd" sign i

to indicate block structure 36
Power Down-and-Up 10
P(refix , Filer command 28, 65, 69
PRINTER: , volume name 26
« PRIVATE ,

Assembler directive 167,
procedure dictiomary, 251
.PROC , Assembler directive 158,
program stack,

P-machine 229, 256-257
prompt line, command level 6

Edi tor 76

Filer 33
Pseudo-machine (see P-machine)
+PUBLIC ,

Assembler directive 166,

173

172

173

Q

gquestion mark,
at end of command prompt line 7
wildeard in Filer 30-33
wildecard in LIBRARY utility 191
Q(uit , Editor command 88, 122, 126
Filer command 66, 69

R

reference symbol table,
in Assembler 142
.REF , Assembler directive 169, 173

296

APPLE PASCAL OPERATING SYSTEM

registers 224-225
REMIN: , volume name 26
REMOUT: , volume name 26
R{emove , Filer command 48-49, 68
removing linefeed from
carriage return 214-215, 220
repeat-factor, in Editer 91, 125
with D{elete 101
with F(ind 94
with R{eplace 109
with Z{ap 103
R{eplace ,

Editor command 108-113, 126
Literal or Token search 109
Repeat factor 109
Same-string optiom 111
Set direction 1GB
V{erify option 109

RESET 10
Rieturn , Editor command 123,

R(ight margin,

Editor Environment option 120

ROOT VOLUME 28, 56

R(un ,
outer level command 18-19, 20,
diskfiles needed 24

126

S

S5(ame-string, Editor option
with F{ind 95
with R{eplace 111
S(ave , Editor command 124, 126
S(ave , Filer command 5355, 68
screen display 6, 75, 91
sectors, on diskettes 25
segment dictionary 250

segments, in codefile 248, 250-251

set direction 91-92, 125
with F(ind 94
with R{eplace 108
S(et , Editor command
E{nviromment 118-121, 126
M{arker 116-117, 126
SETUP parameters, list of 203-209
SETUP , utility 199-202, 219
diskfiles needed 199
external terminal
requirements 202-208
summary 219
use 200

= &

74

&L
L

-

Bl

K

A A A AT

B A A A A A A A A

SHIFT M , to make] 67, BS5, 125
6500.ERRORS 136
6500.0PCODES 136
6502 Assembler,

error messages 281-283
slash, in Editor

as "infinite" repeat factor 91

as string delimiter 95, 111
slot numbers of peripherals 26, 277
slots, in S5YSTEM.LIBRARY 189-193
Soroc IQL20 6, 202, 210

SETUP procedure 212-214
SOROCGOTO.CODE 210, 211
SOROC.MISCINFO 199
string delimiters, in Editor 95,110
string replacement, in Editor 10B-113
substitute string, in Editor 110
summary, Assembler 289

Assembler directives 157-172

Command options 20

Compiller 289

Editor commands 125-126

Editor, use of 288

Filer commands A7-69

Filer, use of 287

Linker 289

operating system 285-290

utilities 219-222, 290
SYMBOLTABLE DUMP, in Assembler 142
syntax diagram, assembly file 151

file specification 29

volume specification 27
SYSCOM communications,

P-machine 226-227
system reconfiguration 199-209, 219
SYSTEM-APPLE 7, 274
SYSTEM.ASSEMBLER 136-137, 275
SYSTEM.CHARSET 274
SYSTEM.COMPILER 128-129, 274
SYSTEM.EDITOR 72, 274
SYSTEM.FILER 24, 274
SYSTEM.LIBRARY 177-179, 186-193, 274
SYSTEM.LINKER 176-177, 274
SYSTEM.MISCINFO 199-201, 274
SYSTEM.PASCAL 7, 12, 274
SYSTEM.SWAPDISK 130, 137-138
SYSTEM.SYNTAX 128-129, 274
SYSTEM.WRK.CODE , see workfile
SYSTEM.WRK.TEXT , see workfile
SYSTERM: , volume name 26, 56

T

target string, in Editor 110
terminal,

external 6, 199-213, 219-220
text files, format of 266
text formatting, in Editor 98-101

«TEXT (versus .CODE), when to use 272
The Last Assemmbler (TLA) 136

The Program,

Pascal example 248-249, 263-264
+TITLE , Assembler directive 171, 179
T(oken default ,

Environment option 121

with F(ind 93

with R{eplace 109
tracks, on diskette 25
T(ransfer , Filer command 34-41, &8
turnkey system 8
TURTLEGRAPHICS, Intrinsic Unit 176

U

UNITs 176-1B0
U(pdate ,
Editor command
U(ser restart,
outer level command 19, 20
diskfiles needed 14
utility programs
calculator 216-218, 222
changing GOTOXY
communication 210-213, 220
formatting new
diskettes 184-186, 218
introduction 184
removing linefeed
from return 214-215, 220
summary 218-221, 290
system librarian 186-193, 218-219
system
reconf iguration 199-209, 219

78, 89, 122, 128

Vv

V(erify, Editor command 122, 126
V(erify option,

with R(eplace 109, 125

INDEX 297

volume 26
shorthand volume names 28
specification 26-27
volume names and murbers,
chart of 26, 276
volume-specification syntax 27, 67
V{olumes , Filer command 55-56, 69

W

warm boot 8, 12
W(hat , Filer command 55, 68
wildcards 30-33
and C(hange command
and LIBRARY utility
and L{ist directory 56-38
and R{emove command 48-49
and T{ransfer command 39-41
+WORD , Assembler directive 160,
workfile 9, 29, 77-82, B4-85
and Asssembler 138-140
and Compiler 130-132
and Filer commands 51=55
clearing 55, 77
saving 53-55, 79-81
starting 55, 78
updating 78
W{rite , Editor command 123, 126

4647
191

172

X-Y

¥{amine , Filer command 62-64, 69
X(change , Editor command 107, 126
X(ecute ,
outer level command 17-18,
diskfiles needed 14
also sec utility programs

20

Z

Z{ap , BEditor command 103-104, 126
Z{ero , Filer command 50-51, 68

/

as "infinite" repeat factor 91
as string delimiter 95, 111

298 APPLE PASCAL OPERATING SYSTEM

. "
as file gize

specification 30, 44, 137, 139 E|
and P(refix command &5 '
as specifier for SYSTEM.LIBRARY 193
as volume name of system disk 28
in assembly listings 138

as C(ommand character 115

it

as file separator 33, 45

and P(refix option 65
as wvolume specifier 26, 28

$

and T(ransfer command 36, 67
in Assembler 138

in Compiler 131

in Linker 181

L B

cursor move in Editor 92, 124
wildcard in Filer 30-33

wildcard in LIBRARY Utility 191

103,

=

< and >

to set direction in Editor 91-92,13

= TE)

y

for seeing more of prompt line 7
wildcard in Filer 30-33
wildecard in LIBRARY utility 191

=

COMFILE

I .iSSF.“Ih'_g'

| maxe || coasce | | nemove |
o | ZEHO I

a——

USER
RESTART

f——Ir

T

-
r i 1 if g__ﬁ\
[oer L save | wew || Wt] — —TTrET
A | wmimen LIBRARY
Lt LIBMAP
s Ly
BINDES
LIKEFEED
/ CALC
BAD USER
BLOCRS PROGIAS

N Y W
| sue J| race || Foo |
IHI':-I.‘i.‘"lN'-] | END I [MARKER]

|corenac] | towes || sem |

MAHKER ENV | RONMENT

AUTOD
INDERT
LEFT
MARGTH

TOKER
DEFAILT

—

| veniey |

PARAGRAFH
MARGTHN

COMMAND

CHARACTER

