Extended 80-Column —

For lle Only

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this manual at any time and withoutl notice.

Disclaimer of All Warranties and Liabilities

Apple Computer, Inc. makes no warranties, either express or implied, with
respect to this manual or with respect to the software described in this
manual, its quality, performance, merchantability, or fitness for any
particular purpose. Apple Computer, Inc. software is sold or licensed “as
is.” The entire risk as to its quality and performance is with the buyer.
Should the programs prove defective following their purchase, the buyer
(and not Apple Computer, Inc., its distributor, or its retailer) assumes the
entire cost of all necessary servicing, repair, or correction and any
incidental or consequential damages. In no event will Apple Computer, Inc.
be liable for direct, indirect, incidental, or consequential damages resulting
from any defect in the software, even if Apple Computer, Inc. has been
advised of the possiblity of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply
to you.

This manual is copyrighted. All rights are reserved. This document may
not, in'whole or part, be copied, photocopied, reproduced, translated or
reduced to any electronic medium or machine readable form without prior
consent, in writing, from Apple Computer, Inc.

© 1982 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

The word Apple and the Apple logo are registered trademarks of
Apple Computer, Inc.

Simultaneously published in the U.5.A and Canada.

Written by Allen Watson of the Apple PCSD
Publications Departrment

A Warning

This equipment has been certified to comply with the limits for a
Class B computing device, pursuant to Subpart J of Part 15 of FCC
Rules. Only peripherals (computer input/output devices, terminals,
printers, etc.) certified to comply with the Class B limits may be
attached to this computer. Operation with non-certified peripherals is
likely to result in interference to radio and TV reception.

APPLE Product #A2L2007

S R R

P Radio and Television Interference

The equipment described in this manual generates and uses radio-
frequency energy. If it is not installed and used properly, that is, in
strict accordance with our instructions, it may cause interference
with radio and television reception.

This equipment has been tested and complies with the limits for a
Class B computing device in accordance with the specifications in
Subpart J, Part 15, of FCC rules. These rules are designed to
provide reasonable protection against such interference in a
residential installation. However, there is no guarantee that the
interference will not occur in a particular installation, especially if
you use a “rabbit ear” television antenna. (A “rabbit ear" antenna is
the telescoping-rod type usually contained on TV receivers.)

You can determine whether your computer is causing interference
by turning it off. If the interference stops, it was probably caused
by the computer or its peripheral devices. To further isolate the
problem:

* Disconnect the peripheral devices and their input/output cables
one at a time. If the interference stops, it is caused by either
the peripheral device or its I/O cable. These devices usually
require shielded 1/O cables. For Apple peripheral devices, you
can obtain the proper shielded cable from your dealer. For non-
Apple peripheral devices, contact the manufacturer or dealer
for assistance.

If your computer does cause interference to radio or television
reception, you can try to correct the interference by using one or
more of the following measures:

e Turn the TV or radic antenna until the interference stops.
s Move the computer to one side or the other of the TV or radio.

s Move the computer farther away from the TV or radio.

e Plug the computer into an outlet that is on a different circuit
than the TV or radio. (That is, make certain the computer and
the radio or television set are on circuits controlled by different
circuit breakers or fuses.)

s Consider installing a rooftop television antenna with coaxial
cable lead-in between the antenna and TV.

n . Extended Text Card Supplement

If necessary, you should consult your dealer or an experienced
radio/television technician for additional suggestions. You may find
helpful the following booklet, prepared by the Federal
Communications Commission:

“How to Identify and Resolve Radio-TV Interference Problems"

This booklet is available from the U.S. Government Printing Office,
Washington, DC 20402, stock number 004-000-00345-4.

Radio and Television Interference n

Extended Text Card Supplement

T

Table of Contents

| Who Needs To Read This Supplement?
vii Users: A Card |Is a Card

viii Developers: How To Use the Auxiliary Memory
viii Contents of This Supplement
ix Symbols Used in This Supplement

Introduction 3
3 Installation
4 80-Column Features

4 About the Auxiliary Memory

How the Auxiliary Memory Works 7
7 Addressing the Auxiliary Memory
9 How the 80-Column Display Works

11 Double High-Resolution Graphics

‘ How To Use the Auxiliary Memory 15
: 16 The Extended Display
' 16

Display Pages

‘ 17 Display Mode Switching
| 18 Addressing the 80-Column Display Directly
l 21 Auxiliary Memory Switching
21 Switching the 48K Bank
' 25 Switching High Memory, Stack, and Zero-Page
' 29 Auxiliary-Memory Subroutines
i 29 Moving Data To Auxiliary Memory
30 Transferring Control To Auxiliary Memory

| - .

———

| Programming Examples 33
35 Identifying Different Configurations
a7 Apple lle Identification in Assembly Language

40 Apple lle Identification from BASIC
41 Apple lle Identification from Pascal
43 Storing Graphics Pages from Applesoft
46 Storing Data Strings from Pascal

ﬁ Index 53
ﬁ Schematic Diagram 59

l n ~ Extended Text Card Supplement

Preface

Who Needs To Read This
Supplement?

This supplement comes with the Apple lle Extended 80-Column
Text Card and describes the added features it has, compared to
the 80-Column Text Card. Before reading this supplement, you
should read the Apple lle 80-Column Text Card Manual.

There are two ways you are likely to use the extended version of
the 80-Column Text Card:

* As a user with application programs that take advantage of the
extra memory on the card to give you more features or more
storage for your data.

* As a developer creating a program, for yourself or for others,
that will use the extra storage the extended card provides.

Users: A Card Is a Card

From the user's point of view, the Extended 80-Column Text Card
is just like the standard 80-Column Text Card. Oh, it's a little
bigger, and it costs more, but the technical differences between
the two kinds of text cards are mostly hidden by software. Read
Chapter 1 of this supplement for an introduction to the Apple lle
80-Column Extended Text Card.

The extended text card is installed the same way as the standard
80-column card: read the Apple lle 80-Column Text Card Manual
for directions.

Preface m

—_

[Most application programs run the same with either card—in fact,
many of them don't even take advantage of the extra memory on
the extended card; they simply use it to display 80 columns of
text. Programs that do use the extra memory may do so
automatically, without any action on your part, or they may let you
select optional features or data storage. To find out how to use
those programs with the extra memory, refer to their instruction
manuals.

In short, if you just want to use this card for displaying 80 columns
of text, and you aren't developing a program that uses the auxiliary
memory, all you really need to know can be found in the Apple lle
80-Column Text Card Manual and in the instructions for your
application programs.

I Developers: How To Use the Auxiliary
Memory

The only difference between the Extended 80-Column Text Card
and the standard 80-Column Text Card is the amount of memory
they contain. The extended card has 64K bytes of auxiliary
memory, while the standard card has only the additional 1K bytes
necessary to display 80 columns of text on an Apple lle.

The main purpose of this supplement is to provide you with enough
information to use the auxiliary memory in your programs. Normally,
programs used with the Apple lle can only work with the 64K bytes
of built-in main memory. To work with the auxiliary memory, a
program must set special switches in the Apple lle that substitute
auxiliary memory for main memory. Neither DOS 3.3 nor Pascal
1.1—system programs for the Apple ll—support this memory
substitution, so for now your application programs have to handle it
themselves.

PN Contents of This Supplement

This supplement contains the information you need to use the
auxiliary memory for storing programs and data. Chapter 1 is a
general introduction; it describes the functions of the Extended
80-Column Text Card.

Chapter 2 is a general description of the design of the Extended
80-Column Text Card: it explains how the card works with the
Apple lle hardware.

l. m - Extended Text Card Supplement

Chapter 3 contains directions for using the auxiliary memory with
your programs. Most of the information in Chapter 3 is adapted
from the Apple lle Reference Manual. The reference manual is your
main source of information about the internal operation of the
Apple lle.

Chapter 4 contains short programs that use the auxiliary memory.
These examples are functional, but not general: you will probably
want to modify them for use in the programs you write.

R Ssymbols Used in This Supplement

Special text in this manual is set off in different ways, as shown in
these examples.

A Warning

Important warnings appear in boxes like this.

Reminder: Information that is only incidental to the text appears in gray
boxes like this. You may want to skip over such boxes and return to
them later.

Captions, definitions, and other short
items appear in marginal glosses like
this.

Preface n

Extended Text Card Supplement

ﬂ

Introduction

3 Installation
4 B0-Column Features
4 About the Auxiliary Memory

Introduction -

Introduction

The design of the Apple lle Extended 80-Column Text Card is the
same as that of the standard Apple lle 80-Column Text Card. The
only difference is that the extended text card contains 64K bytes
of auxiliary memory (programmable memory or RAM) while the
standard card contains only 1K byte of RAM. The 80-column
display requires only 1K byte of auxiliary memory, so it will work
with either card. The firmware that supports the special features
associated with the BO-column display is part of the Apple lle itself,
and works the same regardless of which card is present.

Installation

Installing the Extended 80-Column Text Card is easy: do it just the
way you install the standard 80-Column Text Card. Either card fits
into the auxiliary slot (labeled AuXx. CONNECTOR) on the main logic
board inside the Apple lle. If you haven't installed the card yet,
follow the directions given in the Apple lle 80-Column Text Card
Manual. :

Warning

Never install or remove anything inside the Apple lle with the power on.
There is a small red lamp—an LED—toward the back of the main circuit
board to remind you of this; if the red lamp is on, turn off the power
before you do anything inside the Apple lle.

Introduction H

80-Column Features

The built-in firmware that supports the 80-column display has other
features in addition to the wider display. The Apple lle 80-Column
Text Card Manual tells you how to activate the built-in firmware and
the 80-column display. That manual also describes many of the
Apple lle's features.

You can find more information about the Apple lle in the Apple lle
Reference Manual. Chapter 2 includes a description of the different
display modes and how to select them. Chapter 3 includes tables
of the functions of the escape sequences and control keys in the
Apple lle.

About the Auxiliary Memory

The Extended 80-Column Text Card has 64K bytes of additional
RAM, usually referred to as auxiliary memory. A 1K-byte area of
this memory serves the same purpose as the memory on the
80-Column Text Card: expanding the text display to 80 columns.
The other 63K bytes can be used for auxiliary program and data
storage. If you use only 40 columns for text display, all 64K bytes
are available for programs and data.

The processor in the Apple lle can only address 64K bytes of
memory. The computer has special circuits that programs can
switch to access auxiliary memory in place of main memory. At any
one time, locations in the same 64K address space are in either
main memaory or auxiliary memory. In other words, even though an
Apple lle with an Extended 80-Column Text Card has a total of
128K bytes of programmable memory, it is not appropriate to call it
an 128K-byte system. Rather, there are 84K bytes of auxiliary
memory that can be swapped for main memory under program
control.

Warning

Careless switching to the auxiliary memory is almost certain to crash
your programs. If you want to use auxiliary memory in your own
programs, be sure to study the rest of this supplement and the relevant
information in the Apple lle Reference Manual.

Extended Text Card Supplement

Chapter 2

How the Auxiliary Memory
Works

7 Addressing the Auxiliary Memory
9 How the 80-Column Display Works
11 Double High-Resolution Graphics

How the Auxiliary Memory Works H

Chapter 2

| o S

How the Auxiliary Memory
Works

This chapter briefly outlines how the auxiliary memory operates. it
will help you understand what happens when you use the auxiliary
memory in your programs.

Addressing the Auxiliary Memory

The 6502 microprocessor can address 64K bytes of memory. In
the Apple lle the microprocessor's entire 64K memory space is
taken up by main RAM (random-access memory), ROM (read-only
memory), and /O (input/output); there's no memory space available
for the added memory on the extended text card. Instead, the
address bus is connected to the auxiliary memory in parallel with
the main memory. To use the auxiliary memory for program and
data storage, the Apple lle switches its data bus so that it reads
and writes to the memory on the card instead of the main memory.
To use the auxiliary memory to expand the display, the Apple lle
fetches data both from main memory and from auxiliary memory, as
described in the section “"How the 80-Column Display Works."

The bus switching for program and data storage is controlled by
the Memory Management Unit (MMU), a custom integrated circuit
designed for the Apple lle (see Chapter 7 of the Apple ile
Reference Manual). The MMU contains the soft switches set by
your programs along with the logic circuitry to monitor the address
bus and to switch to auxiliary memory for the selected address
ranges.

How the Auxiliary Memory Works

Figure 2-1. Memory Map with Auxiliary Main Auxiliary

Memory Memory Memory

SFFFF

Bank- Bank-
SEQOD Switched Switched

Memaory Memaory
0000
SCFFF

1’0

$Cc000
SBFFF
$6000

Hi-Res

Graphics
$4000 Page 2

Hi-Res Hi-Res

Graphics Graphics
$2000 Page 1 Page 1X
$CO0

Text
$BO0 Page 2

Text Text
$400 Page 1 Page 1X
$200
S1FF Stack & Stack &
0 Zero Page Zero Page

m Extended Text Card Supplement

As you can see by studying the memory map in Figure 2-1, the
auxiliary memory is divided into two large sections and one small
one. The largest section is substituted for main memory addresses
512 to 49151 ($200 through $BFFF). This part of memory is
sometimes referred to as the 48K memory space, and it is used for
storing programs and data.

The other large section of auxiliary memory replaces main memory
addresses 52K to 4K (30000 through $FFFF). This memory space
is called the bank-switched memory. If you plan to use this part of
the auxiliary memory, read the section “Bank-switched Memory” in
the Apple lle Reference Manual. The switching for the ROM and

i the $p000 bank is independent of the auxiliary-RAM switching, so
the bank switches have the same effect on the auxiliary RAM that
they do on the main RAM.

When you switch to the auxiliary memory in the bank-switched
memory space, you also get the first two pages of auxiliary
memory, from 0 to 511 ($0000 through $01FF). This part of
memory contains page zero, which is used for important data and
base addresses, and page one, which is the 6502 stack.

A Warning

Remember that addresses in page zero and the 6502 stack switch to
auxiliary memory any time you switch the bank-switched memory to
auxiliary memory.

R How the 80-Column Display Works

Half of the data for the 80-column display is stored in main memory
in the normal text Page 1, and the other half is stored in auxiliary
memory on the extended text card. The display circuitry fetches
bytes of data from these two memory areas simultaneously and
displays them as two adjacent characters.

Memory pages are 256 bytes long, but The main memory and the auxiliary memory are connected to the

display pages are either 1024 bytes, 2 i i -
6.0 fext Page 1, or 8182 biylis, &1, address bus in parallel, so both are activated during the display

high-resolution graphics Page 1. See cycle. The 40-column display uses every other clock cycle and
gh?mers 2 ;nd 4:of the Apple ile fetches data only from main memory. The 80-column display uses
N the remaining clock cycles to process the additional display data

from auxiliary memory.

How the Auxiliary Memory Works n

-

Figure 2-2. Fetching Data for the
80-Column Display

—— Ausxiliary
RAM

{

1 74L5374
® Buffer

80-Column Text Card
Main Logic Board

Address Yo
Bus e
Bus]
7 Serial
FOM 4 | video
Char jed Out
Gen. 8
5]
T4LS374
99 » Buffer 1
T VIDTM

The byte of display data from main memory goes to a buffer on the
main logic board, and the display data from auxiliary memory goes
to a buffer on the extended text card. When the 80-column display
is on, the data bytes from these buffers are switched onto the
video data bus on alternate clock cycles: first the byte from the
auxiliary memory, then the byte from the main memory. The main
memory provides the characters displayed in the odd columns of
the display, and the auxiliary memory provides the characters in the
even columns.

The 80-column display contains twice as many characters as the
40-column display does, so it has to put twice as many dots across
the screen. This means that the dots are clocked out at 14MHz
instead of 7MHz, making them narrower and therefore dimmer on a
normal video monitor. On a television set, the dot patterns making
up the characters are too close together to reproduce clearly. To
produce a satisfactory 80-column display requires a monitor with a
bandwidth of at least 14MHz.

Extended Text Card Supplement

| RGB stands for red, green, and blue, Except for some expensive RGB-type color monitors, any video monitor
and identifies a type of color monitor with a bandwidth as high as 14MHz will be a monochrome monitor.
that uses independent inputs for the Monochrome means one color: a monochrome video monitor can have
three primary colors. a screen color of white, green, orange, or any other single color.

Note that this simultaneous-then-sequential fetching applies only to
the video-display generation; reading and writing for data storage in
auxiliary memory is done by switching the data bus to read only
from the card, as described in the previous section. For more
information about the way the Apple lle handles its display memory,
refer to Chapter 2 and Chapter 7 of the Apple lle Reference
Manual.

I Double High-Resolution Graphics

When you select mixed-mode graphics with 80-column text, you
would expect that the doubling of the data rate that produces the
80-column display would change the high-resolution graphics from
280 to 560 dots horizontally and cause the low-resolution graphics
to malfunction. To prevent this, the logic that controls the display
includes an extra circuit to force the graphics displays to be the
same regardless of whether you have set the soft switches for
80-column text or for 40-column text. This feature is included so
that you can use 80-column text in the mixed graphics and text
modes.

For those who would like to have a graphics display with twice the
horizontal resolution, there is a way to disable the circuit that forces
normal graphics timing with 80-column text. There are two things
you must do to obtain the double high-resolution display:

* |Install a jumper to connect the two Molex-type pins on the
Extended 80-Column Text Card.

® Turn on the Annunciator 3 soft switch along with the switches
that select the 80-column display and high-resolution graphics.

| This procedure works only on the Apple lle with the Rev B (and
later) main logic board, identified by a B as the last letter of the part
number on the back part of the board. Connecting the pins on the
Extended 80-Column Text Card completes a connection between
pin 50 (AN3) and pin 55 (FRCTXT') on the auxiliary slot.

How the Auxiliary Memory Works

Warning

If you have a Rev A Apple lle, using an extended text card with a
jumper makes the computer inoperable. You cannot use the double
high-resolution modification with a Rev A Apple lle.

If you have an extended text card with a jumper installed in a Rev B
(or later) Apple lle, turning on Annunciator 3 and selecting high-
resolution graphics and 80-column text at the same time generates
a display using high-resolution Page 1 addresses in main memory
and auxiliary memory at the same time.

The memory mapping for this graphics display is doubled by
columns the same way as 80-column text, but it uses high-
resolution graphics Page 1 instead of text Page 1. Where the
80-column text mode displays pairs of data bytes as pairs of
characters, double high-resolution mode displays pairs of data
bytes as 14 adjacent dots, seven from each byte. As in 80-column
text mode, there are twice as many dots across the display screen,
so the dots are only half as wide.

Existing Apple Il graphics programs do not support this kind of

display. Until new programs become available, you'll have to write
your own plotting routines if you want to use 560-dot graphics.

Extended Text Card Supplement

Chapter 3

How To Use the Auxiliary
Memory

16 The Extended Display

16 Display Pages

17 Display Mode Switching

18 Addressing the 80-Column Display Directly

21 Auxiliary Memory Switching

21 Switching the 48K Bank

25 Switching High Memory, Stack, and Zero-Page
29 Auxiliary-Memory Subroutines

29 Moving Data To Auxiliary Memory

30 Transferring Control To Auxiliary Memory

How To Use the Auxiliary Memory n

.....

How To Use the Auxiliary
Memory

This chapter describes soft switches and built-in subroutines that
control the operation of the auxiliary memory. To take advantage of
the additional memory, you must set up your programs to operate
in one part of memory while they switch the other part between
main and auxiliary RAM. Your program can perform the memory
switching by means of the soft switches described in the section
"Display Mode Switching” or by using the AUXMOVE and XFER
subroutines described later in this chapter. Except for these
subroutines, most existing Apple Il system software (DOS 3.3,
Pascal 1.1) doesn't support the auxiliary memory.

Although some high-level languages, such as BASIC, can set the
soft switches directly, your programs must use assembly-language
subroutines to control the auxiliary memory. Small assembly-
language subroutines can be accessed from a BASIC program
using a caLL statement, or they can be linked to a Pascal program
as procedures or functions: see the examples in Chapter 4.

Warning

Do not attempt to use the auxiliary memory directly from a program in
an interpreter language such as BASIC or Pascal. The interpreters that
run such programs use several areas in main memory, including the
stack and the zero page. If you switch to auxiliary memory in these
pages, the interpreter crashes. When you reset the system to start
over, your program and data are lost.

How To Use the Auxiliary Memory

Table 3-1. Video Display Page
Locations. *Note: These modes use
locations in both main and auxilary
memory. The PAGE2 switch is used to
select one or the other for storing data:
see the section “Display Mode
Switching.”

The Extended Display

The primary purpose of an 80-column text card is the generation of
an B0-column display, so there is a complete set of switches just
to control the display. Other switches are used for program and
data storage in the auxiliary memory; they are described later.

Display Pages

The Apple lle generates its video displays from data stored in
specific areas in memory called display pages. The 40-column-text
and low-resolution-graphics modes use text Page 1 and text

Page 2, located at 1024-2047 (hexadecimal $400-%7FF) and
2048-3071($800-$BFF) in main memory.

The 80-column text display uses a combination of text Page 1 in
main memory and the same page in the auxiliary memory, here
called Page 1X. Text Page 1X occupies the same address space
as text Page 1, but in auxiliary memory rather than main memory.
To store data in Page 1X, you must use a soft switch (see the
section "Display Mode Switching™). The built-in 80-column display
routines described in Chapter 3 of the Apple lle Reference Manual
take care of this switching automatically; that is a good reason to
use those routines for all your normal 80-column text output.

Lowest Highest
Display Mode Page Address Address Notes
40-Column Text, 1 $400 1024 $TFF 2047
Low-Resolution
Graphics 2 $800 2048 SBFF 3071
B80-Column Text 1 400 1024 $TFF 2047 k-
MNormal 280-Dot 1 $2000 8192 $3FFF 16383
High-Resolution
Graphics 2 54000 16384 S5FFF 24575
Optional 560-Dot 1 £2000 8192 $3FFF 14383 ‘
High-Resolution
Graphics

Extended Text Card Supplement

For information about the keyboard data
. and strobe functions, see Chapter 2 of
the Apple lle Reference Manual.

Display Mode Switching

You select the display mode that is appropriate for your application
by reading or writing to soft switches. Most soft switches have
three memory locations: one for turning the switch on, one for
turning it off, and one for reading the state of the switch.

Table 3-2 shows the locations of the soft switches that control the
display modes. The table gives the switch locations in three forms:
hexadecimal, decimal, and negative decimal. You can use the
hexadecimal values in your machine-language programs. Use the
decimal values in PEEK or POKE commands in Applesoft BASIC: the
negative values are for Integer BASIC.

Some of the soft switches in Table 3-2 are marked read or write.
Those soft switches share their locations with the keyboard data
and strobe functions. To perform the function shown in the table,
use only the operation listed there. Soft switches that are not
marked may be accessed by either a read or a write. When writing
to a soft switch, it doesn't matter what value you write; the switch
function occurs when you address the location, and the value is
ignored.

Warning

Be sure to use only the indicated operations to manipulate the
switches. If you read from a switch marked write, you won't get the
correct data. If you write to a switch marked read, you won't set the
switch you wanted, and you may change some other switch so as to
cause your program to malfunction.

When you read a soft switch, you get a byte with the state of the
switch in bit 7, the high-order bit. The other bits in the byte are
unpredictable. If you are programming in machine language, this bit
is the sign bit. If you read a soft-switch from a BASIC program, you
get a value between 0 and 255. Bit 7 has a value of 128, so if the
switch is on, the value will be equal to or greater than 128; if the
switch is off, the value will be less than 128.

How To Use the Auxiliary Memory

Table 3-2. Display Soft Switches. (1)
This mode is only effective when TEXT
switch is off. (2) This switch has a
different function when B0STORE is on:
refer to the next section. (3) This switch
changes the function of the PAGE2
switch for addressing the display
memaory on the extended text card:

refer to the next section.

Location

Name Function Hex Decimal Notes
TEXT On: Display Text $CO0S51 49233 -16303

Off: Display Graphics $CO050 49232 -16304

Read TEXT Switch $CO01A 49178 -16358 Read
MIXED On: Text With Graphics $C0S3 49235 -=-16301 1

Off: Full Graphics $C052 49234 -16302 1

Read MIXED Switch $C01B 49179 -16357 Read
PAGEZ2 On: Display Page 2 $C055 49237 -1629%9 2

Off: Display Page 1 $CO054 49236 -16300 2

Read PAGE2 Switch $CO01C 49180 -146356 Read
MIRES On: Graphics = High-

Resolution $COS57 49239 -16297 1
Off: Graphics = Low-
Resolution $C056 49238 -16298 1

Read HIRES Switch $C01D0 49181 -16355 Read
aocoL On: Display 80 Columns S$CO00D 49165 -16371 Write

Qff: Display 40 Columns £CO00C 49164 -16372 Write

Read BOCOL Switch $COTF 49183 -16353 Read
B80STORE On: Store in Auxiliary Page $C001 49153 -16383 Write, 3

Off: Store in Main Page $CO00 49152 -16384 Write, 3

Read BOSTORE Switch $C018 49176 -16360 Read

Addressing the 80-Column Display Directly

Figure 3-1 is the map of the 80-column display. Half of the data is
stored in text Page 1 in main memory, and the other half is stored
in the same locations in auxiliary memory (here called Page 1X).
The display circuitry fetches bytes from these two memory areas
simultaneously and displays them sequentially: first the byte from
the auxiliary memory, then the byte from the main memory. The
main memory stores the characters in the odd columns of the
display, and the auxiliary memory stores the characters in the even
columns. For a full description of the way the Apple lle handles its
display memory, refer to Chapter 2 and Chapter 7 of the Apple lle
Reference Manual.

Extended Text Card Supplement

For a description of the way the high-
order bit acts as color-select bit in
high-resolution displays, see Chapters 2
and 7 of the Apple lle Reference
Manual,

To store data directly into the display page on the Extended
80-Column Text Card, first turn on the 80STORE soft switch by
writing to location 49153 (negative decimal -16383 or hexadecimal
$C001). With 80STORE on, the page-select switch PAGE2 switches
between the portion of the 80-column display stored in Page 1 of
main memory and the portion stored in Page 1X in auxiliary
memory. To select Page 1X, turn the PAGE2 soft switch on by
reading or writing at location 49237 (-16299, $c055).

You'll have to write a short program to try out the 80STORE and
PAGE2 soft switches. When you try to change these switches by using
the Monitor program, it changes them back in the process of displaying
the commands you type.

If you want to use the optional double-high-resolution display
described in Chapter 2, you can store data directly into high-
resolution graphics Page 1X in auxiliary memory in a similar fashion.
Turn on both 80STORE and HIRES, then use PAGE2 to switch from
Page 1 in main memory to Page 1X in auxiliary memory.

The memory mapping for double high-resolution graphics is similar
to the normal high-resolution mapping described in Chapter 2 of the
Apple lle Reference Manual, with the addition of the column
doubling produced by the 80-column display. Like the 80-column
text mode, the double high-resolution graphics mode displays two
bytes in the time normally required for one, but it uses high-
resolution graphics Page 1 and Page 1X instead of text Page 1 and
Page 1X.

Double high-resolution graphics mode displays each pair of data
bytes as 14 adjacent dots, seven from each byte. The high-order
bit (color-select bit) of each byte is ignored. The auxiliary-memory
byte is displayed first, so data from auxiliary memory appears in
columns 0-6, 14-20, etc., up to columns 547-552. Data from main
memory appears in columns 7-13, 21-27, and so on up to
553-559.

As in 80-column text, there are twice as many dots across the

display screen, so the dots are only half as wide. On a TV set or
low-bandwidth monitor, single dots will be dimmer than normal.

How To Use the Auxiliary Memory m

Figure 3-1. Map of BO-Column Text

Display

MAIN $00 S$01 SD2 S$03 504 S05 3506 $49 S$4A S4B $4C 54D S$4E SAF
MEMORY 0 1 2 3 4 5] 73 74 75 78 T? T8 79
ALXILIARY $00 S01 302 $03 S04 %05 85068 307 549 $4A $4B $4C 34D S4E S4F
MEMORY o] 1 2 3 a 5 <] 7 73 74 75 76 77 7B T9
$400 1024

$480 1152
$500 1280
$580 1408

800 1536

3680 1664
700 1782
5780 1920

5428 1084
$4AB 1192
§528 1320

55A8 1448

5628 1576

S6A8 1704
728 1832
S7AB 1960
§$450 1104

$4D0 1232
$550 1360
$5D0 1488
5850 1818
S$6D0 1744

§750 1872

$7DC 2000

“ Extended Text Card Supplement

2R i e R S SR e e e T
I Auxiliary Memory Switching

This section describes the switches used to access the auxiliary
memory for storing programs and data.

A Warning

The display soft switches 80STORE, PAGE2, and HIRES, discussed
here and in the previous section, are used primarily for addressing
display data. These switches override the general-purpose switches
described in this section, so you must set them correctly even if your
program doesn't use them.

5 Switching the 48K Bank
Switching the 48K-byte section of memory is performed by two
a soft switches: RAMRD selects main or auxiliary memory for reading,

and RAMWRT selects main or auxiliary memory for writing. As shown
in Table 3-3, each switch has a pair of memory locations dedicated
to it, one to select main memory, and the other to select auxiliary
memory. Setting the read and write functions independently makes
it possible for a program whose instructions are being fetched from
one 48K-byte memory space to store data into the other 48K
memory space.

A Warning

Before using these switches, you must fully understand the effects of
switching to auxiliary memory. For example, an application program
running in the 48K bank of auxiliary memory that tries to use the built-in
I/O routines by calling the standard 1/O links will crash even though the
main ROM, which contains the built-in I/O routines, has been selected.
This happens because the standard links call DOS routines, and DOS is
in the 48K bank of main memory, which is locked out while the
application program is running in auxiliary memory.

When RAMWRT and RAMRD are on, Writing to the soft-switch at location $c003 turns RAMRD on and

z';f’_‘"ﬁgn’”l:g‘m"msi:ﬁ'i d‘f"'h““ they a'¢ enables auxiliary memory for reading; writing to location $c002
turns RAMRD off and enables main memory for reading. Writing to
the soft-switch at location $c005 turns RAMWRT on and enables the
auxiliary memory for writing; writing to location $c004 turns RAMWRT
off and enables main memory for writing. By setting these switches
independently, you can use any of the four combinations of reading
and writing in main or auxiliary memory.

How To Use the Auxiliary Memory

Auxiliary memery corresponding to text Page 1 and high-resolution
graphics Page 1 can be used as part of the 48K bank by using
RAMRD and RAMWRT. These areas in auxiliary memory can also be
controlled separately by using the display-page switches B0STORE,
PAGE2, and HIRES described in “Addressing the 80-Column
Display Directly.”

As shown in Table 3-3, the 805sT0RE switch functions as an
enabling switch: with it on, the PAGEZ switch selects main memory
or auxiliary memory. With the HIRES switch off, the PAGE2 switch
selects main or auxiliary memory in the text display Page 1, $0400
to $07FF; with HIRES on, the PAGE2 switch selects main or
auxiliary memory in text Page 1 and high-resolution graphics
Page1, $2000 to $3FFF.

If you are using both the 48K-bank control switches and the
display-page control switches, the display-page control switches
take priority: if 80STORE is off, RAMRD and RAMWRT work for the
entire memory space from $0200 to $8FFF, but if BOSTORE is on,
RAMRD and RAMWRT have no effect on the display page.
Specifically, if 80STORE is on and HIRES is off, PAGE2 controls text
Page 1 regardless of the settings of RAMRD and RAMWRT. Likewise,
if B0STORE and HIRES are both on, PAGEZ controls both text
Page 1 and high-resolution graphics Page 1, again regardless of
RAMRD and RAMWRT.

You can find out the settings of these soft switches by reading
from two other locations. The byte you read at location $¢013 has
its high bit (the sign bit) set to 1 if RAMRD is on (auxiliary memory is
enabled for reading), or 0 if RAMRD is off {the 48K block of main
memory is enabled for reading). The byte at location $c014 has its
high bit set to 1 if RAMWRT is on (auxiliary memory is enabled for
writing), or 0 if RAMWRT is off (the 48K block of main memory is
enabled for writing).

Extended Text Card Supplement

Figure 3-2. Effect of Switching RAMRD Main Auxiliary
and RAMMRT with BOSTORE Off Memory Memory
$FFFF
Bank- Bank-
Switched Switched
SDFFF Memory Memoary
30000
SBFFF
L3
-
$6000
Hi-Res
Graphics
54000 Page 2
Hi-Res Hi-Res
Graphics Graphics
$2000 Page 1 Page 1X
$CO00
Text
$800 Page 2
Text Text
$400 Page 1 Page 1X
$200
S1FF Stack & Stack &
: 50 Zero Page Zero Page
!]
Active D Inactive D Switching D
L]
RAMRD, X RAMWRT: X B0STORE: off
PAGE2: off HIRES: off ALTZP: off

| ‘ How To Use the Auxiliary Memory E

Figure 3-3. Effect of Switching RAMRD
and RAMWRT with BOSTORE and HIRES
On

Main Auxiliary

Memory Memory
$FFFF

Bank- Bank-

Switched Switc
SOFFF Memaory Memory
$D000
$BFFF
$46000

Hi-Res

Graphics
$4000 Page 2

Hi-Res Hi-Res

Graphics Graphics
$2000 Page 1 Page 1X
$c00

Text
5800 Page 2

Text Text
$400 Page 1 Page 1X
5200
S1FF Stack & Stack &
$0 Zero Page Zero Page
Active D Inactive D Switching D
RAMRD. X RAMWRT: X BOSTORE: on
PAGE2: off HIRES: on ALTZP: off

Extended Text Card Supplement

Switching High Memory, Stack, and Zero Page

The single soft switch aLTzp (alternate zero page) switches the
bank-switched memory and the associated stack and zero page
area between main and auxiliary memory. As shown in Table 3-3,
writing to location $C009 turns ALT2ZP on and selects auxiliary-
memory stack and zero page; writing to the soft switch at location
$C008 turns ALTZP off and selects main-memory stack and zero
page for reading and writing. The section " Auxiliary-Memory
Subroutines” describes firmware that you can call to help you
switch between main and auxiliary memory.

When the ALTZP soft switch is on, To find out the setting of this soft switch, read location $c016. The
auxiliary memory is used; when itis off gata hyte you get has its high bit (the sign bit) set to 1 if ALTZP is
main memory is used. : ; e
on (the bank-switched area, stack, and zero page in the auxiliary
memory are selected), or 0 if ALTZP is off (the same areas in main
memory are selected).

To have enough memory locations for all of the soft switches and
remain compatible with the Apple Il and Apple Il Plus, the soft switches
listed in Table 3-3 share their memory locations with the keyboard
functions listed in Chapter 2 of the Apple lle Reference Manual.
Whichever operation—read or write—is shown in Table 3-3 for
controlling the auxiliary memory is the one that is not used for reading
the keyboard and clearing the strobe.

How To Use the Auxiliary Memory H

Table 3-3. Auxiliary-Memory Select
Switches. (1) When 805TORE is on, the
PAGEZ switch works as shown; when
BOSTORE is off, PAGEZ doesn't affect
the auxiliary memory. (2) When
BOSTORE is an, the HIRES switch
enables you to use the PAGE2 switch to
select between high-resolution Page 1
areas in main and auxiliary memaory.

RAMRD

RAMWRT

ALTZIP

BOSTORE

PAGEZ

HIRES

Function

On: Read Aux. 48K
Off: Read Main 48K
Read RAMRD Switch

On:. Write Aux. 4BK
Off: Write Main 48K
Read RAMWRT Switch

On: Aux. Stack, Zero
Page, and Bank-
Switched Memory

Off: Main Stack, Zero
Page, and Bank-
Switched Memaory

Read ALT2ZP Switch

On: Access Page 1X
Off: Use RAMRD, RAMWRT
Read BOSTORE Switch

On: Access Aux. Memory
Off: Access Main Memary
Read PAGEZ2 Switch

On: Access High-

Resolution Page IX
Off: Use RAMRD, RAMWRT
Read HIRES Switch

Location
Hex

$C003
$C002
$C013

£C005
$C004
$CO014

$c009

$c008
$C016

$C001
$c000
SCO018

$C055
5C054
sco1c

$CO57
3C056
$C010

Decimal

49155
49154
49171

49157
49156
L9172

49161

L9160
L9174

49153
49152
49176

49237
49236
49180

49239
49238
49181

-16381
-16382
-16345

-16379
-16380
-16354

-16373

-16374
-16352

-16383
-16384
-16360

-16299
-16300
-16356

-162%97
-16298
-16355

Notes

Write
Write
Read

Write
Write
Read

Write

Write
Read

Write
Write
Read

Extended Text Card Supplement

Figure 3-4. Effect of Switching ALTZP Main Auxiliary
Memaory Memory
SFFFF
Bank- Bank-
Switched Switched
SOFFF Memory Memaory
50000
$BFFF
L
546000
Hi-Res
Graphics
$4000 Page 2
Hi-Res Hi-Res
Graphics Graphics
$2000 Page 1 Page 1X
s$co0
Text
$800 Page 2
Text Text
$400 Page 1 Page 1X
$200
S1FF Stack & Stack &
%0 Zero Page Zero Page
l Active D Inactive D Switching I:’
J RAMRD: off RAMWRT: off B0STORE: off
PAGE2: off HIRES: off ALTZP: X

How To Use the Auxiliary Memory

Figure 3-5. Effect of Switching PAGE2 Main Auxiliary
f with 80STORE and HIRES On Memory Memory
[SEFFF
| Bank- Bank-
| Switched Switched
SDFFF Memory Memory
1 $0000
|
_ SBFFF
i
[
i 6000
|
5 Hi-Res
i Graphics
[$4000 Page 2
Hi-Res Hi-Res
Graphics Graphics
$2000 Page 1 Page 1X
$C00
Text
$800 Page 2
Text Text
$400 Page 1 Page 1X
|
i $200
I
| S1FF Stack & Stack &
! $0 Zero Page Zero Page
Active D Inactive D Switching I:I
RAMRD: off RAMWRT: off 80STORE: on
PAGEZ: X HIRES: on ALTZP: off

| H Extended Text Card Supplement

e TR R R
I Auxiliary-Memory Subroutines

If you want to write assembly-language programs or procedures
that use auxiliary memory, the built-in auxiliary-memory subroutines
will be helpful. These subroutines make it possible to use the
auxiliary memory without having to manipulate the soft switches
already described.

The subroutines described in this section make it easier to use auxiliary
memory, but they do not protect you from errors. You still have to plan
your use of auxiliary memory to avoid inexplicable crashes.

You use these built-in subroutines the same way you use the I/O
subroutines described in Chapter 3 of the Apple lle Reference
Manual: by making subroutine calls to their starting locations. Those
locations are shown in Table 3-4.

Table 3-4. Auxiliary-Memory Routines

Subroutine

Name Location Description

AUXMOVE $C311 Moves data blocks between main and
auxiliary memory

XFER $C314 Transfers program control between

main and auxiliary memaory

Moving Data To Auxiliary Memory

In your assembly-language programs, you can use the built-in
subroutine named auxMovE to copy blocks of data from main
memory to auxiliary memory or from auxiliary memory to main
memory. Before calling this routine, you must put the data

The carry bit is bit 0 in the processor addresses into byte pairs in page zero and set the carry bit to

status word; use the SEC instruction to gglect the direction of the move—main to auxiliary or auxiliary to
set it, and CLC to clear it. main

A Warning

Don't try to use AUXMOVE to copy data in page zero, page one (the
6502 stack), or in the bank-switched memory ($0000-$FFFF).
AUXMOVE uses page zero while it is copying, so it can't handle moves
in the memory space switched by ALTZP.

How To Use the Auxiliary Memory H_

Table 3-5. Parameters for AUXMOVE
I Routine

P —

|-

Remember that Pascal uses page zero too, so you can't use
AUXMOVE from a Pascal procedure without saving the contents of page
zero first, and restoring them afterward.

The pairs of bytes you use for passing addresses to this subroutine
are called A1, A2, and A4: they are used for passing parameters to
several of the Apple lle's built-in routines. The addresses of these
byte pairs are shown in Table 3-5.

Name Location Parameter Passed

Carry 1 Move from main to auxiliary memeory

0 Move from auxiliary to main memory
AL $3cC Source starting address, low-order byte
A1H $30D Source starting address, high-order byte
AZ2L $3E Source ending address, low-order byte
AZH $3F Source ending address, high-order byte
AbL $42 Destination starting address, low-order byte
ALH $43 Destination starting address, high-order byte

Put the addresses of the first and last bytes of the block of
memory you want to copy into A1 and A2. Put the starting address
of the block of memory you want to copy the data to into A4.

The AUXMOVE routine uses the carry bit to select the direction to
copy the data. To copy data from main memory to auxiliary
memory, set the carry bit (SEC); to copy data from auxiliary memory
to main memory, clear the carry bit (CLC).

When you make the subroutine call to AUXMOVE, the subroutine
copies the block of data as specified by the A registers and the
carry bit. When it is finished, the accumulator and the x and Y
registers are just as they were when you called it.

Transferring Control To Auxiliary Memory

You can use the built-in routine named xFER to transfer control to
and from program segments in auxiliary memory. You must set up
three parameters before using XFER: the address of the routine
you are transferring to, the direction of the transfer (main to
auxiliary or auxiliary to main), and which page zero and stack you
want to use.

Extended Text Card Supplement

Table 3-8. Parameters for XFER Routine

Name or
Location Parameter Passed
Carry 1 = Transfer from main to auxiliary memory
0 = Transfer from auxiliary to main memaory
Overflow 1 = Use page zero and stack in auxiliary memory
0 = Use page zero and stack in main memory
$3ED Program starting address, low-order byte
$3EE Program starting address, high-order byte

Put the transfer address into the two bytes at locations $3€eD and
$3EE, with the low-order byte first, as usual. The direction of the
transfer is controlled by the carry bit: set the carry bit to transfer to
a program in auxiliary memory; clear the carry bit to transfer to a

The overflow bit is bit & in the program in main memory. Use the overflow bit to select which page
procesgor status word; use-the CLV zero and stack you want to use: clear the overflow bit to use the
instruction to clear it. To set it, force an i . . e

overflow by adding two numbers that main memory; set the overflow bit to use the auxiliary memory.

total more than 127.

A Warning

It is the programmer's responsibility to save the current stack pointer
somewhere in the current memory space before using XFER and to
restore it after regaining control. Failure to do so will cause program
errors.

After you have set up the parameters, pass control to the XFER
routine by a jump instruction, rather than a subroutine call. XFER
saves the accumulator and the transfer address on the current
stack, then sets up the soft switches for the parameters you have
selected and jumps to the new program.

How To Use the Auxiliary Memory

E3 : Extended Text Card Supplement

Chapter 4

Programming Examples

35 Identifying Different Configurations

37 Apple lle Identification in Assembly Language
40 Apple lle Identification from BASIC
41 Apple lle Identification from Pascal

43 Storing Graphics Pages from Applesoft
46 Storing Data Strings from Pascal

Programming Examples ﬂ

Table 4-1. Identification Return
Codes

Programming Examples

This chapter contains examples showing how to use the auxiliary
memory from a program. These examples are not intended to be
universal routines that everyone can use as is; rather, they are
representative examples showing how specific operations have
been implemented. You will probably want to study the examples to
see how it is done, then copy or modify them to suit your

“application.

Identifying Different Configurations

By identifying the configuration of the machine they are running on,
application programs for the Apple lle can take advantage of the
new features and still remain compatible with older Apple II's. This
section gives a procedure for doing this from assembly language
and shows how to use the identification routine in programs written
in Applesoft BASIC and Pascal.

The identification routine returns a value to the calling program that
depends on the type of machine it is running on. Table 4-1 shows
the return codes.

500 (0) = not an Apple lle

$20 (32) = Apple lle, but no Apple lle BO-Column Text Card

$40 (64) = Apple lle with 80-Column Text Card without auxiliary memory
$80 (12B) = Apple lle with Extended 80-Column Text Card

Programming Examples H

P —————— ———

Note: An 80-column card installed in expansion slot 3 will work in an
Apple lle the same as in an Apple Il or Apple I Plus, but it does not
activate the built-in BO-column firmware. The identification program does
not detect such a card, but returns a code of 32: no Apple lle
80-Column Text Card.

Here is an outline of the procedure the identification routine uses to
identify an Apple lle and its variations:

1.

Save four identification bytes from the ROM/RAM area ($0000

Disable interrupts.

Switch bank-switched memory to read ROM by reading $C089

Identify Apple lle by finding the value 06 at $FBB3.

If Apple lle, and high bit is on at location $€017, then the
computer has a text card.

If Apple lle with 80-Column Text Card, then check for auxiliary

to SFFFF).
2.
twice.
6.
memory:
a.

If $c013's high bit is on, then reading auxiliary memory sSo
must have auxiliary memory.

If $c016's high bit is on, then reading auxiliary zero page
so must have auxiliary memory.

If sparse memory mapping (no upper four address bits so
that $800 has the same RAM location as $c00), then no
auxiliary memaory.

1.

Exchange a section of zero page with the section of
code that switches memory banks. This way the zero
page data is saved and the program doesn’t get
switched out.

Jump to the relocated code on page zero.

Switch in auxiliary memory ($200 - $BFF F) for reading
and writing by writing to $¢005 and $C003.

Note: Auxiliary memory locations $400-$800 and
$2000-$4000 may not be available depending upon
the setting of soft switches for 80-column display and
high-resolution graphics—they have priority over
auxiliary memory selection.

Extended Text Card Supplement

4. Store a value at $800, and see if same value at $c00.
If not, then auxiliary memory.

5. Change value at $c00, and see if $800 changes to
same value. If so, then no auxiliary memory.

6. Set soft switches for reading and writing to main
memory by writing to $c002 and $C004.

7. Jump back inte program on main RAM.
8. Put zero page back.
Store identification byte for later reference by calling routine.

8. If Pascal routine then turn card back on by reading $c088
twice.

9. The BASIC or assembly-language routines restore the
RAM/ROM area as it originally was by checking four bytes
saved at the start of the routine.

10. Enable interrupts.

11. Return to caller.

For some applications it may not be necessary to identify the exact
configuration of the computer. For example, if your program cannot
use the auxiliary memory, then you would not need to know
whether it is available or not. In that case you may want to eliminate
parts of the routine. For other applications the identification routine
will use memory space required by your program, so you will need
to move the routine to some other location.

A Warning

If you change the identification routine, make sure that it still determines
the configuration in the same way as the original. Later revisions of the
Apple lle may not support other identification procedures.

Apple lle Identification in Assembly Language

The assembly-language subroutine given here is assembled to
machine language in locations $200 through $3c¢F. To call the
subroutine, your program does a jump to subroutine (JSR) to $204.
When the subroutine returns, the identification code is stored in
memory location $3CF.

1 Programming Examples ﬂ

Apple lle Identification Program

1982 PARAM OREG $204
SAFE EQU $3CF
SAVE EQU 50001 :START OF CODE RELOCATED ON PAGE ZERD
EQU $200 :START OF FOUR BYTE LANGUAGE CARD ID
PHP ;DISABLE INTERRUPTS
SEI
LDA HO L +SAVE 4 BYTES FROM
STA SAVE +ROMRAM AREA FOR LATER
LOA £0000 ;RESTORING OF RAMROM
5TA SAVE+ :TD ORIGINAL CONDITION
LDA 504600
STA SAVE+2
LDA $0800
il STA SAVE+3
f LDA 5081 ;EMSURE READING ROM BY TURNING OFF
LOA sco8t ;BANKABLE MEM.
LDA $FAB3 sGET APPLE IIE SIGNATURE BYTE
CHP 56
BNE ouT :IF NOT #6 THEN NOT APPLEIIE
LDA $C017 :WAS 80 COLUMNS FOUND DURING STARTUP
BMI ouT2 S1F HI BIT ON THEN ND B0 COLUMN CARD
LOA $C013 ;SEE 1F AUX MEMORY BEING READ
BMI ouTL ;AUX MEM BEING USED SO AUX MEM AVAIL.
LDA sc01é ;SEE IF AUX ZP BEING USED
BMI ouTh ;AUX ZP BEING USED S0 AUX MEM AVAIL
LDY ¥DONE-START sNOT SURE YET S50 KEEP CHECKING
MV Lox START-1,¥ ;SWAP SECTION OF ZP WITH
LDA SAFE=1,Y ;CODE NEEDING SAFE LOCATION DURING
5TX SAFE-1,Y :READ AUX MEM
5TA START=1,¥
DEY
ENE My
IMPp SAFE ;JUMP TD SAFE GROUND
oM PHP ;BACK FROM SAFE GROUND. SAVE STATUS
LDY #DONE-START sMOVE ZERO PAGE BALK
M2 LDA START=1,Y
STA SAFE-1,Y
DEY
BNE MVZ
PLA ;GET BACK STATUS
BCS ouTs3 ;CARRY SET S0 NO AUX MEM
DUTE LDA #3580 SMADE IT SO THERE IS AUX MEM SET
5TA PARAM ;PARAM=SB0
I JMp ouT
II ouT3 LDA #8540 ;80 COLUMNS BUT NO AUX SO SET
STA PARAM ;PARAM=%40
IMP ouT
out2 LOA #3520 ;APPLE 11E BUT NO CARD 50 SET
STA PARAM ;PARAMN=520
JMP out
| ouT LDA #0 sMOT AN APPLE I1E 50 SET PARAM=0
i 5TA PARAM
|
H
|
|
l ag |

Extended Text Card Supplement

oauT LDA SEQOO ;IF ALL & BYTES THE SAME
CHP SAVE iTHE LANGUAGE CARD NEVER
BNE QUTON iWAS ON 50 DO NOTHING

LDA 0000
CHP SAVE+T
BNE OQUTON
LDA D400

CMP SAVE+2
BNE QuUTON
[LDA $D8O0
| CHP SAVE+3
BEQ GOOUT
ouTaN LDA $COBB ;NO MATCH, 50 TURN FIRST
LDA SE0OD ;BANK OF LC DN AND CHECK
cHp SAVE
- BEQ ouUTOND
E LDA SCOB0
I imp GOOUT
f QUTOND LDA spoo0o
| CMP SAVE+1 ;IF ALL LOCATIONS CHECK
BEQ oDUTON1 ;THEN DO NOTHING MORE
LDA SCOBO ;OTHERWISE TURN ON BANK 2
JMP GOOUT
oUTONT LDA SD400 ;CHECK SECOND BYTE IN BANK 1

CMP SAVE+2
BEQ ouTONZ

LOA $COBO SSELECT BANK 2
JMp GOQUT
QUTONZ LDA S$DBOD TCHECK THIRD BYTE IN BANK 1
CHP SAVE+3
BEG GOOUT
LOA $CO&D {SELECT BANK 2
| GoouT PLP :RESET INTERRUPTS
| RTS
It *** AOUTINE RUN IN SAFE AREA NOT AFFECTED BY MODVES ***
| START LDA #3EE ;TRY STORING IN AUX MEM
ETA $c005 JWRITE TO AUX WHILE ON MAIN 2P
5TA $C003 SS5ET TO READ AUX RAM
ETA 800 sCHECK FOR SPARSE MEM MAPPING
LOA scOD :SEE IF SPARSE MEMORY -SAME VALUE
cMp #SEE : TE AWAY
BNE AUXMEM
ASL $C00 ;MAY BE SPARSE MEM SO CHANGE VALUE
LDA $800 : & SEE WHAT HAPPENS
cHp sc00
BNE AUAMEM
SEC ;SPARSE MAPPING 50 NO AUX MEM
BLS BACK
AUXMEM cLC ;THERE 15 AUX MEM
BACK STA 50004 ;SWITCH BACK TO MRITE MAIN RAM
5TA sconz2 sSWITCH BACK MAIN RAM READ
JMP oN ;CONTINUE PROGRAM DN PG 3 MAIN RAM
DONE NOP {END OF RELOCATED PROGRAM MARKER

Programming Examples H

Apple lle Identification from
Applesoft BASIC

Apple lle Identification from BASIC

One way to identify the configuration of an Apple lle from BASIC is
to load (using BLOAD) the machine-code version of the assembly-
language routine described in the previous section, then execute a
cALL statement to location 724 ($2p4). When the subroutine
returns to the BASIC program, executing a PEEK at location 975
{$3CF) gets the result.

Here is another approach to writing a BASIC program to identify the
type of Apple Il it is running on. In this program the assembled
code for the assembly-language identification routine from the last
section is included in the DATA statements.

1unawas.1zu,1?3,u.ea¢.1¢1.zna,z,1?3,0,205,1&1,zn9,z.1?3,u.
212, 141, 210, 2, 173, 0, 216, 141, 211, 2, 173, 129, 192,173, 129,
19z, 173, 179, 251, 201, &, 208, 73, 173

EUulTlZ!.192.#B.&D,1?!,19,192,&3.39,1?3,22.1?2.£B.I£*1&0,&2,
19u.1&2.5,155.0,0,150*9,153.\az.i.13ﬁ.203.ZﬂE.?ﬁ.l.D.
8, 160, 42, 185, 142, 3, 153

IDDlTAU,u.13$,205,251.10£.1?&,8.169,12&.141,2ﬁ?,3.?6.?3,3,
169.&&,1#1.20?,3,?&,?3,}.159,32.1&1,EU?.S,?ﬁ.?3,5.1ﬁ9,
0, 141, 207, 3, 173, 0, 224

4umn1nau5,zua.z,zua.z¢.173.u.zua.zns.qu,z,zua,1s.1?3,a.21z.
zns,z1n.z,203,3,1?:.n.z1a.zn5,z11,z,zsn,56.1?3,13&,192,
173, 0, 224, 205, 208, 2, 240, &

500!1h1?3.128,192,?6,161,3.1?3.0.208,2ﬂ5,209,2,24ﬂ.ﬂ.1?3.125.
192, 76, 161, 3, 173, 0, 212, 205, 210, 2, 240, &, 173, 123,192, 76,
181, 3, 173, 0, 2146, 205, 211, 2

60 DATA 240, 3, 173, 128, 192, 40, 96, 169, 238, 141, 5,192, 141, 3, 192,
141, 0, 8, 173, 0, 12, 201, 238, 208, 14, 14, 0, 12, 173, 0, B, 205, 0.
12, 208, 3, 56, 178, 1, 24

70 DATA 141, &, 192, 141, 2, 192, 76, 29, 3, 234

80 ALOOK = 975:START = 724

90 FOR T =0 TD 249

100 READ BYTE

110 POKE START + I,BYTE

120 NEXT

130 CALL START

140 RESULTS = PEEK (ALOOK)

1SDPHIHTRE5UL1S:HEHREEULTSDF&HE!HNDTAIIE:SZﬂEAISAEIEBu1u0&0
COLUMNS; &% MEANS ATIEMITH 80 COLUMNS BUT ND AUX MEM; 128 MEANS AIIE
WITH AUX MEM

160 END

Extended Text Card Supplement

Apple lle Identification from Pascal

Here is the assembly-language identification program previously
described in the form of a Pascal procedure.

Apple lle Identification from

Pascal)
;
SMACRO POP ;S5AVE PASCAL RETURN ADDRESS
PLA
STA 51
PLA
STA LR
_ENDM
i
F
i
~MACRO PULL_BIAS ;ADJUST FOR FUNCTION
PLA
PLA
PLA
PLA
~ENDM
r
i
.FUNC 1p,0
RETURN .EQU 0 :TEMP STORAGE OF RETURN TO PASCAL ADDRESS
SAFE LEQU oon2 ;START DF CODE RELOCATED ON PAGE ZERO
;
:
H
POP RETURN
PULL.BIAS
PHP ; LOCK DUT INTERRUPTS
SEI
LDA OCOD&9 ;ENSURE READING ROM BY TURNING OFF
LDA pcogs ;BANKABLE MEM
LDA OFBE3 :GET APPLE I1ea SIGNITURE BYTE
CHP e
BENE ouT1 :IF NOT #4& THEM NOT APPLE I1e
LDA pcolv? :WAS BO COLUMNS FOUND DURING STARTUP
BM1 outz2 ;IF HIGH BIT DN THEN NO BO-COLUMN CARD
LOA oCco13 +S5EE IF AUX MEMORY BEING READ
LT ouTé SAUX MEM BEING USED 50 AUX MEM AVAIL
LDA ocolé iSEE IF AUX ZP BEING USED
BMI OUT#& JAUX ZP BEING USED 50 AUX MEM AVAIL
LoY #2A :NOT SURE YET S0 KEEP CHECKING
MYV LDX START-1,Y ;SWAP SECTION OF ZP WITH
LDA SAFE-1,Y ;CODE NEEDING SAFE LOCATION DURING
STX SAFE=1,Y ;READ AUX MEM
ETA START-1,Y
DEY

Programming Examples n

ON

M2

ouTh

ouT3

outa

auT1

ouT

PARAM

3

BNE MV

IHP SAFE ;JUMP TO SAFE GROUND

PHP ;BACK FROM SAFE GROUND. SAVE STATUS
LoY 2 ;MOVE ZERO PAGE BACK

LOA START=1,Y

STA SAFE-1,Y

DEY

BNE My2

PLA ;GET BACK STATUS

BECS ouT3 ;CARRY SET SO NO AUX MEM

LDA =80 sMADE 17 50 THERE I5 AUX MEM-SET
STA PARAM ;PARAM=%80

IMP ouT

LDA 440 ;B0 COLUMNS BUT NO AUX S0 SET
STA BARAM SPARAM=$40

JHP ouT

LDA #20 ;APPLE I1e BUT MO CARD SO SET
5TA PARAM ;PARAM=%20

IMP out

LDA £0 sHOT AN APPLE Ile 50 SET PARAM=0
STA PARAM

LOA oCo8s sGET PASCAL BACK

LOA ocogs

PLP SREACTIVATE INTERRUPTS

LOA #0 sPUT O IN HIGH BYTE OF RESULTS
PHA

LOA PARAM sPUT FOUND YALUE IN LOW BYTE & PUSH
PHA

LDA RETURN+1 ;RESTORE PASCAL RETURN ADD

PHA

LDA RETURN

PHA

RTS

.BYTE

i
; ROUTIME RUN IN SAFE AREA NOT AFFECTED BY MOVES

H

START

AUXMEM
BACK

DONE

LDA #0EE ;TRY STORING . IN AUX MEM

5TA ocoos sWRITE TO AUX WHILE ON MAIN ZP

5TA 0coos ;SET TO READ AUX RAM

5TA 0R00 ;CHECK FOR SPARSE MEM MAPPING

LDA ocoo sSEE IF SPARSE MEMORY-SAME VALUE
CHP #0EE 1K AWAY

BNE AUXMEM

ASL ocoo :MAY BE SPARSE MEM 50 CHANGE VALUE
LDA 0BOO :4 SEE WHAT HAPPENS

CMP 0coo

BNE AUXMEM

SEC :SPARSE MAPPING 50 NO AUX MEM

BCS BACK

ELC THERE 15 AUX MEM

STA . ocood :SWITCH BACK TO WRITE MAIN RAM
STA gcooz sSWITCH BACK MAIN RAM READ

IMP oM ;CONTINUE PROGRAM ON PG 3 MAIN RAM
HOP ;END OF RELOCATED PROGRAM MARKER
.END

_ Extended Text Card Supplement

Hi-Res Page Mover for Auxiliary
Memory Demo. Using auxMove
Subroutine. July 1982

PARM = Hi byte of BuF. anor. (Page #
times 32).

Call puTraAG to copy hi-res graphics
page to Aux. MEM. location specified by
PARM.

Call ceTrac to load hi-res graphics page
from aux. MEM. location specified by
PARM,

—

Storing Graphics Pages from Applesoft

It is generally not practical to use the auxiliary memory from BASIC.
A BASIC program can only move its variables in memory by getting
very tricky with PEEK and POKE commands, an approach that is
both inefficient and dangerous.

There is one form of data that uses lots of memory and is simple
enough to handle from Applesoft: high-resolution graphics pages.
The auxiliary memory is an ideal place to store as many as five
complex graphics pages for rapid loading into the display buffer.

Like all of these examples, the following Applesoft example

includes two short assembly-language subroutines. The first listing
is the assembly-language form of the subroutines. The second
listing is the Applesoft program with the machine-language
subroutine included as a series of DATA statements. This method of
adding a machine-language subroutine to a BASIC program is not
very efficient, but it is convenient for short subroutines.

The program has two phases: in the first, the program generates
five different high-resolution views and stores them in auxiliary
memory: in the second, the program loads the stored graphics
pages back into main memory one after another.

DSECT

ORG $3cC
SRCBEG DS 2
SRCEND DS K

bs 2
DESTBEG Ds 2

DEND
*
PGTBEG EQU 22000
PGTEND EQu $3FFB
AUXMOVE EQuU 5C311
-

ORG 3300
PARM 0s 1

L

* MOVE HI-RES PAGE TD AUX MEM:
*

Programming Examples ﬂ

PUTPAG EQU -

LDA #PG1BEG sPAGE STARTING
STA SRCBEG ;ADDRESS
LDA #iPG1BEG
STA SRCBEG+T
*
LD& #3PETEND ; PAGE ENDING
STA SRCEND ;ADDRESS
LDA #(PGTEND
STA SRCEND+1

* PARM — DESTINATION ADDRESS

LDA =0 ;DESTINATION
5TA DESTREG jPAGE BEGINNING
LDA PARM ;ADDRESS

STA DESTREG+1

* USE AUXMOYE TOD DO IT:
SEC

JER AUXMOVE
RTS

*
-
* COPY PAGE TO MAIN MEMORY
*
5}

ETPAG EQU *
LDA #)PG1BEG SDESTINATION
STA DESTBEG sPAGE BEGINNING
LDA #(PG1BEG ;ADDRESS
5TA DESTBEG+1

- #

PARM — SOURCE ADDRESSES

LDA 0 SPARM FOR
STA SRCBEG ;SOURCE BEGINNING
LDA PARM ;ADDRESS
STA SRCBEG+T
-
LOA #%F8B ;COMPUTE SDURCE
5TA SRCEND ;ENDING ADDRESS
cLE
LDA PARM
ADC *31F
STA SRCEND+1

USE AUXMOVE TO DO IT:

CLE
JSR AUXMOVE
RTS

Extended Text Card Supplement

Globe. Hi-res graphics demanstration
for the Apple lle Extended 80-Column

Text Card. 99 AEM This programdraws five views of a rotating globe and stores
100 REM tive copies of the Hi-Res page inauxiliary memory. It then
‘ 107 REM moves the views fromauxiliary memory back into the Hi-Res
108 REM graphics page inmainmemory, one after another. The rapid
' 109 REM successfon of views creates the impressionof asolid
17 REM rotating globe.
118 REM
119 REM
127 REM
128 REM
129 REM
150 REM

160 TEST : HOME

170 PRINT CHRS (17): REM CTRL-Q for 40-column display

158 REM

199 REM Pager subroutines in machine Language:

200 DATA 169,0,13%,60,169,32,133,61,169,248,133,62,169,63,133

210 DATA 63,169,0,133,66,173,0,3,133,467,56,32,17,195.96,0

220 DATA 1649,0,133,66,169,32,133,67,169,0,133,60,173,0,3,133

230 DATA 61,169,248,133,62,24,173,0,3,105,31,133,63,24,32,17,195
96

298 REM

299 REM Read the Pager subroutines and store at $301:

100 PARM = TAB:PUTPAGE = TH9:BRINGPAGE = BOO

310 FOR I = 0 TO &4

320 : READ BYTE

330 : POKE PUTPAGE + I,BYTE

3&0 MEXT I

9%8 REMW

999 REM Set up constants for drawing meridians (ellipses):

1000 PI = 3.14159265:P2 = P12

1010 5P = P2 9: REM angle between meridians

1020 EP = SP 5: REM starting angle increment between views
1030 DT =PI 15: REM segment size {angle) for drawing meridians
1040 B = 1: REM Semi-major axis of allipses.

1998 REM

1999 REM Loop starting at 2000 draws five views and stores them:
2000 FOR VIEW =1 705

2029 : REM HGR tao erase previous views

2030 : HGR : HCOLOR= 3

2040 : REM Draw picture frame:

2050 : HPLOT 60,0 TO 60,159 TO 219,159 T0 219,0 70 60,0

2100 : VTAB 23: HTABR 9

2120 : PRINT "...constructing view # ;VIEW

2988 : REM

2990 :DP = EP * VIEW: REM different starting angle each view.
2999 : REM Loop starting at 3000 draws meridians (ellipses):
3000 : FOR IANGLE = DP TD P1 STEP 5P

3100 ::A = COS (IANGLE}: REM Semi-minor axis of ellipse.
3200 ::FIRST = 1: REM for plotting

3990 :: REM

3999 :: REM Loop starting at 4000 draws a meridian (ellipsel:
4000 FOR THETA = 0 TO PI STEP DT

&020 LET X = A * S5IN (THETA)

4040 LET ¥ = B * COS (THETA)

LOS59 REM Mext two Lines scale PX and PY for plotting.
4060 LET PX =X * 55 + 140

LOBO LET PY =Y = 55 + BO

4100 IF FIRST THEN HPLOT PX,PY:FIRST = 0O

Programming Examples E

4110 ::: IF MOT FIRST THEN HPLOT TD PX,PY

4200 z: NEXT THETA

4300 : NEXT IANGLE

LEQD : VTAB 23: HTAB 9

4410 : PRINT " ...storimng view # ;VIEW
LELPT : REM

4500 : REM Put view in auxiliary memory:

4510 : POKE PARM,VIEW » 32

4520 : CALL PUTPAGE

44600 MEXT WIEW

L4689 REM

L4690 REM Five views stored=-=- now show them:

4700 HOME : VTAB 23

4720 HTAB I: PRINT "Loading views from auxiliary memory.”
L998 REM

L9909 REM Loop starting at 5000 brings views fromauxiliary memory:
5000 FOR VIEW=1T0S

5020 : POKE PARM VIEW » 32

5040 : CALL BRINGPAGE

5060 NEXT VIEMW

5997 REM
5998 REM Repeat same five views forever,
5999 REM or until the fuse blows:

6000 &OTO 5000

Storing Data Strings from Pascal

These Pascal routines use locations $c00 to $BFFF in the auxiliary
memory for storage and retrieval of strings.

The code that moves the strings to and from auxiliary memory is
stored at E000 in the Extended 80-Column Text Card. A separate
initialization routine puts this code at 000, just once, to maintain
system performance.

The retrieval routine is very fast, roughly equivalent to a Moveleft
from a Packed Array of Char. The storage routine is less
efficient; if speed is important in your program, you may want to try
to optimize it.

Like the other examples, these routines were written for a particular
application and are not general-purpose subroutines. They are included
here to show you the kind of thing you can do with the auxiliary
memory.

Extended Text Card Supplement

Auxiliary Memory String Routines
by R. Lissner

The following routine is performed only once. The routines that move
strings inand out of the Extended B0-Column Text Card are maved to Exxx
inthe auxiliary memory.

.TITLE "ASSEMBLY ROUTINES IIe INITIALIZATION"

-PAGE
~NOMACROLIST
~NOPATCHLIST
r
ROMAINGE -EQU gcopz i SOFT SWITCHES. SEE
ROAUXELS -EQU ocoo3 ; TIe REFERENCE MANUAL
WRAMATNGE -EQU DCO04
WRAUXAE EQU ocons
RWMAINT& .EQu ocood
RWAUXTE -EQU ocooe
HIRESOFF LEQU 0cosé
.
H
RETURND .EQU 028
RETURNT .EQu oza

REGISTER MAP

ZREGOO JEQU o
ZREGD2 LEQU 4
IREGD4 LEQU 6
']
ouTE STA RWALXTE ; WRITE AUX MEMORY
Loy #B0. ; LENGTH OF PATCH
DUTAMED LDA EQO02STUF-1,Y :
STA pEDOT, Y
DEY
BNE OUT&MED
Loy SOFF ; LENGTH OF PATCH
OUTEMET LDA E1025TUF-1,Y ;CODE NEEDING SAFE LOCATION
STA DE101,Y¥
DEY
BME OQUT&MET
STA RWMAIN1S ; MRITE MAIN MEMORY
STA HIRESOFF ; MAKE HIRES P. AVAILABLE

: END OF THIS ROUTINE

i Purpose: Moves a string from auxiliary memory to Pascal.

¥ 1% the progrem finds the Extended BO0-Column Text Card, the

3 following code is moved to EDOZ.

’

i The program gets here from a JSR in MOVE_FR_AUX, and goes back so
i that the auxiliary memory can be turned back off. Zero page on the
H extended text card contains ZREGOD and ZREGO2; they are the

H arguments for the move. Stack usage: The return address in 4BK main
H memory is stored in the auxiliary stack, This is the only use of the
H auxiliary memory stack.

Programming Examples

EOD25TUF

EQO2LO0F

EQOZEXIT

i ms ms ws

NEXTAVAIL
E1025TUF

E102C0

cLe

STA ROAUXSE : READ AUX 4BK

Loy #0

LOA (ZREGOO)Y, Y ; READING ALUX &BK
USING AUX ZERD PAGE

5TA (ZREGO2) ,Y ; WRITING MAIN 4BK

BEQ EQO2EXIT : NOT LIKELY, BUT POSSIBLE
TaY

LDOA (ZREGOD}, Y

STA (ZREGOZ2),Y

DEY

BNE EQOZLOOP

STA ROMAINGE ; READ MAIN LBK

RTS ; GOING BACK TO 4BK RAM

Purpose: Moves a string from Pascal to auxiliary memory.

If the program finds the Extended B0-Column Text Card, the
following code is moved to E102.

The program gets here from a J5R in MOVE_TO_AUK, and goes back so
that the auxiliary memory can be turned back off. Zero page an the
gxtended text card contains ZREGOO and ZREGOZ exactly as they are
found an the main zero page.

Stsck usage: The return address in 48K main memory is stored in the
suxfliary stack. This is the only use aof the auxiliary memory
stack.

Note also that the auxiliary zero page is used for the to and from
addresses.

ZREGDO: Address of string that wants to be stored

ZREGDZ: Address of integer that wants to know where it was stared,
or receive x'0000° if no room

ZREGOL: Used to index on receiving address

. EQU 0E102
. WORD ocoo
cLD
: X'FF' MEANS RESET BACK TO BEGINNING. DONE FOR EACH NEW FILE
Loy #0
LOA (ZREGODY, Y
CHP #0FF
BNE E102C0
LODA #0 ; RESET 70 $c00
5TA NEXTAVAI+1
LDA #0
STA NEXTAVAL
BEQ E102FAIL ; UNCONDITIONAL
CONTINUE WITH NORMAL ROUTINES
LOA NEXTAVAI+1
cHp #0BF ; CHECK FOR FULL
BNE E102C1

Extended Text Card Supplement

; SPACE IS FULL, 50 RETURN ZERO

| LDA #0
[TAY
STA (ZREGD2), ¥ P
INY
STA CZREGDR2),Y
BNE E102FATL P
; THERE 15 STILL RDOM, 50 CONTINUE
Ef02c LoY #
STA (ZREGD2),¥ ;
STA ZREGD4L+1 ;
DEY
LOA NEXTAVAIL
STA (ZREGODZ) , ¥ ;
STA ZREGO4 :
: NOW INCREMENT THE NEXT AVAILABLE ADDRESS
i cLe
ADC # :
BNE 45
INC NEXTAVAI+1 ;
| cLC
LOY #0
ADC CZREGDD), ¥ :
5TA NEXTAVAI ;
BCC *+5
INC NEXTAVAT+1 ;
STA WRAUX4LE ;
LDA (ZREGOD), Y :
USING AUX ZERO PAGE
STA CZREGO&LY, Y ;
BED E10ZEXIT
| TAY
E102L00P LDA CZREGDO), ¥
STA CZREGO4), Y
DEY
BNE E102LD0P

E102EXIT 5TA
E10ZFAIL RTS

WRMAINLB

-

Programming Examples

.END
; The following code 15 Linked into the main
¥
; the Extended 80-Column Text Card.
V
TITLE "ASSEMBLY ROUTINES FOR Ile”
«PAGE
| NOMACROLIST
[LNOPATCHLIST
ROMAINGE LEQU gcoo2
ROAUXLE -EQU ocoos
WRMAINLE -EQU ocoons
WRALUKEE LEQU ocoons
RWALX1S LEQU ocooe
RUMAINT& LEQU ocoos
7 RETURN ADDRESS ZERO PAGE LOCATIONS
H
RETURND LEQU 0zs
RETURN? LEQU 0zZA

RETURN A ZERD, FULL

UNCONDITIONAL

STORE IN RETURN ADDR
SETUP THE MOVE

LOW BYTE OF RETURN
MORE OF THE MOVE

ADD 1 FOR STRIMG LENGTH
ROLLED INTO NEXT PAGE
ADD LEMGTH OF STRING
PUT IT BACK

INTO NEXT PAGE

WRITING INTO AUX &BK

READING AUX 48K

WRITING MAIN 48K

NOW WRITE MAIN MEM
GOING BACK TOD 48K RAM

Pascal program. This code

stores the arguments in the auxiliary zerp page and then jumps to Exxx on

ZREGOO LEQU
ZREGO2 -EQU
i
.TITLE
.FROC

e

e L T

H REGISTER MAP

“MOVE STRINGS FROM Ile AUKILIARY MEMORY"
MOVEFRAU, 2

PROCEDURE MOVE_FR_AUX (FROMA; VAR TOA) (* Mave string *)

Purpose: Move a string fromauxiliary memary to pPascal. Most of the
actual move is done at auxiliary memory Location EOD2.

Stack usage: Input, output addresses.

; STORE RETURN ADDR IM AUX ZERQ PAGE

POP

RETURND ; RETURN TO PASCAL

; ADDRESSES ARE TWO BYTES. PULL BOTH BYTES OFF THE MAIN STACK, THEN SWITCH
; TO AUX ZERO PAGE AND STORE BOTH BYTES.

PLA
TAX
PLA
STA RWAUXTE ; SWITCH TO AUX ZP
STX IREGDZ ; IN AUX ZERD PAGE
STA ZREGOZ2+1 ¢ STILL IN AUX MEM
STA RWMAINTA ; SWITCH TO MAIN ZP
; STORE FROM ADDRESS IN AUX ZERO PAGE
PLA
TAX
PLA
STA RWALX1E ; SWITCH TO AUX ZP
STX IREGOD ; IN AUK ZERD PAGE
5TA ZREGOD+1 : STILL IN AUX MEM
; NOW GET OVER TO AUX PAGE AND DO IT ALL
JSR 0EDDZ
; NOW PROCESS COMING BACK FROM EDO2 IN AUX MEMDRY
5TA RWMAINTA ; MAIN ZP AND TOP
PUSH RETURND
RTS ; BACK TO PASCAL
P
H
WTITLE “MOVE STRINGS TO ITe AUXILIARY MEMORY"
.PROC MoveToAu,2

e me ws

.

e mn

Pop

PROCEDURE MOVE_TO_AUX (VAR FROMA; VAR TOA) (% Mave string #)
Purpose; Move a Pascal string to auxiliary memary. Most of the
actusl move 15 done st auxiliary memory lLocation E102.

Stack usege: Input, output addresses.

STORE RETURN ADDR IN AUX ZERD PAGE

RETURND : MAIN ZP STACK

m : Extended Text Card Supplement

B e S A e

; WOW STORE TO ADDRESS IN AUX ZERD PAGE

PLA ; LS8 OF ADDR TO RETURN

TAY
PLA ; MSB OF ADDR TO RETURN
5TA RMAUXTS : SWITCH TO AUX ZP
5TX ZREGDZ ; IN AUX ZERO PAGE
5TA ZREGOZ+1 : STILL IN AUX MEM
5TA RWMAINTG : SMITCH TO MAIN 2P

; STORE FROM ADDRESS IN AUX ZERO PAGE
PLA ; LSB DF INPUT STRING

i TAX

PLA
STA RHAUX16 ; SWITCH TO AUX ZP
ST ZREGOO ; IN AUX ZERD PAGE
STA ZREGOO+1 : STILL IN AUX MEM

; NOW GET OVER TO AUX PAGE AND DO IT ALL
JSR 0E104 ; JUMP OVER NEXTAVAI AT E102

; RETURN FROM E104& TN AUX MEMORY
STA RUMAIN1® : MAIN TO MAIN ZP AND TOP
PUSH RETURND
RTS

H
.END

Programming Examples ﬂ

Index

A

accumulator 30, 31

address bus 7

address 30
data 29
destination starting 30
program starting 31
source starting 30
source ending 30
transfer 31

alternate zero page 25

ALTZP soft switch 25
figure 27
table 26
warning 29

Annunciator 3 11
display page used 12

Apple Il 35, 36
compatibility 25
system software 15

Apple Il Plus 35, 36
compatibility 25

Apple lle viii, 7, 35
control keys 4
display memory 18
display modes 4
display pages 16
double high-resolution

graphics 1112
escape sequences 4
identification from assembly
language 37

identification from BASIC 40
identification from Pascal 41
installing card in 3
processor 4
Rev A 12
Rev B 11

Apple lle Identification
Program 38-39

Apple lle Identification Program
(Pascal) 41-42

Index

Applesoft BASIC 17, 35
program example using
AUXMOVE 44
using to store graphics
pages 43
application programs viii, 21,
35
running with the card vii
assembly language 35, 37
subroutines 15, 37, 43
programs to use auxiliary
memory 29
routine for Pascal 41
AUX. CONNECTOR 3
See also auxiliary slot
auxiliary memory viii, 4, 7, 9,
10, 11, 12, 15, 16, 18, 19, 21,
22, 25, 29, 31, 36, 37
accessing 4
address bus 9
addressing 7
amount 3
careless switching 4
how it works 7-12
select switches, table 26
subroutines 29-31
switching to from bank-
switched memory 9
transferring control to 30-31
using viii
using from a program,
examples, 35-51
warning 9, 15
Auxiliary Memory String
Routines 47-51
auxiliary RAM 15
auxiliary slot 11
AUX. CONNECTOR 3
AUXMOVE subroutine 15, 29, 30
example using (Applesoft) 44
parameters 30
warning 29

B

bandwidth, video monitor 11
bank switches 9
bank-switched memory 9, 25,
36
warning 9
with auxiliary memory 9
BASIC 15, 37, 40, 43
Applesoft 17
Integer 17
reading soft switches
from 17
warning using 15
bit 0 29
bit 7 17
bit
carry 29, 31
color-select 19
high-order 19, 22, 25
overflow 31
sign 17, 22, 25
built-in 80-column display
routines 16
built-in I/O routines 21
built-in subroutines 29, 30
bus
address 7
data 7
byte
high-order 30, 31
low-order 30, 31

C

CALL statement 15, 40
carry bit 29, 30, 31
circuitry, display 18
cLcC instruction 29, 30
clock cycle 9

with 80-column display

on 10

cLV instruction 31
color monitor, RGB
color-select bit 19
commands

PEEK 17, 43

POKE 17, 43
computer configuration,

identifying 35-37
configuration 35
configuration of the

computer 35-37
control keys 4
control switches 22

10, 11

Extended Text Card Supplement

D

data addresses 29

data bus 7, 11

data, moving 29

DATA statements 40, 43

data strings 46

decimal 17

destination starting
address 30

display buffer 43

display circuitry 18

display cycle 9

display data 10, 21

display modes 4

display pages 16
control switches 22
length 9
locations, table 16
See also graphics pages

display soft switches, table 18

display, 80-column 19
figure 20

DOS 3.3 wiii, 15, 21

dot patterns 10

double high-resolution graphics
(560 dot) 11-12, 19
obtaining 11
board necessary for 12
with Rev A Apple lle 12

E

B0-column card, any 36
B80-column display 10, 11, 16,
19, 36
addressing directly 18
bandwidth needed 10
firmware 3, 4, 36
figure 20
map 10
storing data 9
switch for 11
with clock cycles 9
versus 40-column display (dot
patterns) 10
gocoL soft switch 18
BO-Column Text Card 4, 16, 35,
36
BO-column text
mode 12
80sTORE soft switch
figure 23, 24, 28
table 26
warning 21

11, 12, 19

18, 19, 22

escape sequences 4
expansion slot 3 36
Extended B0-Column Text
Card 11, 35, 46
buffer 10
connecting pins 11
differences from 80-Column
Text Card viii
storing data directly 19

F

firmware, 80-column display 3,
4, 36

560-dot graphics 11, 12, 16
See also 280-dot graphics

40-column text 11
mode 16

48K bank, switching 21-22

48K memory space 9, 21

14MHz 10, 11

functions
keyboard
Pascal 15

G

Globe 45-46
graphics mode, double high-
resolution 12, 19
graphics Page 1X (high-
resolution) 19
graphics pages 43
storing from Applesoft 43
See also display pages
graphics
280-dot 16
560-dot 12, 16
double-high-resolution 19
double-high-resolution
memory mappping 19
high-resolution, Page 1 19,
22
high-resolution, Page 1X 19
high-resolution program
example 45-46

H

hexadecimal 186, 17

high-level languages 15

high-order bit 17, 19, 22, 25

high-order byte 30, 31

high-resolution graphics 11,
36, 43

17, 25

Page 1 12, 19, 22
Page 1X 19
Index

pages 43

program example 45-46
switch for 11
HIRES soft switch
figure 24, 28
table 26
warning 21
horizontal resolution 11

/

identification return codes,
table 35

identification routine 35, 40
outline 36-37

warning 37
identification, Apple lle
(assembly language) 37
identification, Apple Ile from
BASIC 40

installation 3

instruction

cLc 29, 30

cLy 31

JSR 37

jump 31

SEC 29, 30

Integer BASIC 17
interpreter, warning using 15
interrupts 36, 37

o 7

links, standard 21
routines, built-in 21
subroutines 29

J

JSR instruction 37
jump instruction 31
jump to subroutine (JSR) 37

K
keyboard functions 17, 25

L

low bandwidth monitor 19
low-order byte 30, 31
low-resolution graphics

M

machine language 17
programs 17
main logic board
buffer 10

Rev A 12

Rev B 11

18, 19, 22

11, 16

main memory viii, 7, 9, 10, 12,
15, 16, 18, 19, 21, 25, 31
address bus 9
switching 4

memaory
amount card contains viii
auxiliary 15

select switches, table 26
bank-switched 25
reading 21, 25
writing 21, 22, 25

memory locations 17

Memory Management Unit 7

memory map 9, 12, 19
diagram 8

memory pages, length 9

memory switching 15

mixed graphics modes 11

MIXED soft switch 18

MMU 7

modes, mixed graphics 11

Molex-type pins 11

Monitor program 19

monitor, low bandwidth 19

monochrome monitor 11

moving data 29

N
negative decimal 17
(0]
operation
read 17, 25
warning with 17
write 17, 25

warning with 17
overflow bit 31

P
Page 1
display 19
graphics 22

high-resolution graphics 12,
19

text 16, 18, 22

page one 9
warning 29

Page 1X
display 16, 18, 19
high-resolution graphics 19
text 16

pages, high-resolution
graphics 43

Page 2, text 16

Extended Text Card Supplement

PAGEZ soft switch 18, 19, 22
figure 28
table 26
warning 21
page zero 9, 29, 30, 31
warning 29
parameters 30
Pascal 30, 35, 37, 41
1.1 viii, 15
functions 15
procedures 15, 30
routines, programming
examples 47-51
storing data strings from 46
warning using 15
PEEK 17, 40, 43
POKE 43, 17
power-on light 3
procedures, Pascal 15, 30
procedures, assembly-
language 29
processor 4
processor status word 29, 31
program starting address 31
program
Apple lle identification 38-39
Apple lle identification
(Pascal) 41-42
Applesoft example using
AUXMOVE 44
assembly-language 29
machine-language 17
Monitor 19
programmable memory,
amount 4
programming examples 35-51

R

RAM 4,7
amount 3
auxiliary memory 15
RAMRD soft switch 21, 22
figure 23, 24
table 26
RAMWRT soft switch 21, 22
figure 23, 24
table 26
read operation 17, 25
warning 17
reading memory 21, 25
registers, X and Y 30
Rev A Apple lle 12
Rev A main logic board,
warning 12
Rev B main logic board 11
RGB color monitor 10, 11

ROM 7, 21

routine, identification 35, 40
outline 36-37

routines, built-in 30

S

SEC instruction 29, 30
7MHz 10
sign bit 17, 22, 25
6502 microprocessor 7
6502 stack 9
warning 29
slot 3 36
soft switches 7, 11, 15, 16, 17,
29, 31, 37
accommodating 25
ALTZP 25
figure 27
table 26
warning 29
Annunciator 3 11
socoL 18
80STORE 18, 19, 22
warning 21
figure 23, 24, 28
table 26
HIRES 18, 19, 22
warning 21
figure 24, 28
table 26
MIXED 18
PAGE2 18, 19, 22
figure 28
table 26
warning 21
RAMRD 21, 22
figure 23, 24
table 26
RAMWRT 21, 22
figure 23, 24
table 26
setting 15-31
TEXT 18
warning 17, 21
software, Apple Il system 15
source ending address 30
source starting address 30
sparse memory mapping 36
stack 25, 31
warning when switching 15
stack pointer, warning 31
standard 1/O links 21
string routines, Pascal
examples 47-51
subroutine call 31

Index

m

subroutines
assembly-language 15, 37,
auxiliary-memory 15, 29-31
AUXMOVE 15, 29, 30
parameters 30
warning 29
built-in 29
o 29
XFER 15, 29
parameters 31
warning 31
switch locations
decimal 17
hexadecimal 17
negative decimal 17
switches, control
48K bank 22
display-page 22
system software for the
Applell 15

T

television set

17, 21

10, 19

text display, 80-column 12, 19
figure 20
text Page 1 9, 16, 18, 22

text Page 1X 16

text Page 2 16

TEXT soft switch 18

transfer address 31

280-dot graphics 11, 16
See also 560-dot graphics

4

video display page locations,
table 16

video displays 16

video monitor 10

video display generation 11

w

write operation 17, 25
warning 17

writing memory 21, 25

X

X and Y registers 30

XFER subroutine 15, 29, 30
parameters 31
warning 31

> 4

zero page 25, 29, 36, 37
warning when switching 15

ﬂ Extended Text Card Supplement

Schematic Diagram

+5 *5
¥ 1 T
leo e ol
8 2 L1 3 2 o PIRT
\ 1
: | % ! % k- :EI Vi
8] Lms [— T Ty LI
15] Lcaan [8 | 8 eara [2 S P
4 & i3 L8 ey
3 T 14 5 E—\'I’Dﬁ
iZ 1 1 i 3 s
_ i 5 T [} 18 £ VIDT
BiToe =3
(ki) | | l [
|
1
- — ' —
[z s 'z'{u- Zla Fle Fla Fle Ela Ele |
3 b |
5 P
— 4 wai A Lad ua4 uﬂ.ﬁ [NET-Y Lar LsB IE
I" 6664 | 6664 | coes | seca | ceea | cecd | G4 | 5664 jl
; [
it =
2
&
7
5
T I T T 3 I = I__'I:-"
i1 56 1 i 1 | TN | i
¢ c2 Ica I-:d I(a].cs =t e S
GHD > 1 +)

Schematic Diagram E

§apple computer

20525 Mariani Avenue
Cupertino, California 95014

(408) 996-1010
TLX 171-576 030-0496-A

