The Apple II;
Reference Manual

K ayddy ayy
| N A O O O o o o




—_ 4
Customer Satisfaction

If you discover physical defects in the manuals distributed with an Apple product orin the
media on which a software product is distributed, Apple will replace the documentation
or media at no charge to you during the 90-day period after you purchased the product

In addition, If Apple releases a corrective update to a software product during the 80-day
period after you purchased the software, Apple will replace the applicable disks and
documentation with the revised version at no charge to you during the six months after
the dale of purchase

In some couniries the replacement period may be different; check with your authorized
Apple dealer. Return any item to be replaced with proof of purchase to Apple or an
authorized Apple dealer.

Limitation on Warranties
and Liability

Eop yright

Even though Apple has tested the software described in the manual and reviewed its
contents, neither Apple nor its software suppliers make any warranty or representation;
either express or implied, with respect to this manual or to the software described in this
manual, their quality, performance, merchantability, or fiiness for any particular purpose.
As a result, this software and manual are sold “as is,” and you the purchaser are
assuming the entire risk as to their quality and performance. In no event will Apple or its
software suppliers be liable for direct, indirect, incidental, or consequential damages
rasulting from any defect in the software or manual, even if they have been advised of the
possibility of such damages. In particular, they shall have no liability for any programs or
data stored in or used with Apple products, including the costs of recovering or
reproducing these programs or data. Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or consequential damages, so the above
limitation or exclusion may not apply to you

This manual and the software (computer programs) described in it are copyrighted by
Apple or by Apple’s software suppliers, with all rights reserved. Under the copyright laws,
this manual or the programs may not be copied, in whole or part, without the written
consent of Apple, except in the normal use of the software or to make a backup copy.
This exception does not allow coples to be made for others, whether or not sold, but all of
the material purchased (with all backup copies) may be sold, given, or lent to another
person, Under the law, copying includes translating into another language.

You may use the soltware on any computer owned by you, but extra copies cannol be
made for this purpose. For some products, a multi-use license may be purchased to allow
the software to be used on more than one computer owned by the purchaser, including a
shared-disk system. (Contact your authorized Apple dealer for information on multi-use
licenses.)

F-'roducr Revisions

Apple cannot guarantee that you will receive notice of a revision to the software
described in the manual, even it you have returned a registration card received with the
product. You should periodically check with your authorized Apple dealer

© Apple Computer, Inc. 1984
20525 Mariani Avenue
Cupertino, California 95014

Apple, the Apple logo. and ProDOS are trademarks of Apple Computer. Inc
Simultaneously published in the United States and Canada. All rights reserved.

Warning

This equipment has been certified 1o comply with the limits for a Class B computing
device, pursuant to Subpart J of Part 15 of FCC Rules. Only peripherals (computer
input/output devices, terminals, printers, elc ) certified to comply with the Class B limits
may be attached to this computer. Operation with non-certified peripherals is likely to
resull in interference to radio and TV reception

Reorder Apple Product #A2L4030




BTl TRk R L

The Apple llc [}

Apple llc Reference Manual
Volume 2




- sjuajuo’) Jo ajqel




A

sl usluo?d

W List of Figures and Tables

ix

. Preface

Xiii

Ll Appendix A The 65C02 Microprocessor

28w

A.1 Differences Between 6502 and 65C02
A.1.1 Differing Cycle Times
A.1.2 Differing Instruction Results

A.2 Data Sheet

il Appendix B Memory Map

15
19
20
23

B.1 Page Zero

B.2 Page Three

B.3 Screen Holes

B.4 The Hardware Page

15

B Appendix C Important Firmware Locations

a
32
34
34
34

C.1 The Tables

C.2 Port Addresses

C.3 Other Video and I/O Firmware Addresses
C.4 Applesoft BASIC Interpreter Addresses
C.5 Monitor Addresses

Table of Contents

31




nppendix D Operating Systems and Languages 37
37 D.1 Operating Systems
a7 D.1.1 ProDOS
37 D.1.2 DOS
38 D.1.3 Pascal Operating System
38 D.1.4 CP/M
38 D.2 Languages
38 D.2.1 Applesoft BASIC
39 D.2.2 Integer BASIC
39 D.2.3 Pascal Language
39 D.2.4 FORTRAN
tAppendix E Interrupts 41
41 E.1 Introduction
41 E.1.1 What Is an Interrupt?
42 E.1.2 Interrupts on Apple Il Computers
43 E.1.3 Interrupt Handling on the 65C02
43 E.1.4 The Interrupt Vector at $FFFE
44 E.2 The Built-in Interrupt Handler
46 E.2.1 Saving the Memory Configuration
46 E.2.2 Managing Main and Auxiliary Stacks
47 E.3 User's Interrupt Handler at $3FE
48 E.4 Handling Break Instructions
49 E.5 Sources of Interrupts
50 E.6 Firmware Handling of Interrupts
50 E.6.1 Firmware for Mouse and VBL
52 E.6.2 Firmware for Keyboard Interrupts
53 Using Keyboard Buffering Firmware
53 Using Keyboard Interrupts
Through Software
54 E.6.3 Using External Interrupts
Through Firmware
55 E.6.4 Firmware for Serial Interrupts
55 Using Serial Buffering Transparently
56 Using Serial Interrupts Through Firmware
57 Transmitting Serial Data
57 A Loophole in the Firmware
58 E.7 Bypassing the Interrupt Firmware
58 E.7.1 Using Mouse Interrupts
Without the Firmware
59 E.7.2 Using ACIA Interrupts
Without the Firmware
vl Table of Contents

B E1 (B (B\ (m, (W, (R

LI |

|}

By EL _Ph'Ean'®l 1E, (B

1




“ppendfx F

61
63
63
64
64
65
66
66
67
67
68
68
68
68
69
70
70
70
71
72
72
72
72
73
73
74
75
75
75
76
76
76
77
77
77
78
79
79
79
80
81
81
81

R R

Apple Il Series Differences

F.1 Overview
F.1.1 Type of CPU
F.1.2 Machine Identification
F.2 Memory Structure
F.2.1 Amount and Address Ranges of RAM
F.2.2 Amount and Address Ranges of ROM
F.2.3 Peripheral-Card Memory Spaces
F.2.4 Hardware Addresses
$C000 to $CO0F
$C010 to $CO1F
$C020 to $CO2F
$C030 to $CO3F
$C040 to $CO4F
$C050 to $CO5F
$C060 to $CO6F
$C070 to $CO7F
$C080 to $CO8BF
$C090 to $COFF
F.2.5 Monitors
F.3 I/O in General
F.3.1 DMA Transfers
F.3.2 Slots Versus Ports
F.3.3 Interrupts
F.4 Keyboard
F.4.1 Keys
F.4.2 Character Sets
F.5 Speaker
F.6 Video Display
F.6.1 Character Sets
F.6.2 MouseText
F.6.3 Vertical Blanking
F.6.4 Display Modes
F.7 Disk I/O
F.8 Serial I/O
F.8.1 Serial Ports Versus Serial Cards
F.8.2 Serial I/O Buffers
F.9 Mouse and Hand Controls
F.9.1 Mouse Input
F.9.2 Hand Control Input and Output
F.10 Cassette 1/O
F.11 Hardware
F.11.1 Power
F.11.2 Custom Chips

Table of Contents

61



nppendix G

USA and International Models 83
83 G.1 Keyboard Layouts and Codes

85
88
89
90
91
93
94
96
97
99
99
99
99
100

G.1.1 USA Standard (Sholes) Keyboard
G.1.2 USA Simplified (Dvorak) Keyboard
G.1.3 I1SO Layout of USA Keyboard
G.1.4 English Keyboard
G.1.5 French and Canadian Keyboards
G.1.6 German Keyboard
G.1.7 Italian Keyboard
G.1.8 Western Spanish Keyboard
G.2 ASCII Character Sets
G.3 Certifications
G.3.1 Radio Interference
G.3.2 Product Safety
G.3.3 Important Safety Instructions
G.4 Power Supply Specifications

| Appendix H

Conversion Tables 103

103
106
107
109
112
114

H.1 Bits and Bytes

H.2 Hexadecimal and Decimal

H.3 Hexadecimal and Negative Decimal
H.4 Graphics Bits and Pieces

H.5 Peripheral Identification Numbers
H.6 Eight-Bit Code Conversions

. Appendix |

il

Firmware Listings 125

Table of Contents

L W

Pl

ARl EE T IR L L

L




B

Glossary 219
Bibliography 243
Index 247
Tell Apple Card

Table of Contents [vii




sajqe| pue sainbi{ Jo }sI]



B e e

E

PR EEE

R

se|gelpuesaisnbi}

rAppendix A The 65C02 Microprocessor

2

Table A-1

Cycle Time Differences

I Appendix B Memory Map

16
19
20
22
24
25
26
27
28

Table B-1
Table B-2
Table B-3
Table B-4
Table B-5
Table B-6
Table B-7
Table B-8
Table B-9

Zero Page Use

Page 3 Use

Main Memory Screen Hole Allocations
Auxiliary Memory Screen Hole Allocations
Addresses $C000 Through $CO3F
Addresses $C040 Through $CO5F
Addresses $C060 Through $CO7F
Addresses $C080 Through $COAF
Addresses $COBO0 Through $COFF

& Appendix C Important Firmware Locations

32
32
33
33
34

35

Table C-1
Table C-2
Table C-3
Table C-4
Table C-5

Table C-6

Serial Port 1 Addresses

Serial Port 2 Addresses
Video Firmware Addresses
Mouse Port Addresses

Apple lic Enhanced Video

and Miscellanecus Firmware
Apple llc Monitor Entry Points
and Vectors

List of Figures and Tables [ix




C Appendix E

Interrupts

45 Figure E-1 Interrupt-Handling Sequence
58 Table E-1  Activating Mouse Interrupts
58 Table E-2 Reading Mouse Interrupts

. Appendix F

Apple Il Series Differences

80 Figure F-1 Apple I, Il Plus, and lle Hand Control
Signals

El Appendix G

USA and International Models

85 Figure G-1 USA Standard or Sholes Keyboard
(Keyboard Switch Up)

86 Table G-1 Keys and ASCII Codes

88 Figure G-2 USA Simplified or Dvorak Keyboard
(Keyboard Switch Down)

89 Figure G-3 IS0 Version of USA Standard Keyboard
(Keyboard Switch Up)

90 Figure G-4 English Keyboard (Keyboard Switch Down)

90 Table G-2 English Keyboard Code Differences
From Table G-1

91 Figure G-5 French Keyboard (Keyboard Switch Down)

92 Figure G-6 Canadian Keyboard (Keyboard Switch Down)

92 Table G-3 French and Canadian Keyboard Code
Differences From Table G-1

93 Figure G-7 German Keyboard (Keyboard Switch Down)

93 Table G-4 German Keyboard Code Differences
From Table G-1

94 Figure G-8 Italian Keyboard (Keyboard Switch Down)

95 Table G-5 Italian Keyboard Code Differences From
Table G-1

96 Figure G-9 Western Spanish Keyboard (Keyboard
Switch Down)

96 Table G-6 Western Spanish Keyboard Code
Differences From Table G-1

98 Table G-7 ASCIl Code Equivalents

100 Table G-8 50 Hz Power Supply Specifications

List of Figures and Tables

T TR /B B L BLOELOEL OB OMEL MR OCRL R




R RS

= Appendix H Conversion Tables

104 Table H-1 What a Bit Can Represent

105 Figure H-1  Bits, Nibbles, and Bytes

106 Table H-2  Hexadecimal/Decimal Conversion

108 Table H-3  Decimal to Negative Decimal Conversion

109 Table H-4 Hexadecimal Values for High-Resolution
Dot Patterns

113 Table H-5  PIN Numbers

115 Table H-6  Control Characters, High Bit Off

116 Table H-7  Special Characters, High Bit Off

117 Table H-8 Uppercase Characters, High Bit Off

118 Table H-9  Lowercase Characters, High Bit Off

119 Table H-10
120 Table H-11
121 Table H-12
122 Table H-13

Control Characters, High Bit On
Special Characters, High Bit On
Uppercase Characters, High Bit On
Lowercase Characters, High Bit On

List of Figures and Tables




39eJ3.




_»EFLE i[nj TE iE’-—I[ l[’_IE IE i[ I[ i[ i[ i[ h[l i[I

ao2e }old

This volume, Volume 2 of the Apple llc Reference Manual,
contains nine appendixes, a bibliography, and a glossary.

Appendix A contains a description of the differences between
the 6502 and the 65C02 microprocessors, plus a reprint of the
manufacturer's data sheet for the 65C02 microprocessor.

Appendixes B and C contain tables of the important RAM,
ROM, and hardware addresses in the Apple lic. The reader can
use these tables to find locations by address, the index to find
them by label, the firmware listings to find them as defined and
used, and the chapters to find them described in the context of
their function.

Appendix B is a memory map of the Apple llc, including detailed
tables of page zero, page three, the screen holes, and the
hardware page.

Appendix C lists the published firmware entry points, arranged
by address, and indicates where in the manual they are
described. The list includes I/O firmware (pages $C1

through $CF) and Monitor firmware (pages $F0 through SFF).
For Applesoft interpreter firmware (pages $D0 through $EF),
refer to the Applesoft BASIC Programmer's Reference Manual,
Volumes 1 and 2.

Appendix D discusses what operating systems and languages
run on the Apple llc, and what features they do and do not use.

Appendix E describes how to use the Apple lic’'s interrupt
handling capabilities.

Appendix F contains an overview of the differences among the
Apple Il series computers.

Preface It



Xiv

Appendix G contains the keyboard layouts, code conversion
tables, and external power supply characteristics of USA and
international models of the Apple llc.

Appendix H contains reference tables for code and number
base conversion.

Appendix | contains a listing of the source code for the Monitor,
enhanced video firmware, and input/output firmware contained
in the Apple llc. The listings do not include the built-in Applesoft
interpreter, which is discussed in the Applesoft BASIC
Programmer's Reference Manual.

The Bibliography lists articles and books containing additional
information about the Apple llc and related products.

The Glossary defines many of the technical terms used in this
manual.

Preface

h‘l‘l—lﬂwll MTTTITTT R TR




rorraererrrnrnanrEmewmLn




10ss3aoidosdny z0959 34l



B R

eExXx Il puadde

This appendix contains a description of the differences
between the 6502 and the 65C02 microprocessor. It also
contains the data sheet for the NCR 65C02 microprocessor.

In the data sheet tables, execution times are specified in
number of cycles. One cycle time for the Apple llc equals 0.978
microseconds.

If you want to write programs that execute on all computers in
the Apple Il series, make sure your code uses only the subset
of instructions present on the 6502.

Appendix A: The 65C02 Microprocessor KR




.7!. 1 Differences Between 6502 and 65C02

The data sheet lists the new instructions and addressing modes
of the 65C02. This section supplements that information by
listing the instructions whose execution times or results have
changed.

A.1.1 Differing Cycle Times

In general, differences in execution times are significant only in
time-dependent code, such as precise wait loops. Fortunately,
instructions with changed execution times are few.

Table A-1 lists the instructions whose number of instruction
execution cycles on the 65C02 is different from the number on
the 6502.

Table A-1. Cycle Time Differences

3 W W W W W W WO O

6502 65C02
Instruction/Mode Opcode Cycles Cycles
ASL Absolute, X 1E T 6
DEC Absolute, X DE i 6
INC Absolute, X FE 7 6
JMP (Absolute) 6C 9 6
LSR Absolute, X 5E 7 6
ROL Absolute, X 3E 7 6
ROR Absolute, X TE 7 6

B T K T

2] Appendix A: The 65C02 Microprocessor




14 BT B ¥ ¥ B B ' 4 4

ikl

k! okl el BTk

Ll

A.1.2 Differing Instruction Results

It is important to note that the BIT instruction when used in
immediate mode (code $89) leaves Processor Status Register
bits 7 (N) and 6 (V) unchanged on the 65C02. On the 6502, all
modes of the BIT instruction have the same effect on the Status
Register: the value of memory bit 7 is placed in status bit 7, and
memory bit 6 is placed in status bit 6. However, all BIT
instructions on both versions of the processor set status

bit 1 (Z) if the memory location contained a zero.

Also note that if the JMP indirect instruction (code $6C)
references an indirect address location that spans a page
boundary, the 65C02 fetches the high-order byte of the effective
address from the first byte of the next page, while the 6502
fetches it from the first byte of the current page. For example,
JMP ($2FF) gets ADL from location $2FF on both processors.
But on the 65C02, ADH comes from $300; on the 6502, ADH
comes from $200.

A.1 Differences Between 6502 and 65C02 [3




. A.2 Data Sheet

The remaining pages of this appendix are copyright 1982,
NCR Corporation, Dayton, Ohio, and are reprinted with their
permission.

Appendix A: The 65C02 Microprocessor

L_m EaGIEERELETL BT P P T T T TR




=

Lr 5o lr & &r & & & & & E i i

l

= GENERAL DESCRIPTION

The NCR CMOS 65602 is an B-bit microprocessor which is soft-
ware compatible with the NMOS 6602, The NCRE5C02 hardware
interfaces with all 6500 peripherals. The enhancements include
ten additional instructions, expanded operational codes and
two new addressing modes. This microprocessor has all of the ad-
vantages of CMOS technology: low power consumption, increased
noise immunity and higher reliability. The CMOS 65802 is & low
power high performance microprocessor with applications in the
consumer, business, automative and communications market,

= FEATURES

Enhanced software performance including 27 additional OP codes
encompassing ten new instructions and two additional
addressing modes.,

* 66 microprocessor instructions.
& 15 addressing modes.

* 178 operational codes,

* 1MHz, 2MHz operation.

= Operates at freguencies as low
as 200 HZ for even lower power
consumption (pseudo-static: stop during @9 highl.

* Compatible with NMOS 6500 series
microprocessors.

® B4 K-byte addressable memaory
* |nterrupt capability,

L

* Lower power consumption, )
4mA @ 1MHz. il
* +5 volt power supply. s i
* B-bit bidirectional data bus, :' :
* Bus Compatible with ME300. oy
* Non-maskable interrupt. —_— I
® 40 pin dual-in-line packaging. am - ‘
*  8-bit parallel processing : : g
® Decimal and binary arithmetic, piaTa)| E"
* Pipeline architecture, .' : e -..__.:"'\.i =
* Programmable stack pointer. :: : | 4T I
* Variabla length stack. 41 |

* Optional internal pullups for -
(RDY, IR, §0, NMI and RES) —
1 emuem cme

Specifications are subject to | erer L
change without notica,

NCR65C02

= PIN CONFIGURATION

vEs ] 0] AEE
mov ]2 18 [} @4 10Ut
8, oun )3 w15
RG] ¥ [Jegunm
ML s 38 [ NC
CTE e ) [ Ne
SYNC ] 7 38 [ AW
voo e 311 oo
ao a8 2] m
a1 ] o [ Jo2
Azl a0 ] o3
a3 12 =[] o4
A4 ] 13 0[] 05
as [ 1 27[] D6
an ] 15 i'c'r:| a?
At ] 16 28] A1
aB [ 17 ] AN
ag ] 18 '.'.1{:| A3
artg | w A2
a2 V55

* NCR65C02 BLOCK DIAGRAM

|

[ Ciots e i iw
IENERATON
GECILLATOR

T

{TWRIT DR TA 4 iy
,Pln:- i =
. S — -
E= A 5
Batamus [l | msTRUCTION

BusFEm |-I 4 = AEGSTER

Copyright ©1982 by NCR Corporation, Dayton, Ohio, USA

A.2 Data Sheet




NCR65C02
= ABSOLUTE MAXIMUM RATINGS:  (vpp =50V £5% Vgs =0V, Ty = 0P to +70°C)
RATING SYMBOL VALUE UNIT
SUPPLY WOLTAGE Voo —-0.3t0+7.0 W
INPUT VOLTAGE Vin —0.3to +7.0 v
OPERATING TEMP. Ta Dto+ 70 T
STORAGE TEMP. Te1g —55 ta + 150 C
= PIN FUNCTION
PIN FUNCTION
AD - A1 Address Bus
DO - D7 Data Bus
TRO" Interrupt Request
RDY * Ready
ML Memory Lock
NI * Non-Maskable Interrupt
SYNC Synchronize
RES* Rasat
S0- Set Overflow
NC No Cannection
R/W Read/Write
vDD Power Supply (+5V)
V55 Internal Logic Ground
@0 Clock Input
81, 02 Clock Output
*Thig pin has an optional internal pullup for a Ne Cannect condition
s DC CHARACTERISTICS
SYMBOL MIN. TYP. MAX UNIT
Input High Voltage
Bg (IN) Vim Veg + 2.4 - Voo W
Input High Voltage
AES, NMI, RDY, TRO, Data, 5.0. Vgs + 2.0 ~ - v
Input Low Voltage
BD [H1L1] ViL '!p"ss -0.3 - VSS + 0.4 v
RES, NMI, ADY, IRQ, Data, 5.0. - - Vgs+ 0.8 v
Input Leakage Currant
{Vyn =0 te 5.25V, Vpp = 5.25V) hi
With pullups -30 - +30 A
Without pullups - - +1.0 WA
Three State (Off State) Input Current
(Vi =04 10 24V, Ve =5.25V)
Data Lines I7s = - 10 WA
Qutput High Voltage
{Igy =100 mAde, Vpp =4.75V
SYNC, Data, A0O-A15, R/W) Vou Vgg + 2.4 - - v
Qut Low Vaoltage
{ IUL = 1.6mAdc, VDD = 4. 76V
SYNC, Data, AD-A15, R/W) VaL - 3 Vgg + 0.4 v
Supply Current f = 1MHz loo - - 4 ma
Supply Current f = 2MHz loo — - B A
Capacitance G pF
{Win =0, Ta = 25°C, 1 = 1MHz]
Logic Cin - - 5
Data - - 10
AD-A15, R/W, SYNC Cout - - 10
@g (1IN} Clig (IN} - - 10

Appendix A: The 65C02 Microprocessor

e R A EL BB P FL L L FL R RL L R




r—iﬂEﬁll—dﬁE RS

NCR65C02

s AC CHARACTERISTICS vpp=5.0V*&%, Ta=0°Cto 70°C, Load = 1 TTL + 130 pF

1MHZ 2ZMHZ IMHZ
Parameter Symbol Min Max Min Max Min Max Unit
Delay Time, 8g (IN} to @2 (OUT) toLy - B0 - 60 20 60 nS
Delay Time, B1 (OUT) to Bz (OUT] | toLv —20 70 —Z0 20 —20 20 nS
Cycle Time ove 1.0 5000° | 050 | 5000° | 033 | 5000 | HS
Clock Pulse Width Low TeL 460 = 220 = 160 = nS
Clock Pulse Width High ten 460 - 220 - 160 - nS
Fall Time, Rise Time e, ta - 25 - 25 - 25 nS
Address Hold Time TaH 20 - 20 - (1] - nS
Address Setup Time taps - 225 - 140 - 110 nS
Access Time tacc B50 - 310 = 170 = nS
Read Data Hold Time toHR 10 = 10 - 10 - nS
Read Data Setup Time tpsu 100 - B0 - [+4] - ns
Write Data Delay Time DS = 30 - 30 - 30 ns
Write Data Hold Time ToHW 20 - 20 - 15 - nS
50 Setup Time tso 100 - 100 - 100 - nS
Processor Control Setup Time® " “tocs ~ 200 = 150 150 = ns
SYNC Setup Time L — 225 — 140 - 100 nS
ML Setup Time T - 225 - 140 - 100 n3
Input Clock Risa/Fall Time tFga,tRgo - 25 - 25 - 26 n§

*MCRE5C02Z can be held static with @2 high,
**This parameter must only be met to guarantee that the signal will be recognized at the current clock cycle,

= MICROPROCESSOR OPERATIONAL ENHANCEMENTS

Function

NMOS 6502 Microprocessor

NCRG5C02 Microprocessaor

Indexed addressing across page boundary.

Extra read of invalid address,

Extra read of last instruction byte,

Execution of invalid op codes.

Jump indirect, operand = XXFF,

ﬁead-’mndlfy:‘wrne instructions at
effective address.

Some terminate only by reset. Results
are undefined.

All are NOPs (reserved for future use).

Op Code Bytes Cycles
X2 2 2
%3, X7, XB, XF 1 1
44 2 3
54, D4, F4 2 4
5C 3 B
DC, FC 3 4

Page address does not increment,

Page address increments and adds one
additional cycle.

One read and two write cycles,

Tweo read and one write cycle,

Decimal flag.

Indeterminate after reset,

Initialized to binary mode (D=0) after
reset al'l_l’] !nﬂarmpls,

Flags after decimal operation.

Invalid N, V and 2 flags.

Valid I1ag_3dds one additional cyele.

Interrupt after feich of BRK instruc-
tion,

Imterrupt vector is loaded, BREK vector
is ignored.

BRK is executed, then interrupt is
executed,

= MICROPROCESSOR HARDWARE ENHANCEMENTS

Funetion
Assertion of Ready RDY during
WiTE opefJI!¢|_~s:_

NMOS 6502

NCRE5C02

and;élﬂ_._

Stops processor during @,

Unused input-anly pins (TRQ, MM,
ROY, AES, 50)

Must be connected to low impedance
signal 1o avoid nosse problems,

Connected internally by a high-
resistance to VMpp (approximately 280
K ohm.)

A 2 Data Sheet




NCR65C02

= TIMING DIAGRAM

2

@4

02

ADDR, R/W

READ DATA
WRITE DATA
SYNC

ML

@
3
3

miz
o =
E
m
(2]

| trgg

}:—-tu

LY

A

S

“'F’ twps = = touw
b
4,
- f= ts¥mc
A X

X

Q = tpcs

} .

MNate: All timing is referenced fram a high voltage of 2.0 volts and a low voltage of 0.8 volts.

= NEW INSTRUCTION MNEMONICS

MNEMONIC
BRA
DEA
INA
PHX
PHY
PLX
PLY
512
5TZ
5TZ
51Z
TRB
TRB
TSB
TSB

DESCRIPTION

Branch relative always [Relative]

Decrement accumulator [Accum]

Increment accumulator [Accum]

Push X on stack [Implied]

Push Y on stack [Implied]

Pull X from stack [Implied]

Pull ¥ from stack [Implied]

Store zero [Absolute]

Store zero [ABS, X]

Store zero [Zero page]

Store zero [ZPG,X]

Test and reset memory bits with accumulator [Absolute]
Test and reset memory bits with accumulator [ Zero page]
Test and set memaory bits with accumulator [Absolute]
Test and set memaory bits with accumulator [Zero page]

= ADDITIONAL INSTRUCTION ADDRESSING MODES

HEX
72
32
3C
34
D2
52
ic
B2
12
F2
22

MNEMONIC
ADC
AND
BIT
BIT
CMP
EOR
JMP
LDA
ORA
SBC
STA

DESCRIPTION
Add memary to accumulator with earry [(ZPG)]
“AND” memory with accumulator [(ZPG)]
Test memory bits with accumulator [ABS, X]
Test memory bits with accumulator [ZPG, X]
Compare memory and accumulator [(ZPG)]
“Exclusive Or"" memory with accumulator [(ZPG]]
Jump (Mew addressing mode) [ABS{IND X1
Load accumulator with memory [(ZPG)]
“OR" memaory with accumulator [(ZPG]]
Subtract memory from accumulator with barrow [(ZPGI]
Store accumulator in memory [(ZPG))

Appendix A: The 65C02 Microprocessor

T T\ R

'F\

I\

b IR B MR B BAEBLFL FL TR




el & E T

K

NCR65C02

= MICROPROCESSOR PROGRAMMING MODEL

7 1]
NIVIT[8ID[TTZ]c] FROCESSOR sTATUS

i b
AEG *'
ACCUMULATOR A L
7
JE'_"’—ﬁl']l INDEX REGISTER ¥ E—

ZERO 1 = RESULT ZERQ
= }f& INDEX REGISTER X ZEROA - RERLICT 2RO
| I - T | PCL _| PROGRAM COUNTER PC ESEIE‘SNITI;SND; I| :;’:::_IE

a7 [} == ] C
L] g ] sTack POINTER S OVERFLOW 1 = TRUE

= FUNCTIONAL DESCRIPTION

Timing Control

The timing control unit keeps track of the instruction
cycle being manitored, The unit is set to 2ero each time
an instruction fetch is executed and is advanced at the
beginning of each phase one clock pulse for as many
cycles as i1s required to complete the instruction, Each
data transfer which takes place between the registers de-
pends upan decoding the contents af both the instrue-
tion register and the timing contral unit,

Program Counter

The 16:bit program counter provides the addresses which
step the microprocessor through sequential instructions
in a program,

Each time the microprocessor fetches an instruction
from program memary, the lower byte of the program
counter (PCL) is placed on the low-order bits of the
address bus and the higher byte of the program counter
{PCH} is placed an the high-order 8 bits. The counter is
incremented each time an instruction or data is fetched
from program memaory.

Instruction Register and Decode

Instructions fetched from memory are gated onto the
internal data bus. These instructions are latched into the
instruction register, then decoded, along with timing and
intarrupt signals, to generate control signals for the var-
ious registers,

Arithmetic and Logic Unit (ALU)

All arithmetic and logic opaerations take place in the
ALU including incrementing and decrementing internal
registers {except the program counter]. The ALU has no
internal memory and is used only to perform logical and
transient numerical operations,

A.2 Data Sheet

MEGATIVE 1 = NEG,

Accumulator

The accumulator is a general purpose B-bit register that
stores the results of most arithmetic and logic operations,
and in addition, the accumulator usually contains one of
the two data words used in these operations.

Index Registers

There are two 8-bit index registers (X and Y), which
may be used to count program steps of to provide an
index value to be used in generating an effective address.

When executing an instruction which specifies indexed
addressing, the CPU fetches the op code and the base
address, and modifies the address by adding the index
register to it prior to performing the desired operation.
Pra- or post-indexing of indirect addresses is possible (see
addressing modes),

Stack Pointer

The stack pointer is an B-bit register used to control the
addressing of the variable-length stack on page one. The
stack pointer is automatically incremented and decre-
mented under control of the microprocessor to parform
stack manipulations under direction of either the program
or interrupts [NMI and TRQ). The stack allows simple
implementation of nested subroutines and multiple level
interrupts. The stack pointer should be initialized before
any interrupts or stack operations occur.

Processor Status Register

The B-bit processor status registér contains seven status
flags, Some of the flags are controlled by the program,
others may be controlled both by the program and the
CPU, The 6500 instruction set contains a number of
conditional branch instructions which are designed to
allow testing of these flags (see microprocessor program-
ming modal ).




10l

NCR65C02
= ADDRESSING MODES

Fiftean addressing modes are available to the user of the
NCRBSCOZ microprocessor. The addressing modes are
described in the following paragraphs:

implied Addressing [implied]

In the implied addressing mode, the address containing
the operand is implicitly stated in the aperation code of
the instruction.

Accumulator Addressing [Accum]

This form of addressing is represented with a one by te
instruction and implies an operation on the accumu-
lator,

immediate Addressing [Immediate]

With immediate addressing, the operand is contained in
the second byte of the instruction; no further memaory
addressing is required.,

Absolute Addressing [Absolute]

Far absolute addressing, the second byte of the instruc-
tion specifies the eight low-order bits of the effective
acddress, while the third byte specifies the eight high-order
bits, Therefore, this addressing mode allows access to the
total B4K. bytes of addressable memory.

Zero Page Addressing | Zero Pagel

Zero page addressing allows shorter code and execution
times by only fetching the second byte of the instruction
and assuming @ zero high address byte, The careful use
of zero page addressing can result in significant increase
in code efficiency.

Absolute Indexed Addressing [ABS, X or ABS, ¥l
Absolute indexed addressing is used in conjunction with
% or Y index ragister and is referred to as “Absolute, X,”
and “Absolute, ¥."" The effective address is formed by
adding the contents of X or ¥ to the address contained
in the second and third bytes of the instruction, This
mode allows the index register to contain the index or
count value and the instruction to gontain the base
address. This type of indexing allows any location refer-
encing and the index to modify multiple fields, resulting
in reduced coding and execution time.

Zero Page Indexed Addressing [ZPG, X or ZPG, ¥]
Zero page absolute addressing is used in conjunction
with the index register and is referred to as “Zero Page,
# or **Zero Page, Y. The effective address is caleulated
by adding the second byte 10 the contents of the index
register. Since this is a form of "Zero Page’’ addressing,
the content of the second byte references a location in
page zero. Additionally, due to the '“Zero Page’’ address-
ing nature of this maode, no carry is added to the high-
order eight bits of memory, and crossing of page boun-
daries does not ocour.

Relative Addressing [Relative]
Ralative addressing isused only with branch instructions;

it establishes a destination for the conditional branch.
The second byte of the instruction becomes the operand
which is an “Offset” added to the contents of the pro-
gram counter when the counter is set at the next in-
struction. The range of the offset is —~128 to +127
bytes from the next instruction.

Zero Page Indexed indirect Addressing [(IND, b))

With zero page indexed indirect addressing lusually re-
ferred to as indirect X} the second byte of the instruction
is added to the contents of the X index register; the
carry is discarded. The result of this addition points to a
memaory location on page zerowhose contents is the low-
order eight bits of the effective address, The next mem-
ory location in page 7ero contains the high-order eight
bits of the effective address. Both memory locations
specifying the high- and law-order bytes of the effective
address must be in page zero.

» Absolute Indexed Indirect Addressing [ABS{IND, X}]
{Jump Instruction Only)

With absolute indexed indirect addressing the contents of
the second and third instruction bytes are added to the
% reqgister. The result of this addition, points 10 a mémaory
location containing the lower-order gight bits of the
gffective address. The next meamory location contains
the higher-arder eight bits of the effective address.

Indirect Indexed Addressing [{IND), Y]

This form of addressing is usually referred to as Indirect,
¥ The second byte of the instruction points to a mem-
ory location in page zero. The contents of this memory
|ocation are added to the contents of the ¥ index regis-
ter, the result being the low-order eight bits of the effec-
tive address. The carry from this addition is added to the
contents of the next page zero memory |ocation, the
result being the high-order eight bite of the effective
address.

*Zero Page Indirect Addressing [1zpraGll

In the zero page indirect addressing mode, the second
byte of the instruction points to @ mamory location on
page zero containing the low-order byte of the effective
address. The next location on page Iero contains the
high-order byte of the effective address.

Absolute Indirect Addressing [(ABS)]

{Jump Instruction Only)

The second byte of the instruction contains the low-order
eight bits of a memaory location. The high-order eight
bits of that memory location is contained in the third
byte of the instruction. The contents of the fully speci-
fisd memory location is the low-order byte of the effec-
tive address. The next memory location contains the
high-order byte of the effective address which is loaded
into the 16 bit program counter.

NOTE: * = New Address Modes

Appendix A: The 65C02 Microprocessor

TR = ] L W L W T T O W

L

L&)




ok & B E | B E E O OH |

el ) L G

= SIGNAL DESCRIPTION

Address Bus (A0-A15)
AD-A15 forms a 16-bit address bus for memory and 1/0
exchanges on the data bus. The output of each address
line is TTL compatible, capable of driving one standard
TTL load and 130pF,

Clocks (@p, @1, and B3)

By is a TTL level input that is used to generate the (nter-
nal clocks in the B502. Two full level output clocks are
generated by the 6502, The 82 clock output is in phase
with Bp. The @1 output pin is 180° out of phase with ap.
(See timing diagram. )

Data Bus (D0-D7)

The data lines (DO-D7) constitute an B-hit bidirectional
data bus used for data exchanges 1o and from the device
and peripherals. The outputs are three-state buffers
capable of driving one TTL load and 130 pF.

Interrupt Request (IRQ)

This TTL compatible input reguests that an interrupt
sequence begin within the microprocessar. The RO is
sampled during @2 operation; if the interrupt flag in the
processor status register is zero, the curreént instruction
is completed and the interrupt sequence begins during
U1. The program counter and processor stalus register
are stared in the stack. The microprocessor will then set
the interrupt mask flag high so that no further IROs
may occur. At the end of this eycle, the program counter
low will be loaded from address FFFE, and program
counter high from location FFFF, transferring program
control to the memary vector located at these addresses,
The RDY signal must be in the high state far any inter-
rupt to be recognized. A 3K ohm external resistor should
be used for proper wire OR operation,

Memory Lock (ML) )

In @ multiprocessor system, the ML output indicates the
need to defer the rearbitration of the next bus cycole to
ensure the integrity of read-modify-write instructions.
ML goes low during ASL, DEC, INC, LSR, ROL, ROR,
TRB, TSB memary referencing instructions. This signal
is low for the modify and write cycles.

Nan-Maskable Interrupt (NMI)

A negative-going edge on this input reguests that a non-
maskable interrupt sequence be generated within the
micrapracessar. The WM is sampled during @2; the cur-
rent instruction s completed and the interrupt sequence
begins during @1. The program counter is loaded with
the interrupt vector from locations FFFA (low byte)
and FFFB (high byte), thereby transferring program con-
trol to the non-maskable interrupt routine.

Note: Since this interrupt is non-maskable, another NMI
can occur before the first is finished, Care should be taken
when using NM| to avoid this.

A.2 Data Sheet

NCR65C02

Ready (RDY)

This input allows the user to single-cycle the micropro-
cessor on all eycles including write cycles. A negative
transition to the low state, during or coincident with
phase one (@1), will halt the microprocessor with the out-
put address lines reflecting the current address being
fetched. This condition will remain through a subsequent
phase two (@2] in which the ready signal is low. This fea-
ture allows microprocessor interfacing with low-speed
memory as well as direct memory access [DMA),

Reset (RES)

This input is used to reset the microprocessor. Resst
must be held low for at least two clock cycles after
VDD reaches operating voltage from a power down, A
positive transistion on this pin will then cause an initiali-
zation sequence to begin, Likewise, after the system has
been operating, a low on this line of at least two cycles
will cease microprocessing activity, followed by initial-
ization after the positive edge on RES.

When a positive edge is detected, there is an initialization
sequence lasting six clock cycles, Then the interrupt
mask flag is set, the decimal mode is cleared, and the pro-
gram counter is loaded with the restart vector from loca-
tions FFFC (low byte) and FFFD (high bytel, This is
the start location for program control. This input should
be high in normal operation.

Read Write (R/W)

This signal is normally in the high state indicating that
the microprocessor is reading data fram memory or /O
bus. In the low state the data bus has valid data from the
microprocessor to be stored at the addressed memory
location,

Set Overflow (SO)

A negative transition on this line sets the overflow bit in
the status code register, The signal is sampled on the trail-
ing edge of @,

Synchronize (SYNC)

This output line is provided to identify those cycles dur-
ing which the microprocessor is doing an OP CODE
fetch. The SYNC line goes high during @1 of an OP CODE
fetch and stays high for the remainder of that cycle, If
the RDY line is pulled low during the @ clock pulse in
which SYMNC went high, the processor will stop in its
current state and will remain in the state until the RDY
line goes high. In this manner, the SYNC signal can be
used to control RDY to cause single instruction execu-
tion.,




NCR65C02
= INSTRUCTION SET — ALPHABETICAL SEQUENCE

ADC

LDA

MNote:

Add Memory 1o Accumulatos wath Carry LDX
AND' Memory with Accumulator LoY
Shift One Bit Left LER

Branch on Carry Clear NOP
Branch on Carry §81 ORA
Branch on Aesult Zero PHA
Test Memory Bits with Accumulator PHP

Branch on Aesult Minus *PHX
Branch on Aesult not Zera *PHY
Branch on Result Plus PLA
Branch Always PLP

Force Break *PLX
Branch on Overflow Clear "pLY
Branch on Overllow Sen ROL
Clear Carry Flag ROR
Clear Decimeal Mode ATI

Clear Intermupt Disabile Bit ATS
Cloaar Overfiow Flag SBC
Compare Memary and Accurmulator SEC
Compare Memory and Index X SED
Compare Memory and Indes Y SEI

Decrement Actumulator 5TA
Decrement by One 5TX
Decramant Index X by One 5TY
Dacremant Index ¥ by One *STZ
*Exclusive- ar'” Mamary with Accumulator TAX
Increment Accumulator TAY
Increment by Ore *THB
Incrament Index X by One =TS8
Incremant Index ¥ by One TEX
Jurmp 10 Mew Location THA
Jump 1o Mew Location Saving Return Address TS
Load Accurmulator with Memaory TYA

* = New Instruction

= MICROPROCESSOR OP CODE TABLE

Load Indax X with Memaory

Losd Index ¥ with Memary

Shift One Bit Right

Mo Operation

“DR" Mamory with Aceumulator
Push Accumulater on Stack

Puth Processor Status on Stack
Push Index X on Stack

Push Index ¥ on Stack

Pull Accumulatar from Stack

Pull Processor Status from Stack
Pull Index X from Stack

Pull Index ¥ fram Stack

Rotate One Bit Left

Rotate One Bit Right

Return from |nterrupt

Return from Subroutine

Subtract Mamory from Accumulator with Borrow
Set Carry Flag

Set Decimal Mode

Set |nterrupt Disable Bir

Store Accumulatar in Memory
Store Index X in Memary

Stare Index ¥ in Memory

Store Zero in Memory

Transter Accumulatar to Index X
Trensfer Accumutatar to Index ¥
Test and Resel Memary Bits with Accumulator
Test and Set Memary Bits with Accumulator
Transfer Stack Painter to Index X
Transter Index X to Accumulator
Transfer Index ¥ to Stack Pointer
Transfer Index ¥ to Accumulator

-
D 4] 1 z 3 4 5 6 7 H ] & B c "] E F
a BRE | ORA TS8* ORA ASL PHP OR A ASL T5B* ORA ASL
ind, X o wpg g PR A ab s ek
1 BPL oRA |ORA-T TRA" | ORA ASL cLC CF A INA* TRB* ORA ASL
vl ind, ¥ lzpgl zpg g, A | 70g, X abs, Y A abs abs, X | abs, X
2 JsR AND BIT AND ROL PLP AND ROL BT AND ROL
abs nd, X oy g g imm A Ay Ak abx
3 [:LA1 AND |AND-T BIT" AND ROL SEC AND |DEA*® aiTt AND ROL
rel ind, ¥ | (zpgh wpg, X | #0g, X | zpo, X abs, ¥ & ahs, X abs, X | abs, X
4 ATI EOR EOR LSA PHA EOR LR JMP EOR LSRA
ind, X 2pg Tpg rmm A alos abs abs
5 BvC EoR |eoA-t EQR LSA cLl EQR | PHY*® EOR LSR
ral ind, ¥ | lzpg) g, X | TP, X abs, ¥ abs, X [ abs X
1} ATS ADC STZ* ADC RAOR PLA ADC | AOR JMP ADC ROR
ind, % apg pa pg i & {abal abs abs
7 BVS Apc |apc-t sTZ* aADC RORA SEI ADC | PLY" et ADC ROR
el ind, ¥ |2pgl rpg, X | 2pg. X | 7pg, X ats, ¥ sbe Gnd, X1 | abs, X | abs, X
B BAA* 5TA ETY 5Ta 5TX DEY T THA STY STA 5TX
ral ind, X e 0pg rg wmm abs abs abs
-] BCC | STA |s5TA*T 5TY | 5TA 5T® TYA 5TA | TXS 5T2* §TA | 5TZ*
rel ind, ¥ (zpal rpg, X | vpg, X | 2pa, Y abs, ¥ abs aba, X | abs, X
A LDY LDA LDX LOY LD LOx TAY LDA TAX | LDY LDA LDX
] ind, X irmim ] pg pg imm Bl ahs abs
6 | BCS | LDA |LDAct LoY | LDA LOX cLv LDA | TSX LoY Loa LDX
rel ingd, Y tzpgl zpo, X | zpg, X | zpg. ¥ abs, ¥ abg, X abs, X abs, Y
Cc CPY CMP Py CMP DEC INY CMP DEX CPY CMF DEC
wmm | i, X py Tpg Tpg imm (1] abs MoF
o | sNE | cmp  |cwmeet cMmP DEC cLp CMP | PHX® CMP | DEC
rel ind, Y lzpgh g, X | g, X abs, ¥ ahe, X | abs, X
E CPx SBC CPX 58C ING INX SBC NOP CPX SBC INC
wmm | ind, X g pg g imm abs L] abs
F BEQ | SBC sec*t S8C NG SED SBC | PLX® s8C NG
rel wnd, Y izpgl g, X | zpg. X abs Y abs, X | abs, X
0 1 2 | 3] a 5 s |7] s 3 a |8 c o | e [F
MNote: * = New OP Codes
Mote: T = New Address Modes
Appendix A: The 65C02 Microprocessor

ORI PN DML T LI M TV T T




.|

B S

NCR65C02
= OPERATIONAL CODES, EXECUTION TIME, AND MEMORY

REQUIREMENTS

IMME | ABED | ZERD TR ECERITT I RELA AES PROCESSORN
DIATE| LUTE | PAGE JACCUMPLIED | X ¥ |TPO. X|TRO. Y (ABRS X| ARS. Y| TVWE | 1ABSI |IND. XN (ZPGI | STATUS CODES
TT1 1 F6843210
MNE OPEAATION OF | o # | 0P| 0|0 |- |0joe| - [#| 0p - @ |07 || O || #|OP|n |8 |OP|~ |#[N VB D 1 Z C|MNE
ADC|A + M+ C=8 @1 |812|71 8 (2 e l2 | T2IH[2IN ¥ I ClaDc
AND|A AWM 21 [8)2(21 |5 2| 3842 | 125 {2{N I . |AaND
ASL Bl- -2 oo |20 1 [T N I ClasL
BOC |Branch of C=0 a0(2
BCS [Branch ot ©=1 1 Bo|2[2
BEC |Branch i 291 Fo|zf2
BIT |aAm 34falz I (4|3 | g
BMI [ Beanch A N=1 o 2|2
BHE ch i F | | o) 2|2
| BPL [eanch 4 -0 | | 1o)ajz |
BAA Branch Alweyy B8O 3|3 1
BAK | lrmgs oafr]i | 1
BYC [Branch o W=D =] 50|22 | |
BVYE [ Brmnch i we1 (£} o afa
|
{cLofo=o [
feu (o= |
| CLV (D= (] H
CMF | & - W i coj4) S| 7|D5l4) 2 Dixna|3(oafa)d 02|82 Z CiCMmP,
CPX (X . M Ec|al | | [ . ZCjcPx
CPY (¥ M CCi4 N Z cjcey
DEA A =& L I |DEa
DEC M- 148 i CE'& 3 [ z |oEc
OEX|{X 1 =X | | N Z . |oEx
1] | | | M z |DEev
4| 2| Haof4|alas]afa] | 4/3(5afala |52 (52w z |com
REF. L | M I Y
EE |6} EG[S .3 | B3 | | N z |iNc
| [ N E Ik
N 2z |iny
4 i T . e
aC El
FER | dump Subroutine n |
LA Mo i ag(2|Nan 12 1| Hi| 4 | 3} |2 (62N z
LOE MR i a2 2| HaE | el a3 N z
LDV |M=¥ (11| A3 HAC ) N 2
LERI | 0 =] B0 [31] 4F 48|20 1 ] z
ROPIPC ¢+ | =PC
DAA| AW M=A 1 w2200 [ 1|ela|z 1215}2| Fd
| | [
1
P 4 L 1 4 " "
PHE | XM 5 15 1]
FEY | ¥ aM §.o 15
PLA 54155 M =48 N :
PLP S+ 128 M «P WM¥ 1DIZC
“.'ﬁ | 1 E -_ E
N F
383 N z
TE 82 " z
| MV 1D EZC
R S ... . . .
Foia{1|Felala Fafs|aim v z
1
1] | L
0o (511 98|63 | |B2|5 |2
a2 | |
QoM 9 |83 |
B ™ z
TaY | A=Y N z
TAM A A Mem 14 c | TT1 z
TEH AW M= (£1) als Z
Tix (5% [ BAfT 1 ~ z
THA|X =4 malah r z
THS Kok | | | laafals |
[valvea IRNENC e | 1 3 7 [rva
| . i
Mates
1. Add 11w “n" if page boundary (s crossed, X index X 4+ Add n MNo.Cycles
2. Add 1w “n" if branch occurs to same page ¥ Index ¥ = Subtract ¥ MNo. Bytes
Add 2 ta “n" If branch oceurs to different page. A Accumulator A And Mg Memory bit B
3. Add 1 1o vn" if decimal mode. M Memary per effective addrass v Or My Memaory bit 7
4, W bit equals memaoary bit § prior 1o execution My Memaory par stack pointer W Ewnclusive ar

N it equals memory bit 7 prior to execution
*6, The immediate sddressing mode of the BIT instruction leaves bits 8 & 7
W B M) in the Processor Status Code Register unchanged.

A.2 Data Sheet W




T8 0 H EH S EHHEHER LD & H

deyy Atlowspy




[ ekl E e E e e

Appendix H explains the general
rules and tables for converting
numbers from one of these forms
to another. For memary map
diagrams, refer to Chapter 2
Figure 2-2 is an overall memory
map, Figure 2-3 is a map of
bank-switched memory, and
Figure 2-11 is a map of the 48K
memory space.

puadde

q

This appendix lists all important RAM and hardware locations
in address order and describes them briefly. It also provides
cross-references to the section of the manual where they are
described further. Appendix C contains a similar list for
important firmware addresses.

The tables in this appendix list addresses in either two or three
forms: the hexadecimal form (preceded by a dollar sign) for use
in assembly language; the decimal form for use in Applesoft
BASIC; and (for numbers greater than 32767) the
complementary decimal value for use in Apple Integer BASIC.

X Page Zero

For Monitor zero page usage, refer
to the firmware listings. For zero
page use by the languages and
operating systems, refer to the
appropriate reference manuals.

Table B-1 lists the zero page addresses in hexadecimal and
decimal form, followed by symbols denoting the firmware or
system software that uses them.

® M denotes the Monitor.

e A denotes Applesoft BASIC.
e | denotes Integer BASIC.

e D denotes DOS.

e P denotes ProDOS. Locations whose contents ProDOS
saves and restores afterward have a P in parentheses,
indicating that ProDOS has no net effect on them.

B.1 Page Zero [15




161

Table B-1. Zero Page Use

Hex Dec Used by
500 0 A
$01 1 A

§02 2 A

503 3 A

504 4 A

505 5 A

06 6

807 7

508 B

$09 9

S0A 10 A

$0B 11 A

s0C 12 A

$0D 13 A

S0E 14 A

$50F 15 A

810 16 A

$11 17 A

$12 1B A

$13 19 A

514 20 A

§15 21 A

$16 22 A

17 23 A

18 24 A

$19 25

S1A 26

$1B 27

51C 28

$1D 29

$1E 30

S1F kY

$20 a2 M

$21 33 M

22 34 M

$23 35 M

$24 36 M

§25 a7 M

526 38 M D
$27 39 M D
528 40 M D
$29 41 M D
$2A 42 M D
$2B 43 M D
$2C 44 M D
$20 45 M o
$2E 46 M D
52F 47 M D

Appendix B: Memory Map

Hex

$30

$31

$32

$33
534
$35
$36
537
$38
$39
$3A
$3B
gac
$30
$3E
$3F

$40

541

F42
543

544
£45
546
847
548
$49
G4A
48
$4C
40
$4E
S4F

$50
$51

$52
§53
$54

§55
$56
$57
§58
$59
E5A
58
$5C
§50
$5E
$5F

Dec

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

80
81
a2
83
84
85
86
87
88
89
90
2
92
93
94
85

Used by

zzzz=ZTZZEL zzzzZzZZZTEZTZZTZZER

zz=2zZE £=

}}}}}})’br}}}}bhb

wlwiwlohe)

TUTWTVTTO

ITIIZT

DoD ODODUOOUDO OO
3IIIIII3

3

D (P)
(P)

oo om KRR RN BN B EL OB R R OCELCELCELCEL

|



el & e e e e eI

B

Table B-1—Continued. Zero Page Use

Hex

$60
561

§62
$63
£64
$65
566
867
£68
$69
S6A
568
$6C
$6D
$6E
56F

$70
7

g§72
$73
§74

875
576
877

$78
$79
$7A
§7B
$7C
§7D
$7E
$7F

$80
$81

$82
$83
$84
$85
$86
$87
$88
$89
$8A
$8B
$8C
$8D
$8E
S8F

B.1 Page Zero

Dec

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

Used by

PrErrrErrErpPrbrPPrPrrrrPr PP BPRPPPEPPRPIPRPPIRPRPIRPITE PPRPERERPRPERPRRPEBRTETRERTR

Oooo

Hex

590
it

$92
$93
£94
$95
£96
$97
$98
$39
$9A
$3B
$8C
$3D
$9E
$9F

$AD
SA1

$A2
$SA3
A4

SAS
SA6
SA7
5A8
SA9
SAA
SAB
$AC
$AD
FAE
SAF

$B0
SB1
sB2
sB3
5B4
5B5
3B6
SB7
$B8
$B9
$BA
sBB
$BC
$BD
SBE
SBF

Dec

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

Used by

b

>PrrrrrrrepPrprpPpPpPPrprlr »P2PEERERPRPRPEEFEERRREFPP BBBEBBIPRPERBEBIERE

7




Table B-1—Continued. Zero Page Use

Hex

$COo
$C1

sce
$C3
$C4

$C5
$C6
$C7

scs
$C9
$CA
sce
scC
$CD
$CE
$CF

$D0
D1
sD2
$03
$D4
$05
$D6
$D7
D8
$D9
$DA
$DB
sDC
$DD
$DE
$DF

Appendix B: Memory Map

Dec

192
193
194
195
196
197
198
199
200
20
202
203
204
205
206
207

208
209
210
21
212
213
214
215
216
217
218
219
220
221
222
223

Used by

A

»Pr>rrPrPrPrPpbpbpb>>P

>P>>>P P

»P>>>P>P>P>D>

!
!
I
I
!
I
I
!
!
I
I
[
!
!
I
I

|
!
!
[
I
I
!
I
I
I
|
I
I
I
I
I

oOQooo

Hex

$EO
SE1

$E2
SE3
$E4
SE5
$E6
SE7

$E8
SE9
SEA
SEB
SEC
SED
SEE
SEF

SFO0
SF1

§F2
SF3
SF4
$F5
SF6
§F7
SF8
$F9
SFA
$FB
SFC
$FD
$FE
$FF

Dec

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Used by

PPrPrrrrr >

P>

DR EL R B FLROFL R R E R

T TL Tl




B E N

M52 Page Three

Most of page 3 is available for small machine-language
programs or any other use your program might put it to. The
built-in Monitor uses the top sixteen addresses of page 3, as
shown in Table B-2; the XFER routine (section 2.5.3) uses
locations $3ED and $3EE. If you are using DOS or ProDOS, it
also uses the 32 locations $3D0 through $3EF.

Table B-2. Page 3 Use

Hex

$3F0
$3F1

$3F2
§3F3
53F4

B3F5
B3IF6
B3F7

$3F8
$3F9
S3FA

$3FB
$3FC
$3FD

$3FE
$3FF

B.2 Page Three

Dec

1008
1009

1010
1011
1012

1013
1014
1015

1016
1017
1018

1019
1020
1021

1022
1023

Section

2.6.4

264 &
101
2.64

10.6.4

264

Use

Address of BRK request handler
(normally $59, $FA)

Reset vector
Power-up byte (see text)

Jump instruction to Applesoft
&-command handler
(initially $4C, $58, $FF)

Jump instruction to user CONTROL-Y
command handler

Jump instruction to NMI interrupt
handler (not used by Apple lic)

Address of user IRQ interrupt handler




. B.3 Screen Holes

201

One result of the way the Apple lic hardware maps display
memory on the screen is that groups of eight memory
addresses are left over in sixteen areas of the text and
low-resolution display pages—eight areas in main RAM and
eight in auxiliary RAM. The firmware uses for these 128 bytes
are shown in Tables B-3 and B-4, with cross-references to the
section numbers where they are described.

Table B-3. Main Memory Screen Hole Alfocations

Hex
5478

5479
S47A
$478
$47C
$47D
B47E
$47F

54F8

54F9
S4FA
S4FB
S4FC
54FD
S4FE
S4FF

3578
5579
557A
§57B

§57C
§57D
$57E
$57F

B55F8

$5F9
S5FA
85FB
§5FC
S5FD
S5FE
S5FF

Appendix B: Memory Map

Dec
1144

1145
1146
1147
1148
1149
1150
15

1272

1273
1274
1275
1276
1277
1278
1279

1400
1401
1402
1403

1404
1405
1406
1407

1528

1529
1530
1531
1532
1533
1534
1535

Section
9.1.5

TS5
85

9.1.5

7.5,E63
85EB.2

9.1.5

E.6.4
89.1.5

7.5
8.5

915

E.6.4
8.1.5

7.5E6.3
8.5E6.2

9.1.5

E.6.2

Description

Mouse part: low byte of clamping
minimum

Reserved for serial port 1
Reserved for serial port 2
Reserved

Low byte of X coordinate
Reserved for mouse port
Reserved

Reserved

Mouse port: low byte of clamping
maximum

Reserved for serial port 1
Reserved for serial port 2
Reserved

Low byte of ¥ coordinate
Reserved for mouse port
Reserved

Reserved

Mouse port: high byte of clamping
minimum

Port 1 printer width {1-255;

0 = unlimited)

Port 2 line length (1-255;

0 = unlimited)

Cursor horizontal position (80-column
display)

High byte of X coordinate
Reserved for mouse port
Reserved

Reserved

Mouse port: high byte of clamping
maximum

Port 1 temporary storage location
Port 2 temporary storage location
Reserved

High byte of ¥ coordinate
Reserved for mouse port
Reserved

Reserved

BB B T T T T T T T

(N O




[ Bl e e e e e e

Table B-3—Continued. Main Memory Screen Hole Allocations

Hex

$678
5679

S6TA

$67B
567C
§67D
$67E
$67F

$6F8
S6F9
S6FA
S6FB
$6FC
§6FD
S6FE
56FF

%778
$779
ST7A

$77B
$77C
$77D
$77E
$7T7F

$7F8

$7F9
STFA
$7FB
S7FC
S7FD
S7FE
S7FF

B.3 Screen Holes

Dec

1656
1657

1658

1659
1660
1661
1662
1663

1784
1785
1786
1787
1788
1789
1790
1791

1912
1913
1914

1915
1916
1917
1918
1919

2040

2041
2042
2043
2044
2045
2048
2047

Section

7.5

8.5

9.1.5

E6.4

7.5
8.5

E6.2

7.5

8.5

9.1.5E6.1

7.5
85

9.1.5

Description

Reserved

Indicates when port 1 firmware is
parsing a command

Indicates when port 2 firmware is
parsing a command

Reserved

Mouse port: reserved

Reserved for mouse port
Reserved

Reserved

Reserved

Current port 1 command character
Current port 2 command character
Reserved

Mouse port: reserved

Reserved for mouse port
Reserved

Reserved

DEVNO: Sn0 current active port
number x 16

Port 1 flags for echo and auto line
feed

Port 2 flags for echo and auto line
feed

Reserved

Mouse port status byte

Reserved for mouse port
Reserved

Reserved

MSLOT: owner of SCB00-$CFFF ($C3,
videa)

Port 1 current printer column

Port 2 current line position

Reserved

Mouse port mode byte

Reserved for mouse port

Reserved

Reserved

[21°




Table B-4. Auxiliary Memaory Screen Hole Allocations

Hex
3478
5479

$47A
$47B
$47C

$470

$47E
$47F

$4F8
through
$4FF

$578
through
$57F

$5F8
through
$5FF

$678
through
B6TF

F6FB
through
$6FF

5778
through
577F

$7F8
through
STFF

Appendix B: Memory Map

Dec

1144
1145
1146
1147
1148
1149

1150
1151

1272
1279
1400
1407
1528
1535
1656

1663
1784

1791
1912

1919
2040

2047

Section
7.5
7.5
7.5
75
8.5
85

85
85

Description

Initial port 1 ACIA Control Register
values ($9E)

Initial port 1 ACIA Command Register
values ($0B)

Initial port 1 characteristics flags (340)
Initial port 1 printer width ($50)

Initial port 2 ACIA Control Register
values ($16)

Initial port 2 ACIA Command Register
values ($0B)

Initial port 2 characteristics flags ($01)
Initial port 2 line length ($00)

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Tl TP T

Tl

Fl F

£ TL T ELECE

Pl BN

'E




B RS

M 5.4 The Hardware Page

Tables B-5 through B-9 list all the hardware locations available
for use in the Apple llc. These tables have a column at the left
that is not present in other tables. This column, labeled RW,
indicates the action to take at a particular location.

R means read.
RR means read twice in succession.

R7 means read the byte and then check bit 7; in the use
column, “see if..." refers to the condition represented by

bit 7 = 1, unless otherwise specified. Bit 7 has a value

of $80, so if the contents of the location are greater than or
equal to $80, the bit is on.

Another way to test bit 7 (the sign bit) is with a BIT
instruction, followed by BPL (bit 7 was 0} or BMI (bit 7
was 1).

R/W means to either read or write. For writing, the value is
unimportant.

W means to write only. The value is unimportant.

N means not to read or write, because the location is
reserved.

An address of the form $C00x means the sixteen locations from
$C000 through $COOF. Labels, when they are shown, are simply
memory aids. Some of them correspond to the labels at those
addresses in the firmware, others do not. Your program will
have to assign a label for it anyway.

B.4 The Hardware Page [23




Table B-5. Addresses $C000 Through $CO3F

RW  Hex Dec
R $C00x
w $C000 49152
w SC001 49153
w $Co02 49154
w $C003 49155
W $C004 49156
w $C005 49157
w $C006 49158
W $C007 49159
W $C008 49160
W SC009 49161
W SCO0A. 49162
w $Co0B 49163
W sCo0C 49164
w SC00D 49165
W SCO0E 49166
W SCO0F 49167
w $C01x
R7 $C010 49168
R7 SC011 49169
R7 $C012 49170
R7 $C013 49171
R7 $C014 48172
R $C015 49173
R7 SC016 49174
R SCO017 49175
R7 §CO18 49176
R7 $C019 49177
R7 SCO1A 49178
R7 scoe 48179
R7 SCO1C 49180
R7 $CO1D 49181
R7 SCOE 49182
R7 $CO1F 49183
N $C020 49184
through
N SCO2F 49199
W $C030 49200
R $C030 49200
N $C031 49201
through
N $CO3F 49215
t Also section 2.5.4

24]

Neg Dec

-16384
-16383
-16382
-16381
-16380
-16379
-16378
-16377
-16376
-16375
-16374
-16373
-16372
-16371
-16270
-16369

-16368
-16367
-16366
-16365
-16364
-16363
-16362
-16361
-16360
-16359
-16358
-16357
-16356
-16355
-16354
-16353

-16352
-16337

-16336
-16336

-16335
-16321

Label

KSTRB
B0STORE
BOSTORE
RAMRD
RAMRD
RAMWRT
RAMWRT

ALTZP
ALTZP

BOCOL
80COL
ALTCHAR
ALTCHAR

AKD
RDBNK2
RDLCRAM
RDRAMRD
RORAMWRT
RSTXINT
RDALTZP
RSTYINT
RDBOSTORE
RSTVBL
RDTEXT
RDMIX
RDPAGE2
RDHIRES
ADALTCHAR
RDBOCOL

Section

4.1
5.61

561

252
252
252
252

4.2.1

Use

Read keyboard data (bits 0-6) and strobe (bit 7)
Off: PAGE2 switches Page 1 and 2

On: PAGE2 switches Page 1 and 1X

Off: read main 48K RAM

On: read auxiliary 48K RAM

Off: write in main 48K RAM

On: write in auxiliary 48K RAM

Reserved

Reserved

Off: use main PO, P1, bank-switched RAM
On: use auxiliary PO, P1, bank-switched RAM
Reserved

Reserved

Off: 40-column display

On: 80-column display

Off: display primary character set

On: display alternate character set

Clear keyboard strobe ($C00x bit 7)

See if any key now down; clear strobe
See if using $D000 bank 2 {or 1)

See if reading RAM (or ROM).

See if reading auxiliary 48K RAM (or main)
See if writing auxiliary 48K RAM (or main)
Reset mouse X0 interrupt.

See it auxiliary PO, P1 and bank-switched RAM
Reset mouse Y interrupt

See it BOSTORE on (or off)

See if VBLINT off (1); reset it

See if text (or graphics)

See if mixed mode switch on

See if page 2/1X selected (or 1)

See if high-resolution switch on

See if alternate character set (or primary)
See if B0-column hardware on

Reserved (read and write)

Reserved
Toggle speaker

Aeserved (read and write}

Appendix B: Memory Map

et e mhJEEL TL TL TL T BT T EL




8 s

Table B-8. Addresses $C040 Through SCO5F

RW

R/w
N
R/wW
N
RW
N
/W
N
R/W
R/W
R/wW
R/W
R/W

Hex

$C040
$C041
$C042
$C043
$C044
SC045
$C046
§C047
$C048
$C049
$CO4A
$C04B
SCo4C
SC04D
SCO4E
SCO4F

$C050
$C051
$C052
$C053
$C054
$C055

$C056
$C057

5C058
£C059
$CO5A
$C05B
$CO5C
$C05D
$COSE
$CO5F

Dec

49216
49217
49218
49219
49220
49221

49222
49223
49224
49225
49226
49227
49228
49229
49230
49231

49232
49233
49234
49235
49236
49237

49238
49239

49240
49241
49242
49243
49244
49245
49246

49247

T Also section 2.5.4.

Neg Dec

-16320
-16319
-16318
-18317
-16316
-16315
-16314
-16313
-16312
-16311
-16310
-16309
-16308
-16307
-16306
-16305

-16304
-16303
-16302
-16301
-16300
-16299

-16208
-16297

-16296
-16295
-16294
-16293
-16292
-16291
-16280

-16289

Label

RDXYMSK

RDVBLMSK
RDX0EDGE
RDYOEDGE

RSTXY

TEXT
TEXT
MIXED
MIXED
PAGEZ2
PAGEZ

HIRES
HIRES
DISXY
ENBXY
DISVBL
ENVEBL
XO0EDGE
XO0EDGE
DHIRES
YOEDGE

DHIRES
YOEDGE

B.4 The Hardware Page

Section

00'm.n
o Lo o

9.1.3

56
5.6
56
5.6t
56t

5.61
561

9.1.3
9.1.3

9.1.3

©w oo
e = Y
W W W

Use

See if X0/Y0 mask set

See if VBL mask set

See if interrupt on falling X0 edge
See if interrupt on falling Y0 edge
Reserved

Reserved

Reserved

Reserved

Reset X0/Y0 interrupt flags
Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Off: graphics display

On: text display

Off: text or graphics only

On: combination text and graphics

Off: use page 1

On: display page 2 (BOSTORE off); store to
page 1X (BOSTORE on)

Off: low-resolution

On: high-resolution; double if 80COL and
DHIRES on

Reserved if IOUDIS on (3CO7E bit 7=1)
Disable (mask) mouse X0/Y0 interrupts
Reserved if IOUDIS on

Enable (allow) mouse X0/Y0 interrupts
Reserved if IOUDIS on

Disable (mask) VBL interrupts

Reserved if IOUDIS on

Enable (aliow) VBL interrupts

Reserved if IOUDIS on

Interrupt on rising edge of X0

Reserved if IOUDIS on

Interrupt on falling edge of X0

It IOUDIS on: set double-high-resolution
If IOUDIS off: interrupt on rising YO

If IOUDIS on: clear double-high-resolution
If IOUDIS off: interrupt on falling YO

[25




Table B-7. Addresses $C060 Through $CO7F

RW  Hex Dec Neg Dec Label Section Use

W $C06x Reserved (write)

R7 $C060 49248 -16288 RDBOSW 4.1 See if B0/40 switch down (= 40)

R7 $CO061 49249 -16287 RDBTNO 9.1.3t See if switch 0 or (4] pressed

R7 $C062 49250 -16286 RDBTHN1 9.2% See if switch 1 or [ e pressed

R7 $C063 49251 -16285 RD63 9192 See if mouse button not pressed

R7  $C064 49252 -16284 PDLO 9.2 See if hand control button 0 pressed

R7 $C065 49253 -16283 PDL1 9.2 See if hand contral button 1 pressed

R7 $C066 49254 -16282 MOUX1 9.1.3 See if mouse X1 (direction) is high

R7 $C067 49255 -16281 MOUY1 9.1.3 See if mouse Y1 (direction) is high

N £C068 49256 -16280

through Reserved (write and read)

N SCO6F 49263 -16273

R/W  5CO7x Trigger paddle timer; reset VBLINT; however,
some $CO07x are reserved

R/W  $C070 49264 -16272 PTRIG 9.2 Designated trigger or reset location

N SCO71 49265 -16271

through Reserved

N $CO07D 49277 -16259

R7 $CO7E 49278 -16258 RDIOUDIS See if IOUDIS on; trigger paddle timer; reset
VBLINT

w 1OUDIS 56913 On: enable access to DHIRES switch; disable
$C058-5C05F 10U access

R7 $COTF 49279 -16257 RDDHIRES 56913 See if DHIRES on

W 1ouDIs 5.6 Off: disable access to DHIRES switch: enable
$C058-SC05F 10U access

t Also section 4.1.

261 Appendix B: Memory Map

fTnhnmnmhnmnIm

T Tl T8 T B BBl TL T




U

'R R

Table B-8. Addresses SCOB0 Through SCOAF

RW

I

o)

]

= 2222%:0323222221]]3]]

R/W
R/W
R/W

R/W

Hex

SCOBO
$C0o81
sCcog2
$CO0B3
$C0B4
§C085
$C086
SCo87
$C088
$C089
SCOBA
$COBB
$COBC
SCOBD
SCO8E
SCOBF

C090
through
$C097

$C098
$C099
$C08A

$C09B

$C09C
through
$CO9F

$COAD
through
SCOAT

BCOAB
$COoAD
SCOAA

SCOAB

$COAC
through
SCOAF

Dec

48280
49281
49282
49283
49284
49285
49286
49287
49288
49289
49290
49291
49292
49293
49294
49295

49296

49303

49304
49305
49306

49307
49308
49311
48312
49319
49320
49321
49322
49323
49324

49327

Neg Dec Label Section

-16256 24.2

-16255 24.2

-16254 24.2

-16253 242

-16252

-16251

-16250

-16249

-16248 2.4.2

-16247 24.2

-16246 242

-16245 24.2

-16244

-16243

-16242

-16241

-16240

-16233

-16232 7.3, 11.11

-16231 7.3, 11.11

-16230 7.3, 1111,
Appendix E

-16229 73. 11.11

-16228

-16225

-16224

-16217

-16216 8.3, 11.11

-16215 8.3, 11.11

-16214 8.3, 11.11,
Appendix E

-16213 8.3, 11.11

-16212

-16209

B.4 The Hardware Page

Use

Read RAM; no write; use $0D000 bank 2
Read ROM, write RAM; use $D000 bank
Read ROM; no write; use $D000 bank 2
Read and write RAM; use $D000 bank 2
Reserved
Reserved
Reserved
Reserved
Read RAM; no write; use SD000 bank 1

2

Read ROM, write RAM; use $D000 bank 1

Read ROM; no write; use $0000 bank 1
Read and write RAM; use $D000 bank 1
Reserved
Reserved
Reserved
Reserved

Reserved

Port 1 ACIA Transmit/receive register
Port 1 ACIA Status register
Port 1 ACIA Command register

Port 1 ACIA Control register

Reserved

Reserved

Port 2 ACIA Transmit/receive register
Port 2 ACIA Status reqgister
Port 2 ACIA Command register

Port 2 ACIA Control register

Reserved

[27



Table B-9. Addresses $C0B0 Through S§COFF

RW

=

zZ Z2Z 2 Z2 2 2 Z =z =2

28]

Hex

$COBO
through
$COBF

$COCO
through
SCOCF

$C0D0
through
$CODF

$COED
through
HCOEF

$COF0
through
$COFF

Dec

49328
49343
49344

49359
49360

49375
49376

49391
49392

49407

Meg Dec Label Section

-16208

-16193
-16192

-16177
-16176

-16161
-16160

-16145
16144

-16129

Appendix B: Memory Map

Use

Reserved

Reserved

Reserved

Reserved

Reserved

L kL FLOFLOELOELOEL L OH

| 1

el Nl Bl

ki

| B




T T T T O T O T T O O 5 O




suoIjeanq asemulild Jueyioduif




Tl Er—Er—Er6r—Er & &r&r—Er-Er 6o

oX | puadde

This appendix lists all significant firmware addresses: entry
points, locations containing the addresses of entry points, and
locations where machine and device identification bytes reside.

Warning

The Monitor firmware entry points are the only published entry
points in the sense that they are the only ones that will remain
in the same locations in future Apple Il series computers.

The firmware protocol identification bytes and offsets will work
with other Apple Il series computers only if used as directed
(section 3.4.2).

W c.1 The Tables

Appendix H contains tables and
examples of the derivation of each
form of address from either of the
other forms.

This appendix supplements the chapter text by specifying three
forms of each address: hexadecimal, decimal, and
complementary (negative) decimal.

In these tables, some of the addresses are followed by a label
of the location. These labels are listed only to assist you in
finding the named location in the firmware listings, or in
remembering the function found at the address. The Apple lic
contains no global label table: your program must assign its
own labels to the addresses as required.

There are several types of information at these firmware
addresses: actual entry points (labeled entry), the low-order byte
of an entry point (labeled offsef), a device or machine

C.1 The Tables [31




identification byte (labeled ident), indicators (labeled indic)
specifying whether there are optional routines, vector addresses
(labeled vector), and an RTS instruction location.

The column labeled Section contains the number of the section
that describes the item. If there is no description except in a
table in this appendix, a section number is not listed.

Each input/output port has an associated protocol table, as
shown in Tables C-1 through C-4. Many of the bytes (labeled
offsef) in the protocol tables are the low-order bytes of
addresses of 1/O routines for the ports; the high-order byte of
these addresses must be $Cn (where n is the port number).
This structure is explained in Chapter 3. Although your program
must perform some extra processing to use these tables, the
benefit is simplified compatible port and slot I/O for all Apple I
series machines.

. C.2 Port Addresses

Table C-1. Serial Port 1 Addresses

Hex Dec Neg Dec
$C100 48408 -16128
$C105 48413 -16123
sc107 49415 -16121
SC10B 48419 -16117
sC10C 48420 -16116
$C10D 49421 -16115
$C10E 48422 -16114
$C10F 48423 -16113
$C110 49424 -16112
$C111 49425 -168111

Table C-2. Serial Port 2 Addresses

Hex Dec Neg Dec
$C200 49664 -15872
$C205 49669 -15867
$C207 49671 -15865
$C20B 49675 -15861
$c20C 49676 -15860
$C20D 49677 -15859
$C20E 49678 -15858
$C20F 49679 -15857
$C210 49680 -15856
$C211 49681 -15855
321

Label

Label

Type Section Description

entry 311 Main port 1 entry point

ident 342 ID byte (538)

ident 342 ID byte (518)

ident 342 Firmware card signature ($01)
ident 3.4.2 Super Serial Card ID ($31)
offset 7.4 Low-order PINIT address
offset 7.4 Low-order PREAD address
offset 7.4 Low-order PWRITE address
offset 7.4 Low-order PSTATUS address
indic 342 Non-zero: no optional routines
Type Section Description

entry 3.1.1 Main port 2 entry point

ident 342 D byte ($38)

ident 3.4.2 1D byte ($18)

ident 3.4.2 Firmware card 1D ($01)

ident 342 Super Serial Card 1D ($31)
offset 8.4 Low-order PINIT address
offset 8.4 Low-order PREAD address
offset 8.4 Low-order PWRITE address
offset 8.4 Low-order PSTATUS address
indic 342 Non-zero: no optional routines

Appendix C: Important Firmware Locations

HOTL O L R B

F

1% | T

o
——
[
—
i
e
.




Bk

0 Y Y Y

Table C-3. Video Firmware Addresses

Hex Dec Neg Dec Label Type Section Description

$C300 49920 -15616 entry 311 Main video entry point (output only)
$C305 49925 -15611 C3KEYIN ident 342 1D byte ($38)

$C307 49927 -15609 C3CouT1 ident 342 ID byte (518)

$C30B 49931 -15605 ident 3.4.2 Firmware card signature ($01)
$C3oC 49932 -15604 ident 342 B0-column card 1D ($B8)

$C30D 49933 -15603 offset 5.9 Low-order PINIT address

$C30E 49934 -15602 offset 59 Low-order PREAD address
$C30F 49935 -15601 offset 59 Low-order PWRITE address
$C310 49936 -15600 offset 59 Low-order PSTATUS address
$C3N 49937 -15599 MOVEAUX entry 253 Routine for main/auxiliary control

swapping (Also called AUXMOVE)

Table C-4. Mouse Port Addresses

Hex Dec Neg Dec Label Type Section Description

$C400 50176 -15360 entry Main mouse entry point

$C405 50181 -15355 ident 342 ID byte ($38)

sC407 50183 -15353 ident 342 1D byte (518)

$C40B 50187 -15349 ident 342 Firmware card signature ($01)

$C40C 50188 -15348 type 342 X-¥ pointing device |D ($20)

$C40D 50189 -15347 offset 91.4 Low-order PINIT address

$C40E 50190 -15346 offset 914 Low-order PREAD address

$C40F 50191 -15345 offset 9.1.4 Low-order PWRITE address

$C410 50192 -15344 offset 914 Low-order PSTATUS address

SC4N 50193 -15343 indic 342 Optional routines follow (300)

$C412 50194 -15342 SETMOUSE offset 9.1.4 Low-order SETMOUSE address

gC413 50195 -15341 SERVEMOUSE offset 914 Low-order SERVEMOUSE address

$C414 50196 -15340 READMOUSE offset 9.1.4 Low-order READMOUSE address

$Ca15 50197 -15339 CLEARMOUSE offset 914 Low-order CLEARMOUSE address

$C416 50198 -15338 POSMOUSE offset 914 Low-order POSMOUSE address

$Ca17 50199 -15337 CLAMPMOUSE oftset 914 Low-order CLAMPMOUSE address

$Ca18 50200 -15336 HOMEMOUSE offset 914 Low-order HOMEMOUSE address

$C419 50201 -15335 INITMOUSE offset 914 Low-order INITMOUSE address
C.2 Port Addresses [33




B c.3 Other Video and I/O Firmware Addresses

Miscellaneous firmware addresses are listed in Table C-5.

Table C-5. Apple llc Enhanced Video and Miscellaneous Firmware

Hex Dec Neg Dec Label Type Section Description

$C600 50688 -14848 entry 6.1 Disk drive firmware entry point
$C700 50944 -14592 entry 6.2 External disk startup routine
$C803 51203 -14333 NEWIRQ entry EA IRQ handling routine

HWcq Applesoft BASIC Interpreter Addresses

The addresses of Applesoft BASIC entry points are listed in the
Applesoft BASIC Programmer's Reference Manual. The
Applesoft interpreter occupies ROM addresses from $D000
through $F7FF.

. C.5 Monitor Addresses

Table C-6 lists the Monitor entry points, machine identifier
bytes, interrupt vectors, and the address of a known RTS
instruction.

34] Appendix C: Important Firmware Locations

HOEOEOE

BB He T

FI SRR 'R

]

'F\




T —Er £ 6L

el EE

I

Table C-6. Apple llc Monitor Entry Points and Vectors

Hex

$FB00
§FB19
SFB28
§FB32
$FB36
SFB64
SF871

§F941
SF94A

SFA47
SFAG2

SFB1E
SFBGF
$FBB3
SFBCO
$FBDD

SFC42
$FC58
SFCOC
$FCIE
SFCAS8

$FDOC
$FD1B
SFD35
SFD&7
SFDGA
$FD6F
$FDBB
$FDBE
SFDDA
$FDE3
SFDED
SFDFO

$FE2C
$FE36

SFF2D
$FF3A
SFF3F
SFF4A
SFF58
$FFB9

$FFFA
$FFFB
$FFFC
$FFFD
$FFFE
$FFFF

Dec

63488
63513
63528
63538
63542
63588
63601

63809
63818

63845
64098

64286
64367
64435
654448
64477

64578
654600
64668
64670
64680

64780
64795
64821
64871
64874
64879
64907
64910
64986
64995
65005
65008

65068
65078

65325
55338
65343
55354
65368
65385

65530
65531
65532
65533
65534
65535

Neg Dec

-2048
-2023
-2008
-1998
-1994
-1948
-1935

-1727
-1718

-1691
-1438

-1250
-1169
-1101
-1088
-1059

-958
-936
-868
-B66
-856

-756
-741
-715
-665
-662
-657
-629
-626
-550
-541
-631
-528

-468
-458

-211
-198
-183
-182
-168
-151

-6
5
-4
-3
2
-1

Label

PLOT
HLINE
VLINE
CLRSCH
CLRTOP
SETCOL
SCRN

PRNTAX
PRBL2

NEWBRK

RESET
PREAD

SETPWRC

BELL1

CLREOP
HOME
CLREOL
CLEOLZ
WAIT

RDKEY
KEYIN
RDCHAR
GETLNZ
GETLN
GETLN1
CROUT1
CROUT
PRBYTE
PRHEX
CouTt
couT1

MOVE
VERIFY

PRERR
BELL
IOREST
IOSAVE
IORTS
(Maonitor)

IRQVECT

C.5 Monitor Addresses

Type

entry
entry
entry
entry
entry
entry
entry

entry
entry

entry
entry

entry
entry
ident
ident
entry

antry
entry
entry
entry
entry

entry
entry
entry
entry
entry
aentry
entry
entry
entry
entry
entry
entry

entry
entry

entry
entry
entry
entry
RTS

entry

vector
vector
vector
vector
vactor
vector

Section

5.8
5.8
5.8
5.8
5.8
5.8
5.8

5.8
5.8

E.2
26

9.2

264
F.1.2
F.1.2

ghannan A
oo M
n

ha Lo haha b =

WO s Wb &0
€O 03 00 OD 00 00 — RO = — R RO

A =

58
422

10.1

Description

Plots a low-resolution block

Draws low-resolution horizontal line
Draws low-resolution vertical line
Clears low-resolution screen

Clears top 40 low-resolution lines
Sets low-resolution color (Table 5-4)
Reads color of low-resolution block

Displays (A) and (X) in hex
Sends (X) blanks to output

Apple llc break handler
Hardware reset routine

Reads hand control position
Routine to create power-up byte
Machine identification byte
Machine identification byte
Sends 1 kHz beep to speaker

Clears from cursor to bottom
Clears; cursor to upper left
Clears from cursor to end of line
Clears from BASL to end of line
Delays for time specified by (A)

Displays cursor, jumps to (KSW)
Waits for keypress, reads key
Gets input, interprets ESC codes
Sends CR to output, goes to GETLN
Displays prompt, gets input line
No prompt; gets input line

Clears to end of line, calls CROUT
Sends CR to output

Sends (A) to output

Displays low nibble of (A) in hex
Jumps to (CSW)

Displays (A), advances cursor

Copies (memory) elsewhere
Compares two blocks of memory

Sends ERR to output; beeps
Sends CONTROL-G to output
Loads ($45-549) into registers
Stores (A X,Y.P.3) at $45-549
Location of known RTS instruction
Standard Monitor entry paint

Low-order NMI vector (unused)
High-order NMI vector (unused)
Low-order RESET vector ($62)
High-order RESET vector ($FA)
Low-order IRQ vector ($03)
High-order IRQ vector ($CB)

[35°



safienfueq pue swaysAg buneiadp




R E R E

pPXxXi1puedde

This appendix is an overview of the characteristics of operating
systems and languages when run on the Apple llc. It is not
intended to be a full account. For more information, refer to the
manuals that are provided with each product.

| IO Operating Systems

This section discusses the operating systems that the Apple lic
does and does not work with.

D.1.1 ProDOS

ProDOS is the preferred disk operating system for the

Apple llc. It supports startup from the external disk drive,
interrupts, and all other hardware and firmware features of the
Apple llc.

D.1.2 DOS

The Apple llc works with DOS 3.3. Its disk drive support
hardware and firmware can also access DOS 3.2 disks by
using the BASICS disk. However, neither version of DOS takes
full advantage of the features of the Apple llc. DOS support is
provided only for the sake of Apple Il series compatibility.

D.1 Operating Systems (37




D.1.3 Pascal Operating System

Version 1.2 of the Pascal Operating System uses the
80/40 switch and the interrupt features of the Apple lic, while
remaining compatible with the other Apple Il series computers.

While the Apple lic works with Pascal 1.1, this version of the
Pascal Operating System does not use the 80/40 switch or
handle interrupts.

The Apple lic does not work with Pascal 1.0, because the
input/output firmware entry points are rigidly defined (rather
than being accessed via a table), and the firmware does not
support these entry points.

D.1.4 CP/M

CP/M, and any other operating system that requires an interface
card, will not work on the Apple llc.

Mo Languages

For further information about these
languages, refer to the manuals
that came with them.

Use the appendixes to make or
find decimal conversions.
Appendix H has tables and
examples to help you convert
numbers between hexadecimal,
decimal, and negative
{complementary) decimal. All the
addresses listed in Appendixes B
and C—screen holes, hardware
addresses, firmware entry points,
and so on—are given in all three
numeric forms.

38l

This section discusses special techniques to use, and
characteristics to be aware of, when using Apple programming
languages with the Apple llc. Itis also a guide to using this
reference manual with these languages.

D.2.1 Applesoft BASIC

The focus of the chapters in this manual is assembly language,
and so most addresses and values are given in hexadecimal
notation.

Use a PEEK in BASIC (instead of LDA in assembly language) to
read a location, and a POKE (instead of STA) to write to a
location. If you read a hardware address from a BASIC
program, you get a value between 0 and 255. Bit 7 has a value
of 128. so if a soft switch is on, its value will be equal to or
greater than 128; if the switch is off, the value will be less

than 128.

Appendix D: Operating Systems and Languages

k-

L

-

T

L_EL

T RATNMONOTTT

E
r

-




—ﬂ_lﬂ-i[’-hl IE l[ I[ l[ I[ I[ l[' l[ I[ I[ I[ t[’ I[I |

D.2.2 Integer BASIC

Unless you load a version of DOS into your Apple llc, you will
not have Integer BASIC available inside the machine. ProDOS
does not support Integer BASIC.

D.2.3 Pascal Language

The Pascal language works on the Apple llc under versions 1.1
and 1.2 of the Pascal Operating System. However, for best
performance, use Pascal version 1.2.

D.2.4 FORTRAN

FORTRAN works under version 1.1 of the Pascal Operating
System which, as explained in section D.1.3, does not detect or
use certain Apple lic features, such as the 80/40 switch or
auxiliary memory. Therefore, FORTRAN does not take
advantage of these features either.

D.2 Languages [39



sydniiayuf




axXx 1l pusdde

This appendix presents a unified account of the sources of
interrupts on the Apple llc, how the firmware handles the
interrupts, and how to use interrupt-driven features directly in
those rare cases when the firmware cannot meet your needs.

Warning

If you use interrupt hardware directly, rather than using the
built-in interrupt-handling firmware, compatibility with possible
future Apple Il series computers or revisions cannot be
guaranteed.

. E.1 Introduction

el e e e e e e e e

|-_L'

This section orients you to interrupts and their effects on the
Apple llc hardware.

E.1.1 What Is an Interrupt?

On a computer, an interrupt is a signal that abruptly causes the
computer to stop what it is currently doing and immediately
attend to an important time-dependent task. For example, the
Apple llc mouse sends an interrupt to the computer every time
it moves. This is necessary because unless the mouse is read
shortly after it moves, the signal indicating its direction is lost.

When an interrupt occurs, control passes to an interrupt
handler, which must record the exact state of the computer at
the moment of the interrupt, determine the source of the
interrupt, and take appropriate action. It is important that the

E.1 Introduction [41




42]

computer preserve a snapshot of its state when interrupted, so
that when it continues later with what it had been doing, those
conditions can be restored.

E.1.2 Interrupts on Apple Il Computers

Interrupts have not always been fully supported on the Apple Il
All versions of Apple’'s DOS, as well as the Monitor program,
rely on the integrity of location $45, which the built-in interrupt
handler has always destroyed by saving the accumulator in it.
Most versions of Pascal simply do not work with interrupts
enabled.

The Apple llc built-in interrupt handler now saves the
accumulator on the stack instead of in location $45. Thus both
DOS and the Monitor work with interrupts on the Apple llc.

If, however, you want software that uses interrupts to work on
the Apple lle and the Apple Il Plus, you must use either
ProDOS, Apple's new enhanced disk operating system, or
Pascal 1.2. Both operating systems have full interrupt support
built in.

Interrupts are effective only if they are enabled most of the
time. Interrupts that occur while interrupts are disabled cannot
be detected. Due to the critical timing of disk read and write
operations, Pascal, DOS, and ProDOS turn off interrupts while
accessing the disk. Thus it is important to remember that while
a disk drive is being accessed, all sources of interrupts
discussed below are turned off.

On the Apple lle only, interrupts are periodically turned off while
80-column screen operations are being performed. This is most
noticeable while the screen is scrolling. Also, most peripheral

cards used in the Apple lle disable interrupts while reading and

writing.

Appendix E: Interrupts

{{ W -

O L L O Y O L W W W




[ BBl Er e e e e e

E.1.3 Interrupt Handling on the 65C02

From the point of view of the 65C02, there are three possible
causes of interrupts.

1. If 65C02 interrupts are not masked (that is, the CLI
instruction has been used), the IRQ line on the
microprocessor can be pulled low. This is the standard
technique by which a device indicates that it needs
immediate attention.

2. The processor executes a break (BRK, opcode $00)
instruction.

3. A non-maskable interrupt (NMI) occurs. Because the NMI
line in the Apple llic's 65C02 is not used, this never happens.

Options 1 and 2 cause the 65C02 to save the current program
counter and status byte on the stack and then jump to the
routine whose address is stored in $FFFE and $FFFF. The
sequence performed by the 65C02 is:

1. If IRQ, finish executing the current instruction. (If BRK,
current instruction is already finished.)

Push high byte of program counter onto stack.
Push low byte of program counter onto stack.
Push program status byte onto stack.

Jump to address stored in $FFFE, $FFFF, that is,
JMP (SFFFE).

The different sources of interrupt signals are discussed below.

L A

E.1.4 The Interrupt Vector at $FFFE

In the Apple llc computer there are three separate regions of
memory that contain address $FFFE: the built-in ROM, the
bank-switched memory in main RAM, and the bank-switched
memory in auxiliary RAM. The vector at $FFFE in the ROM
points to Apple llc's built-in interrupt handling routine. Due to
the complexity of interrupts in the Apple lic, it is recommended
that you use it rather than writing your own interrupt handling
routine.

When you initialize the mouse or serial communication firmware,
copies of the ROM's interrupt vector are placed in the interrupt
vector addresses in both main and auxiliary bank-switched

E.1 Introduction [43




memory. If you plan to use interrupts and the bank-switched
memory without the mouse or communication firmware, you
must copy the ROM's interrupt vector yourself.

B =2 7he Buiit-in Interrupt Handler

The built-in interrupt handler is responsible for determining
whether a BRK or an IRQ interrupt occurred. If it was an IRQ
interrupt, it decides whether the interrupt should be handled
internally, handled by the user, or simply ignored.

The built-in interrupt handling routine records the current
memory configuration, then sets up its own standard memory
configuration so that a user's interrupt handler knows the
precise memory configuration when it is called.

Next the handler checks to see if the interrupt was caused by a
break instruction, and if it was, handles it as described in
section E.4.

If the interrupt was not caused by a BRK, the handler checks
for interrupts that it knows how to handle (for example, a
properly initialized mouse) and handles them.

Depending on the state of the system, it either ignores other
interrupts, or passes them to a user's interrupt handling routine
whose address is stored at $3FE and $3FF of main memory.

After handling an interrupt itself, or after the user's handler
returns (with an RTI), the built-in interrupt handler restores the
memory configuration, and then does an RT! to restore
processing to where it was when the interrupt occurred.

Figure E-1 illustrates this whole process. Each of the steps is
explained in detail in the sections that follow.

Appendix E: Interrupts

o W W 4N W N {

Tl Tl

Lt B IR RL 'ER TR

ENEEE ] S W



B

Figure E-1. Interrupt-Handling Sequence

Interrupted Built-in
Program Processor Handler

Program ———=Push Address
Push Status

JMP ($FFFE) —» Save old and

set new memory
configuration.

If BRK, then go to
break handler ($FA47) ——————— =

Qur interrupt?
NO: Push Address
Push Status
JMP ($3FE) —=Handle interrupt.

YES: Handle it.

Restore memory -€—— RTI
configuration.

Pull Status -e——RTI
Program -—— Pull Address

E.2 The Built-in Interrupt Handler [45




461

E.2.1 Saving the Memory Configuration

The built-in interrupt handler saves the state of the system, and
sets it to a known state according to these rules:

e If BOSTORE and PAGE2 are on, then it switches in Text
Page 1 (PAGE2 off) so that main screen holes are
accessible.

e It switches in main memory for reading (RAMRD off).
e |t switches in main memory for writing (RAMWRT off).

e It switches in ROM addresses $D000-$FFFF for reading
(RDLCRAM off).

e It switches in main stack and zero page (ALTZP off).
e It preserves the auxiliary stack pointer, and restores the
main stack pointer (see section E.2.2).

Note: Because main memory is switched in, all memory
addresses used later in this appendix are in main memory
unless otherwise specified.

E.2.2 Managing Main and Auxiliary Stacks

Because the Apple llc has two stack pages, the firmware has
established a convention that allows the system to be run with
two separate stack pointers. Two bytes in the auxiliary stack
page are to be used as storage for inactive stack pointers:
$100 for the main stack pointer when the auxiliary stack is
active, and $101 for the auxiliary stack pointer when the main
stack is active.

When a program that uses interrupts switches in the auxiliary
stack for the first time, it should place the value of the main
stack pointer at auxiliary stack address $100, and initialize the
auxiliary stack pointer to $FF (the top of the stack). When it
subsequently switches from one stack to the other, it should
save the current stack pointer before loading the pointer for the
other stack.

When an interrupt occurs while the auxiliary stack is switched
in, the current stack pointer is stored at $101, and the main
stack pointer is retrieved from $100. Then the main stack is
switched in for use. After the interrupt has been handled, the
stack pointer is restored to its original value.

Appendix E: Interrupts

L.Jn Ele it EeECBU T T TL T TRl



1 | o

W £3 users Interrupt Handler at $3FE

Screen hole locations can be set up to indicate that the user's
interrupt handler should be called when certain interrupts occur.
To use such a routine, place its address at $3FE and $3FF in
main memory, low byte first.

The user’s interrupt handler should do the following:

® Verify that the interrupt came from the expected source. The
following sections describe how this should be done for
each interrupt source.

® Haridle the interrupt as desired.

® Clear the interrupt, if necessary. The following sections
describe how to clear the interrupts.

® Return using an RTI instruction.

If your interrupt handler needs to know the memory
configuration at the time of the interrupt, it can check the
encoded byte stored four bytes down on the stack. This byte is
explained in section E.4.

In general there is no guaranteed response time for interrupts.
This is because the system may be doing a disk operation,
which could last for several seconds.

Once the built-in interrupt handler has been called, it takes
about 250 to 300 microseconds for it to call your interrupt
handling routine. After your routine returns, it takes 40 to
140 microseconds to restore memory and return to the
interrupted program.

If memory is in the standard state when the interrupt occurs,
the total overhead for interrupt processing is about

150 microseconds less than if memory is in the worst possible
state (BOSTORE and PAGE2 on, auxiliary memory switched in
for reading and writing, auxiliary bank-switched memory page 2
switched in for reading and writing).

E.3 User's Interrupt Handler at $3FE [47




Wcs Handling Break Instructions

481

After the interrupt handler has set the memory configuration, it
checks to see if the interrupt was caused by a BRK

(opcode $00) instruction. (If it was, bit 4 of the processor status
byte is a one). If so, it jumps to a break handling routine, which
saves the state of the computer at the time of the break as
follows.

Information Location
Program counter (low byte) $3A
Program counter (high byte) $3B
Encoded memory state $44
Accumulator $45
X register $46
Y register 547
Status register 548

Finally the break routine jumps to the routine whose address is
stored at $3F0 and $3F1.

The encoded memory state in location $44 can be interpreted
as follows:

Bit 7 = 0

Bit & = if BOSTORE and PAGEZ2 both on

Bit 5 = 1 if auxiliary RAM switched in for reading
Bit 4 = 1 if auxiliary RAM switched in for writing

Bit 3 = 1 if bank-switched RAM being read

Bit 2 = 1 if bank-switched $D000 page 1 switched in
Bit 1 = if bank-switched $D000 page 2 switched in
Bit 0 = 0

Appendix E: Interrupts

T T HH

Tl

Tl

L FL DR R e BB TR T T




EF B el e e ErEr e e e e e i

- F; Sources of Interrupts

The Apple llc can receive interrupts from many different
sources. Each source is enabled and used slightly differently
from the others. There are two basic classes of interrupt
sources: those associated with use of the mouse, and those
associated with the two 6551 ACIA circuits (the chips that
control serial communication).

The interrupts that are associated with the mouse are these:

® An interrupt can be generated when the mouse is moved in
the horizontal (X) direction.

® An interrupt can be generated when the mouse is moved in
the vertical (Y) direction.

® An interrupt can be generated every 1/60 second. This is
called the vertical blanking (VBL) interrupt, and is
synchronized with a signal used for the video display.

e Using the firmware, interrupts can be generated when the
mouse button is pressed.

E.5 Sources of Interrupts [49




The interrupts that are associated with the ACIlAs are these:

e An interrupt can be generated when a key is pressed. The
firmware can use this interrupt to buffer keystrokes, or it can
pass the interrupt on to the user.

e An interrupt can be generated by a device attached to the
external disk drive port. The firmware can pass this interrupt
on to the user.

e An interrupt can be generated when either ACIA has
received a byte of data from its port. The firmware can use
this interrupt to buffer data or it can pass the interrupt on to

the user.

e An interrupt can be generated when pin 5 of either serial
port changes state (device ready/not ready to accept data).
When the serial firmware is active, this interrupt is absorbed;
however, the serial firmware uses the signal to decide
whether or not to transmit the next byte of data.

e An interrupt can be generated when either ACIA is ready to
accept another character to be transmitted. When the serial
firmware is active, this interrupt is absorbed; however, the
serial firmware uses the signal to decide whether or not to
transmit the next byte of data.

e An interrupt is generated when the keyboard strobe is
cleared. The firmware absorbs this interrupt.

._E.G Firmware Handling of Interrupts

501

The following sections discuss the various sources of interrupts
and how they should be used in conjunction with the built-in
interrupt handler.

E.6.1 Firmware for Mouse and VBL

As described in Chapter 9, the mouse can be initialized (by the
SETMOQUSE call) to nine different modes that enable one or
more sources of interrupts. In transparent mode, the interrupts
are entirely handled by the built-in interrupt handler; the other
modes require a user-installed interrupt handler.

Appendix E: Interrupts

l e TRl EG BB L LT AL RV'ER RN TRL




ke

EF I~ Er—Lrer—&r & & &£ &£

When the mouse is initialized, the interrupt vector is copied to
addresses $FFFE and $FFFF in main and auxiliary
bank-switched RAM. This permits mouse interrupts with any
memory configuration.

When the mouse is active, possible sources of interrupts are:
¢ Mouse movement in the X direction

¢ Mouse movement in the Y direction

® Change of state of the button

® Rising edge of the vertical blanking signal.

When an interrupt occurs, the built-in interrupt handler
determines whether that particular interrupt source was enabled
(by the SETMOUSE call). If so, the user's interrupt handler,
whose address is stored at $3FE, is called.

The user's interrupt handler should first call SERVEMOUSE to
determine the source of the interrupt. This call updates the
mouse status byte at $77C and returns with the carry bit clear it
mouse movement, button, or vertical blanking was the source of
the interrupt.

The values of this mouse status byte at $77C are as follows:
Bit 1 means that

3 Interrupt was from vertical blanking
2 Interrupt was from button
1 Interrupt was from mouse movement

If the interrupt was due to mouse movement or button, the
user's interrupt handler should then do a call to READMOUSE.
This causes the mouse coordinates and status to be updated as
follows:

$47C Low byte of X coordinate
$4FC Low byte of Y coordinate
$57C High byte of X coordinate
$5FC High byte of Y coordinate

E.6 Firmware Handling of Interrupts (51



52]

$77C Button and movement status

Bit Means

7 0 =  button up; 1 = button down

6 0 = button up on last READMOUSE
1 —  putton down on last READMOUSE

5 0 —  no movement since last READMOUSE
1 movement since last READMOUSE

31 always set to 0 (interrupt cleared)

After the interrupt has been handled, the routine should
terminate with an RTI.

As already mentioned, interrupts may be missed during disk
accesses.

If you turn on mouse interrupts without initializing the mouse,
the built-in interrupt handler will absorb the interrupts. If you
want to handle mouse interrupts yourself, you must write your
own interrupt handler and place vectors to it at addresses
$FFFE and $FFFF in bank-switched RAM. Interrupts will be
ignored whenever the $D000-$FFFF ROM is switched in.

E.6.2 Firmware for Keyboard Interrupts

The Apple lic hardware is able to generate an interrupt when a
key is pressed. The firmware is able to buffer up to

128 keystrokes, completely transparently, when properly
enabled to do so. It saves them in the second half of page 8 of
auxiliary memory. After the buffer is full, subsequent keystrokes
are ignored. Because interrupts are only generated when
keypresses occur, characters generated by the auto-repeat
feature are not buffered. They can, however, be read when the
buffer is empty.

Once keyboard buffering has been turned on, the next key
should be read by calling RDKEY ($FDOC).

Warning
Do not call the buffer reading routine directly. Its entry address
will not be the same in future versions of the computer.

Appendix E: Interrupts

Fl thea®BldB BB 'EL BLTLOFLOBLELELE T

|




CrEr—~r=ir=er—er—r—£rbr&r &£ i

See Chapter 8.

The special characters (stop list) and
(stop Applesoft execution) do not work
while keyboard buffering is turned on. A new keystroke,

[ H{{CoNTROL HX), clears the buffer.

Using Keyboard Buffering Firmware

Keyboard buffering is automatically turned on when the serial
firmware is placed in terminal mode. Otherwise you must turn it
on yourself.

1. Disable processor interrupts (SEI).

2. Set location $5FA to $80. This tells the firmware to buffer
keystrokes without calling the user’'s interrupt handler.

3. Set locations $5FF and $6FF to $80. These are pointers to
where in the buffer the next keystroke will be stored and
where the next will be read from, respectively.

4. Turn on the ACIA for port 2 by setting the low nibble of
SCOAA to the value $F. For example:

LDA $COAA ;read port 2 ACIA command register
ORA #30F ;set low nibble to $F
STA $COAA ;set port 2 ACIA command register

If you are using the serial ports at the same time, just set
the low bit of $COAA to 1. This prevents receiver interrupts
from being turned off.

A PR#2 or IN#2 or the equivalent will shut off keyboard
interrupts.

5. Enable processor interrupts (CLI).

Using Keyboard Interrupts Through Firmware

Keyboard interrupts are received through the ACIA for port 2.
They can be enabled as follows:

1. Disable processor interrupts (SEI).
2. Set location $5FA to $CO0. This tells the firmware to identify a
keystroke interrupt, and to call the user's interrupt handler.

3. Turn on the ACIA for port 2 by setting the low nibble of
$COAA to the value $F. For example:

E.6 Firmware Handling of Interrupts (53




541

LDA $COAA :read port 2 ACIA command register
ORA #$0F :set low nibble to $F
STA $COAA :set port 2 ACIA command register

4. Enable processor interrupts (CLI).

When the user's interrupt handler is called, it can identify the
keyboard as the interrupt source by reading location $4FA. This
is a copy of the ACIA status register at the time of the interrupt.
If the interrupt was due to something on the ACIA for port 2,
bit 7 is set. If the interrupt was caused by a keystroke, bit 6 is
set and bit 5 is unchanged.

After servicing this interrupt, the interrupt handler should clear
the interrupt by setting $4FA to 0.

E.6.3 Using External Interrupts Through Firmware

Pin 9 of the external disk drive connector (EXTINT) can be used
to generate interrupts through the ACIA for port 1. It can be
used as a source of interrupts (on a high-to-low transition) if
enabled as follows:

1. Disable processor interrupts (SEI).

2. Set location $5F9 to $CO. This tells the firmware to identify
an external interrupt, and to call the user’s interrupt handler.

3. Turn on the ACIA for port 1 by setting the low nibble of
$CO9A to the value $F. For example:

LDA $CO09A -read port 1 ACIA command register
ORA #$0F :set low nibble to $F
STA $CO9A -set port 1 ACIA command register

4. Enable processor interrupts (CLI).

When the user’s interrupt handler is called, it can identify this
interrupt by reading location $4F9. This is a copy of the ACIA
status register at the time of the interrupt. If the interrupt was
due to something on the ACIA for port 1, bit 7 is set. If the

interrupt was caused by the external interrupt line, bit 6 is clear
and bit 5 is unchanged.

After servicing this interrupt, the interrupt handler should clear
the interrupt by setting $4F9 to 0.

Appendix E: Interrupts

W L YO O W W o Y W W

l Ee Pl R



LBl £r—Er—&rEr brEr i

See Chapter 8.

E.6.4 Firmware for Serial Interrupts

The Apple lic hardware is able to generate interrupts both when
the ACIA receives data and when it is ready to send data. The
built-in interrupt handler responds to incoming data only. The
firmware is able to buffer up to 128 incoming bytes of serial
data from either serial port. After the buffer is full, data is
ignored. Only one port can be buffered at a time.

The following sections assume that the serial port to be
buffered is already initialized, as explained in Chapter 8.

Using Serial Buffering Transparently

Serial buffering is automatically turned on when the serial
firmware is placed in terminal mode. Otherwise you must turn it
on yourself, as follows:

1. Disable processor interrupts (SEI).

2. Set location $4FF to $C1 to buffer port 1, or to $C2 to buffer
port 2.

3. Set locations $57F and $67F to 0. These are pointers to the
next byte in the buffer to be used and the next character to
be read from the buffer, respectively.

4. Turn on the ACIA for the port by setting the low nibble of
$CO09A for port 1 or $COAA for port 2 to $D. For example:

LDA $CO9A ;read port 1 ACIA command register

AND $FO .clear low nibble

ORA #$0D ;set low nibble to $D

STA $CO09A ;5et port 1 ACIA command register

The 0 in bit 1 of the command register enables receiver
interrupts, thus an interrupt is generated when a byte of data
is received.

5. Enable processor interrupts (CLI).

When serial port buffering is thus enabled, normal reads from
the serial port firmware fetch data from the buffer rather than
directly from the ACIA.

E.6 Firmware Handling of Interrupts [s5




561

Using Serial Interrupts Through Firmware

It is also possible to use the firmware to call the user interrupt
handler whenever a byte of data is read by the ACIA. In this
mode buffering is not performed by the firmware.

1. Disable processor interrupts (SEI).
2. Set location $4FF to a value other than $C1 or $C2.

3. Turn on the ACIA for the port by setting the low nibble of
$CO9A for port 1 or $COAA for port 2 to $D. For example:

LDA $C09A -read port 1 ACIA command register
AND $FO ;clear low nibble

ORA #$0D ;set low nibble to $D

STA $CO09A :set port 1 ACIA command register

The 0 in bit 1 of the command register enables receiver
interrupts, thus an interrupt is generated when a byte of data
is received.

4. Enable processor interrupts (CLI).

When a serial port is thus enabled, the user's interrupt handler
is called each time the port receives a byte of data. The status
byte saved by the firmware ($4F9 for port 1; $4FA for port 2)
has the high bit set if the interrupt occurred on that port. Bit 3
is set if the interrupt was due to a received byte of data.

The interrupt handler should clear the interrupt by clearing
bits 7 and 3 of that port's status byte ($4F9 for port 1; $4FA for
port 2).

Appendix E: Interrupts

i FoaeFL TETiTBGEL T 'L T T THE T MM 'y T




Transmitting Serial Data

The serial firmware does not implement buffering for serial
output. Instead it waits for two conditions to be true before
transmitting a character:

e The ACIA's transmit register must be ready to accept a
character. This is true if bit 4 of the ACIA's status register
is 1.

e The device must signal that it is ready to accept data. This is
true if bit 5 of the ACIA's status register is 0. Bit 5 is 0 if
pin 5 of the port's connector is also 0.

When the serial firmware is active, a change of state on pin 5 of
that port generates an interrupt. That interrupt is absorbed, but
the data remains in bit 5 of the status register. Interrupts from
the ACIA's transmit register are normally disabled.

A Loophole in the Firmware

So that programs can make use of interrupts on the ACIAs
without affecting mouse interrupt handling, there is a tiny
loophole purposely left in the built-in interrupt handler. If
transmit interrupts are enabled on the ACIA—that is, if bits 3, 2,
and 0 of the ACIA's command register have the values 0, 1,
and 1, respectively—then control is passed to the user's
interrupt handler if the interrupt is not intended for the mouse
(movement, button, or VBL).

This means that you can write more sophisticated serial
interrupt handling routines than the limited firmware space could
provide (such as printer spooling). The firmware will still set
memory to its standard state, handle mouse interrupts, and
restore memory after your routine is finished.

When you receive the interrupt, neither ACIA's status register
has been read. You are fully responsible for checking for
interrupts on both ACIAs, determining which of the four
interrupt sources on each ACIA caused the interrupt, and how
to handle them. Refer to the 6551 specification for more details.
The built-in firmware itself is an excellent example of how
interrupts on the ACIA can be handled.

E.6 Firmware Handling of Interrupts [57



E.? Bypassing the Interrupt Firmware

Table E-1. Activating Mouse Interrupts

To Activate
Interrupts On

Mouse X
(rising edge)

Mouse X
(falling edge)

Mouse Y
(rising edge)

Mouse Y
(falling edge)

VBL

Enable 10U
Access

STA $C079
STA $C079
STA $C079

STA §CO79

STA 5C079

Table E-2. Reading Mouse Interrupts

To Read
Interrupts From
Mouse X

Mouse Y

VEBL

581

Read Direction

(A.S.A.P.)
LDA $CO66

LDA ECO67

The following sections give further details on using interrupts on
the Apple llc computer without using the built-in interrupt
handler.

E.7.1 Using Mouse Interrupts Without the Firmware

To use mouse interrupts without the firmware, as mentioned
above, you must set your own interrupt vectors. If $D000-$FFFF
ROM is ever switched in, the built-in interrupt handler will
absorb the mouse interrupts. Tables E-1 and E-2 show how to
activate and read mouse interrupts without using the firmware.
Remember to disable interrupts (SEI) before enabling mouse
interrupts, then turn them on when done (CLI).

Select Enable Disable

Source Source 10U Access

STA SC05C STA 5C059 STA $C078

STA §C0O5D STA $C059 STA $C078

STA BCO5E STA $C059 STA $C078

STA $COSF STA $C059 STA $C078
STA $C05B STA §CO078

Determine Handle

Source It Return

LDA $C015 RTI

(bit 7=1 if true)

LDA $C017 RTI

{bit 7=1 if true)

LDA $C019 RTI

(bit 7=1 if true)

The mouse direction data read from $C066 and $C067 is
guaranteed to be valid for at least 40 microseconds. Average
duration is at least 200 microseconds. This means you should
read the direction as soon as possible.

Appendix E: Interrupts

L e FLo BT T BB T T TL T1 T

LR A

Tl



LB e

8 |

e
|

E.7.2 Using ACIA Interrupts Without the Firmware

To use ACIA interrupts without the firmware, you must set your

own interrupt vectors. If the $D000-$FFFF ROM is ever

switched in, the built-in interrupt handler will handle the interrupt
as determined by certain mode bytes (section E.6.1).

When writing your serial interrupt handler, refer to Figures 11.31
through 11-33 and to the Synertek 6551 ACIA specification. As
shown in Chapter 11, the ACIA's have the following

connections:

Port 1: DSA line connected to the EXTINT line on

the external disk port

DCD line connected to pin 5 of Port 1

connector

Port 2: DSR line goes high when a key is

pressed

DCD line connected to pin 5 of Port 2

connector

The ACIA registers have the following addresses:

Port 1: Data Register
Status Register
Command Register
Control Register

Port 2: Data Register
Status Register
Command Register
Control Register

E.7 Bypassing the Interrupt Firmware

$C098
$C099
$CO9A
$C09B

5CO0AB
3CO0AS
SCOAA
$COAB

[59




saauaiajyiq sauags || ajddy




14

R

} X1 puadde

This appendix compares the Apple lic to the Apple lle,
Apple Il Plus, and Apple Il

. F.1 Overview

This appendix does not contain an exhaustive list of
differences. However, it does include those differences most
likely to affect the accuracy of programs, displays, and
instructions created for end users of two or more models from
the Apple Il Series.

As an overview, the differences between the Apple Il series
computers can be expressed as a series of equations: this
computer equals that one plus or minus certain features.

Note: The following equations are merely an overview of
what each model of Apple Il Series is with respect to its
predecessor. These equations are in terms of functional
equivalence, not strict equality. For example,

Apple lle = Apple Il Plus + Apple Language Card

does not mean there is an actual language card or slot—just
that the one machine functions as if it were the other with
such a card (with its connector) in a slot.

F.1 Overview 1_67




62|

Autostart ROM
Applesoft firmware
48K RAM standard

- 0Old Monitor ROM
- Integer BASIC firmware

Apple Il Plus

++ +

Il Plus + Apple Language Card (with 16K
of RAM)

80-column (enhanced) video
firmware

built-in diagnostics

full ASCIl keyboard

internal power light

FCC approval

improved back panel

9-pin back panel game
connector

auxiliary slot (with possibility of
80-column text card

extra 64K RAM)

slot 0

Apple lle

A+ +

.

+

extended 80-column text card
80/40 switch

keyboard switch

disk light

disk controller port

disk drive

mouse port

serial printer port

serial communication port
built-in port firmware

video expansion connector

Apple llc = lle

BB BB L A | 'R 'R H

- removable cover

- slots1to?7

- auxiliary slot

- internal power light

- cassette /O connectors

- internal game |/O connector
(hence no game output)

- auxiliary video pin

- monitor cassette support

X

T LRt

Appendix F: Apple Il Series Differences

’




oo oD Er B Il

F.1.1 Type of CPU

The CPU in the Apple Il and Il Plus is the 6502. The Apple lle
uses a 6502A. The Apple lic uses the 65C02: this is a
redesigned CMOS CPU that has 27 new instructions, new
addressing modes, and for some instructions a differing
execution scheme and machine cycle counts (see Appendix A).
Programs written for the Apple llc will run on the earlier
machines only if they do not contain instructions unigue to the
65C02, or depend on instruction cycle times that differ.

F.1.2 Machine Identification

Identification of Apple Il series computers is as follows:

Machine $FBB3 SFBCO SFB1E
Apple Il %38

Apple Il Plus SEA

Apple lle 506 SEA

Apple llc 506 $00

Apple Il in Apple Il

Emulation Mode SEA $8A

Any future Apple Il series computer or ROM release will have
different values in these locations. Machine identification
routines are available from Apple Vendor Technical Support.

With regard to ProDOS, its MACHID byte, at location $BF98 on
the global page, will have bit 3 set to 0 if the computer is an
Apple Il, Il Plus, lle, or lll, and a 1 if the computer is not one of
these machines. In addition, for an Apple llc, bits 7 and 6 are
set to binary 10.

Bits 7 and 6 set to binary 10 indicate that a computer is
Apple lle and llc compatible, regardless of the value of bit 3.

F.1 Overview lﬁ




M- Memory Structure

This section compares the memory organization of the Apple llc
with that of the Apple II, Il Plus, and lle. These machines differ
in RAM space, ROM space, slot or port address space, and
hardware page use.

F.2.1 Amount and Address Ranges of RAM

The Apple Il could have as little as 4K of RAM at the time of
purchase, and could be upgraded to as much as 48K of RAM,
following a procedure described in the Apple Il Reference
Manual.

The Apple Il Plus has 48K of RAM (50000 through $BFFF) as a
standard feature. With the addition of an Apple Language Card,
a 48K Apple Il or Il Plus could be expanded to have 64K of

RAM.

The Apple lle has a full 64K of RAM. The top 12K addresses
overlap with the ROM addresses D000 through $FFFF. There
is an additional bank -switched area of 4K from D000
through $DFFF. This arrangement is equivalent to an Apple I
Plus with an Apple Language Card installed. A program selects
between the RAM and ROM address spaces and between the
$Dxxx banks by changing soft switches located in memory.

With an Extended 80-Column Text Card installed in its auxiliary
slot, an Apple lle has an additional 64K of RAM available,
although no more than half of the 128K of RAM space is
available at any given time. Soft switches located in memory
control these address space selections.

The RAM in the Apple llc is equivalent to the RAM in an
Apple lle with an Extended 80-column Card.

B B L L TR TTL

IEl

gt

64l Appendix F: Apple Il Series Differences




[ e e e e e e e i

F.2.2 Amount and Address Ranges of ROM

The Apple Il has 8K of ROM ($E000 through $FFFF), and the
Apple Il Plus has 12K of ROM ($D000 through $FFFF). Users
can plug their own ROMs into the sockets provided. The
on-board (as opposed to slot) ROM address range is from
$D000 through $FFFF.

The Apple lle has 16K of ROM, of which it uses 15.75 K
(addresses $C100 through $FFFF; page $C0 addresses are for
I/O hardware). ROM addresses $C300 through $C3FF (normally
assigned to the ROM in a card in slot 3) and $C800 through
$CFFF contain 80-column video firmware; ROM addresses
$C100 through $C2FF and $C400 through $C7FF (normally
assigned to the ROM on cards in slots 1, 2, 4, 5, 6 and 7)
contain built-in self-test routines.

A soft switch in RAM controls whether the video firmware or
slot 3 card ROM is active. Invoking the self-tests with

[ ® - CONTROL H RESET ) causes the self-test firmware to

take over the slot ROM address spaces.

The Apple llc ROM also uses the 15.75 K from $C100 through
$FFFF, and its enhanced video firmware has the same entry
point addresses as on the Apple lle. However, there are only
rudimentary built-in self-tests, and these do not pre-empt any
port firmware space.

In the Apple llc, addresses $C100 through $CFFF contain 1/O
and interrupt firmware, addresses $D000 through $F7FF contain
the Applesoft BASIC Interpreter, and addresses $F800 through
$FFFF contain the Monitor.

F.2 Memory Structure (65




F.2.3 Peripheral-Card Memory Spaces

Each Apple lic port has up to sixteen peripheral-card /O space
locations in main memory on the hardware page (beginning at
location $C0s0 + %80 for slot or port s), allocated in the
standard Apple Il series way (that is, beginning at location
$C0s0 + $80 for each slot s).

The peripheral-card ROM space (page $Cs for slot s in the
Apple 11, 1l Plus, and lle) contains the starting and entry-point
addresses for port s, but port routines are not limited to their
allocated $Cs pages.

The 2K-byte expansion ROM space from $C800 to $CFFF in
the Apple llc is used by the enhanced video firmware and
miscellaneous 1/O and memory-transfer routines.

The 128 bytes of peripheral-card RAM space or scratch-pad
RAM (64 screen holes in main memory and their equivalent
addresses in auxiliary memory) are reserved for use by the
built-in firmware. It is extremely important for the correct
operation of Apple lic firmware that these locations not be
altered by software except for the specific purposes described
in Chapters 7, 8, and 9, and in Appendix E.

F.2.4 Hardware Addresses

The hardware page (the addresses from $C000 through $COFF)
controls memory selection and input/output hardware
characteristics. All input and output (except video output) takes
place at one or more hardware page addresses. For the sake of
simplicity, this section presents only a general comparison
between the Apple llc on the one hand, and the Apple Il, Il Plus,
and lle on the other, with respect to most hardware page uses.
However, for many characteristics, the Apple lle and llc work
one way, while the Apple Il and Il Plus work another.

Appendix F: Apple Il Series Differences

{ WLl W T YL T T Y O

fEleFL



i e

"

$C000 to SCOOF

On all Apple Il series computers, reading any one of these
addresses reads the keyboard data and strobe. On the

Apple lle and lic, writing to each of these addresses turns
memory and display switches on and off. Writing to addresses
$C006, $C007, $CO0A, and $CO0B performs ROM selection on
the Apple lle. Writing to these four addresses is reserved on the
Apple llc.

For reading the keyboard, use $C000; reserve $C001 through
$COO0F.

$C010 to SCO1F

On all Apple Il series computers, writing to any one of these
addresses clears the keyboard strobe. On the Apple lle and llc,
reading each of these addresses checks the status of a memory
or display switch, or the any-key-down flag.

For clearing the keyboard strobe, use $C010; reserve $C011
through $CO1F.

Reading $C015 checks the SLOTCXROM switch on the

Apple lle, but it resets the X-movement interrupt (XINT) on the
Apple llc. Similarly, reading $C017 checks the SLOTC3ROM
switch on the Apple lle, but it resets the Y-movement interrupt
(YINT) on the Apple llc.

Reading $C019 checks the current state of vertical blanking
(VBL) on the Apple lle, but it resets the latched vertical blanking
interrupt (VBLINT) on the Apple llc.

F.2 Memory Structure (67




$C020 to $CO2F

On the Apple II, Il Plus, and lle, reading any address $C02x
toggles the cassette output signal. On the Apple lic, both
reading from and writing to these locations are reserved.

$C030 to $CO3F

On all Apple Il series computers, reading an address of the
form $C03x toggles the speaker. For full Apple Il series
compatibility, toggle the speaker using $C030, and reserve
$C031 through $CO3F.

On the Apple lic, writing to these addresses is explicitly
reserved.

$C040 to $CO4F

On the Apple II, Il Plus, and lle, reading any address of the
form $C04x triggers the Utility Strobe. The Apple lic has no
Utility Strobe.

On the Apple lic, addresses $C044 through $C047 are explicitly
reserved, and reading or writing any address from $C048
through $CO4F resets both the X and Y interrupts (XINT and
YINT).

$C050 to $CO5F

Addresses $C050 through $C057 work the same on the
Apple llc as on the Apple lle: they turn the TEXT, MIXED,
PAGE2 and HIRES switches on and off.

Appendix F: Apple Il Series Differences

e BB TLTL L TL T SRR

Fi

'fi



EEr e

BRI EEREE

On the Apple lle, addresses $C058 through $CO5F turn the
annunciator outputs on and off. On an Apple lle with a

revision B main logic board, an Apple Extended 80-Column Text
Card, and a jumper installed on the card, reading locations
$CO5E and $COSF set and clear double-high-resolution display
mode.

On the Apple llc, if the IOUDIS switch is on, both reading from
and writing to addresses $C058 through $CO05D are reserved,
and addresses $CO05E and $CO5F set and clear
double-high-resolution display (as on the Apple lle equipped as
described in the preceding paragraph). If the IOUDIS switch is
off, then addresses $C058 through $CO5F control various
characteristics of mouse and vertical blanking interrupts

(Table 9-2).

$C060 to $CO6F

On the Apple llc, writing to any address of the form $C06x is
reserved, and reading addresses $C068 through $CO6F is
reserved.

Reading addresses $C061 and $C062 is the same as on the
Apple lle (switch inputs and Apple keys). Reading addresses
$C064 and $C065 is the same as on all other Apple Il series
computers (analog inputs 0 and 1).

On the Apple llc, address $C063 bit 7 is 1 if the mouse switch
is not pressed, and 0 if it is pressed, so that software looking
for the shift-key mod (used on Apple I, Il Plus, and lle with
some text cards) will find it and display lowercase correctly. If
by chance the mouse button is pressed when the software
checks location $CO063, it will appear that the shift-key mod is
not present.

F.2 Memory Structure (69




701

On the Apple lic, address $C060 is used for reading the state of
the 80/40 switch; on the Apple Il, Il Plus, and lle, this address is
for reading cassette input.

The Apple llc has two, rather than four, analog (paddle) inputs.
Addresses $C066 and $C067 are used for reading the mouse
X and Y direction bits.

$C070 to $CO7F

On the Apple Il, Il Plus, and lle, reading from or writing to any
address of the form $CO07x triggered the (analog input) paddle
timers.

On the Apple llc, only address $C070 is to be used for that one
function. Addresses $C071 through $CO07D are explicitly
reserved. The results of reading from or writing to addresses
$CO7E and $CO7F are described in Table 5-8.

$C080 to $CO8F

On the Apple lle and llc, accessing addresses in this range
selects different combinations of bank-switched memory banks.
However, addresses $C084 through $CO087 duplicate the
functions of the four addresses preceding them, and addresses
$CO8C through $CO8F do also. These eight addresses are
explicitly reserved on the Apple llc.

$C090 to $COFF

On the Apple II, Il Plus, and lle, each group of 16 addresses of
the form $C080 + %s0 is allocated to an interface card (if
present) in slot s.

On the Apple lic, addresses corresponding to slots 1, 2, 3, 4
and 6 are allocated to a serial interface card, communication
interface card, 80-column text card, mouse interface card, and
disk controller card, respectively. All other addresses in this
range are reserved.

Appendix F: Apple Il Series Differences

L‘ﬂ FL_ el F L EL L TL TL Tl P T LR Tl




B R

F.2.5 Monitors

The older models of the Apple Il and Apple Il Plus included a
different version of the System Monitor from the one built into
more recent models (and the Apple lle and lic). The older
version, called the Monitor ROM, had the same standard I/O
subroutines as the newer Autostart ROM, but a few of their
features were different; for example, there were no arrow keys
for vertical cursor motion.

When you start the Apple llc with a DOS or BASICS disk and it
loads Integer BASIC into the bank-switched area in RAM, it
loads the old Monitor along with it. When you type INT from
Applesoft to activate Integer BASIC, you also activate this copy
of the old Monitor, which remains active until you either type FP
to switch back to Applesoft, which uses the new Monitor in
ROM, or activate the 80-column firmware.

F.2 Memory Structure 71




M ~3 /0 in General

Interrupts on the Apple lic are
described in Appendix E.

721

Apple lic I/O is different from I/O on the Apple Il, Il Plus, and lle
in three important respects: the possibility of direct memory
access (DMA) transfers, the presence or absence of slots, and
the presence or absence of built-in interrupt handling.

F.3.1 DMA Transfers

The Apple Il, Il Plus, and lle allow DMA transfers, because both
the address and the data bus are available at the slots. No true
DMA transfer is possible with the Apple llc because neither bus
is available at any of the back-panel connectors.

F.3.2 Slots Versus Ports

The Apple Il and Il Plus have eight identical slots; the Apple lle
has seven identical slots plus a 60-pin auxiliary slot for video,
add-on memory and test cards. The Apple llc has no slots;
instead, it has built-in hardware and firmware that are functional
equivalents of slots with cards in them (and back-panel
connectors). These are called ports on the Apple llc.

F.3.3 Interrupts

The Apple lic is the first computer in the Apple Il Series to have
built-in interrupt-handling capabilities.

Appendix F: Apple Il Series Differences

T

T T T T

Tl

LTl Tl

Th

| T O W W |

] &



W F.4 Kkeyboard

Both keyboard layout and character sets vary in the Apple I
series computers. The major keyboard difference in the Apple Il
Series is that the Apple lle and llc have full ASCIl keyboards,
while the Apple Il and Il Plus do not.

F.4.1 Keys

The Apple Il and Il Plus have identical 52-key keyboards. The
Apple lle and Apple lic keyboards have the same 63-key full
ASCII keyboard layout, with new and repositioned keys and
characters as compared to the Apple Il and Il Plus. While the
Apple Il and Il Plus have a key, the lle and llc have an
auto-repeat feature built into each character key.

Some Apple Il and Apple Il Plus machines have a slide switch
inside the case, under the keyboard edge of the cover, for
selecting whether or not works without (CONTROL). On
the Apple lle and Apple llc, there is no choice:

(conTROL -(RESET ) works, and alone does not.

The Apple lic and lle have an (¢ ) and a (&) key;
the Apple Il and Il Plus do not have these two keys.

The captions on several keys—(ESC), (TAB), (CONTROL ),

(SHIFT), (CAPS-LOCK ), (DELETE), (RETURN), and (RESET )—can vary:
on the Apple Il and Il Plus some are abbreviated or missing; on
the Apple lic all keycaps are lowercase italic; on international
models, some captions are replaced by symbols (Appendix G).

F.4 Keyboard [73

B




o e e

The Apple llc has two switches that the other models do not
have. One switch is for changing between 40-column and
80-column display, the other is for selecting keyboard layout
(Sholes versus Dvorak on USA models), or both keyboard
layout and character set (on international models).

The position of the power-on light differs on the Apple Il and
Il Plus, Apple lle, and Apple llc. The Apple llc has a disk-use
light as well.

FL L H

EA

F.4.2 Character Sets

The Apple Il and Il Plus keyboard character sets are the same.
They are described in the Apple /I Reference Manual.

The Apple lle and Apple llc keyboard character sets are the
same: full ASCIl. The standard (Sholes) layout and key
assignments are described in the Apple lle Reference Manual.
The Dvorak layout and key assignments are described in
Chapter 4 and Appendix G of this manual.

To change between the two available keyboard layouts requires
modification to the main logic board on the Apple lle, but only
toggling of the keyboard switch on the Apple lic.

Apple Computer, Inc. manufactures fully localized models
(power supply and character sets) of both the Apple lle and the
Apple llc. However, there are minor variations in keyboard
layout, even among early and late productions models of the
same machine. For further details, refer to Appendix G of this
manual or to the Apple lle Supplement to the Owner's Manual.

Appendix F: Apple Il Series Differences

Tl

Il

L’-ﬂ Ele R T B BAEL T TL T




o e

-5 Speaker

The Apple lic has two speaker features that the three previous
models do not have. They are a two-channel, but monaural,
mini-phone jack for headphones—which disconnects the
internal speaker when something is plugged into it—and a
volume control.

M .6 video Display

This section discusses the general differences between
Apple lic video display capabilities and those of the other
computers in the series. Note however that as new ROMs
become available for the Apple lle, many differences between
these two machines will vanish.

F.6.1 Character Sets

The Apple Il and Il Plus display only uppercase characters, but
they display them in three ways: normal, inverse, and flashing.
The Apple llc and lle can display uppercase characters in all
three ways, and they can display lowercase characters in the
normal way. This combination is called the primary character
set.

The Apple llc and lle have another character set, called the
alternate character set, that displays a full set of normal and
inverse uppercase and lowercase characters, but can't display
flashing characters. The primary and alternate character sets
are described in Chapter 5. You can switch character sets at
any time by means of the ALTCHAR soft switch, also described
in Chapter 5.

Flashing display must not be used with the enhanced video
firmware active. Use it in 40-column mode with the enhanced
video firmware turned off; otherwise, strange displays may
result, such as MouseText characters appearing in place of
uppercase letters.

To be compatible with some software, you have to switch the
Apple lic keyboard to uppercase by pressing (CAPS LOCK).

F.6 Video Display [75



761

F.6.2 MouseText

MouseText characters (Chapter 5) are available on every
Apple lic, and on any Apple lle that has had its ROMs
appropriately upgraded, if necessary.

F.6.3 Vertical Blanking

A signal called vertical blanking indicates when a display device
should stop projecting dots until the display mechanism returns
from the bottom of the screen to the top to make another pass.
During this interval, a program can make changes 10 display
memory pages, and thus provide a smooth, flicker-free
transition to a new display.

On the Apple lle, vertical blanking (VBL) is a signal whose level
must be polled. (VBL is not available to software on the Apple Il
or Il Plus.) On the Apple lic, vertical blanking is an interrupt
(VBLINT) that occurs on the trailing edge of the active-low VBL
signal. Programs intended to run on all Apple Il series
computers must take this difference into account.

F.6.4 Display Modes

All models have 40-column text mode, low-resolution graphics
mode, high-resolution graphics mode, and mixed graphics and
text modes. The Apple lle (revision B motherboard) with an
Apple Extended 80-Column Text Card, and the Apple lic have
double-high-resolution graphics mode also.

Appendix F: Apple Il Series Differences

Lt Pl B T Bl Bl BB B TL TL T T T T T




L L

B

W -7 Disk 10

The Apple Il, Il Plus, and lle can support up to six (four is the
recommended maximum) disk drives attached in controller
cards plugged into slots 6, 5, and 4. The Apple lic supports up
to two disk drives: its built-in drive (treated as slot 6 drive 1),
and one external disk drive (treated as slot 6 drive 2; also
treated as slot 7 drive 1 under ProDOS) for external-drive
startup purposes.

M .5 serial 10

The Apple llc serial ports (ports 1 and 2) are similar to Super
Serial Cards installed in slots 1 and 2 of an Apple lle. The serial
port commands are a slightly modified subset of Super Serial
Card commands. This subset includes all the commands
supported by the earlier Apple Serial Interface Card and
Communication Card.

F.8.1 Serial Ports Versus Serial Cards

There are several important differences between Apple llc serial
ports and other Apple Il series computers with serial cards
installed in them.

Apple llc serial ports have no switches. Instead, initial values
are moved from firmware locations into auxiliary memory when
the power is turned on. Changes made to these values in
auxiliary memory remain in effect until the power is turned off.
Pressing (& |-(CoNTROL -(RESET ) does not change them.

When the port itself is turned on (with an IN or PR command),
the initial values in auxiliary memory are placed in the main
memory screen holes assigned to the port. These
characteristics can be changed by the port commands. The
changed characteristics remain in effect until the port is turned
off and then on again (with PR and IN commands).

F.8 Serial 1/O 77




78]

The command syntax for the Apple lic ports also differs from
the syntax for serial cards. A separate command character,

or (contROLH1), must precede each individual
port command, whereas several commands to a serial card can
be strung together between the command character and a
carriage return character.

The letters used for some of the commands have been changed
from those used with the Super Serial Card (such as S instead
of B for sending a BREAK signal). Each serial port command
letter is unique to simplify command interpretation.

Changing the command character from CONTROL-A to
CONTROL-I, or vice versa, makes the Super Serial Card change
from communication mode to printer mode and back; this is not
the case with Apple llc serial ports. With the Apple lic, use the
System Utilities Disk to change modes.

Super Serial Card commands support several functions that
Apple llc serial port commands don't support: masking
incoming line feed after carriage return; translating incoming
characters, such as changing lowercase to uppercase (for the
benefit of the Apple Il or Il Plus); delaying after sending carriage
return, line feed, or form feed; ignoring keyboard input, and so
on.

Following a CONTROL-I nnnN command, the Apple lic
automatically generates carriage return after nnn characters;
with the Super Serial Card, you need to turn this on with
CONTROL-I C.

F.8.2 Serial I/O Buffers

The communication port firmware uses auxiliary memory page 8
as an input and output buffer. By doing so, the firmware can
keep up with higher baud rates. It can also hide data from the
Monitor, Applesoft, and other system software.

Programs written for the Apple lle or lic can, of course, store
information in auxiliary memory page 8. However, such
information will be destroyed when the communication port is
activated.

Appendix F: Apple |l Series Differences

bbb Bl BR TR B BV UEL T TL TR T T ORLHL




B

. F.9 Mouse and Hand Controls

The DB-9 back-panel connector on the Apple lic is used for
both the mouse and hand contrals. On the Apple llc, the DB-9
connector supports hand controls only. On the Apple lle, the
mouse must use the connector on the interface card.

F.9.1 Mouse Input

The Apple llc provides built-in firmware support for a mouse
connected to the DB-9 mouse and hand control connector.
Apple llc mouse support includes mouse movement and button
interrupts (and vertical blanking interrupts for synchronization
with the display); Apple lle mouse support relies on polling VBL
instead of vertical blanking interrupts.

As a result of how interrupts are handled on the two machines,
the mouse firmware routine calls function somewhat differently
for the Apple lic and Apple lle. However, using the calls in the
manner described in Chapter 9 ensures mouse support
compatibility between the two machines.

The ratio of mouse movement to cursor movement is different
on the Apple lic than it is on the Apple lle.

F.9.2 Hand Control Input and Output

The Apple Il, Il Plus, and lle have a 16-pin game |/O connector
inside the case that supports three switch inputs, four analog
(paddle) inputs, and four annunciator outputs. The Apple lle and
Apple llc have a DB-9 back-panel connector that supports the
three switch inputs and two paddie inputs (plus two more on
the internal GAME 1/O connector of the Apple Il, Il Plus,

and lle).

The Apple llc does not support the four annunciator outputs.

The voltage-current curve for hand controls differs for the
Apple llc compared with that of the Apple Il, Il Plus, and lle.
Compare Figure F-1 with Figure 11-42. This was done so the
hardware would support identifiable mouse and hand control
signals using the same circuits.

F.9 Mouse and Hand Controls Iﬁ-




Figure F-1. Apple N, Il Plus, and lle Hand Control Signals

Input Current

mA
{ME [} Undefined 1

10 9
O -
B —
'.( —
E -
5 —
4 -
3 o
2 =
1 -

Ll 1 1 T T T 1

] 08 1 2 2.4 3 4 5

Input Voltage

{volts)

The paddle timing circuit on the Apple Il Plus is slightly different
than the one on the Apple lle and lic. On the Apple lle and lic
the 100 ohm fixed resistor is betwen the NE556 discharge lead
and the capacitor; the variable resistor in the paddle is
connected directly to the capacitor. On the Apple II Plus, the
capacitor is conected directly to the discharge lead, and the
fixed resistor is in series with the paddle resistor.

B ~ 10 cassette 1/0

80|

The Apple Il, Il Plus, and lle all have cassette input and output
jacks, memory locations, and monitor support. The Apple llc
does not.

JELFL BTV ELO'RLOELBM'ELOTLTLOTE O'RLOELELELTL

Appendix F: Apple Il Series Differences

|




Ll e e e e e L B

. F.11 Hardware

Besides the different microprocessors used in various models in
the Apple Il series (section F.1.1), there are important
differences in power specifications and custom chips.

F.11.1 Power

The power supplies for the Apple Il, Il Plus, and lle are
essentially the same. The floor transformer and voltage
converter for the Apple llc have smaller capacity for current and
heat dissipation. Therefore, it is important to observe the load
limits specified in each of the reference manuals.

F.11.2 Custom Chips

The Apple lle custom chips (Memory Management Unit and
Input/Output Unit) replaced dozens of Apple Il Plus chips, and
added the functionality of dozens more. The Apple lic has
custom MMU and 10U chips, too, but they represent different
bonding options, and so their pin assignments are not
compatible.

In addition, the Apple llc has a custom General Logic Unit
(GLU), Timing Generator (TMG), and Disk Controller Unit (IWM).
The Apple lic has two hybrid units (AUD and VID) for audio and
video amplification.

F.11 Hardware 81




s|apoyy [euoneusajuj pue s




4 e o

Bx| puedde

This appendix repeats some of the keyboard information given
in Chapter 4 for the two USA keyboard layouts for easy
comparison with the other layouts available. Following these
there is a composite table of the ASCII codes and the
characters associated with them on all the models discussed.

Wa Keyboard Layouts and Codes

Each of the following subsections has a keyboard illustration
and a table of the codes that result from the possible
keystrokes. Note, however, that Table G-1 is the basic table of
keystrokes and their codes. For simplicity, subsequent tables
(up to Table G-6) list only the keystrokes and codes that differ
from those in Table G-1.

For example, pressing the key produces a (hexadecimal 61);
pressing produces uppercase A (hexadecimal 41);

pressing or (CONTROL -(SHIFT H(A) produces SOH
(the ASCII Start Of Header control character, hexadecimal 01).

You can tell that this key has the same effect on all keyboards,
from the fact that nothing appears in Tables G-2 through G-7
for that key.

A quick way to find out which characters in the ASCII set
change on international keyboards is to check Table G-7. In
fact, only a few of them change. The pairing of characters on
keys varies more.

G.1 Keyboard Layouts and Codes [83




84l

Note: On all but the French and Italian keyboards,
affects only keys that can produce both lowercase letters
(with or without an accent) and their uppercase equivalents.
With these keys, down is equivalent to holding
down (SHIFT), resulting in uppercase instead of lowercase. If
a key produces only a lowercase version of an accented

letter, then does not affect it.

On the French and Italian keyboards, shifts all the
keys. Furthermore, on the French keyboard, when
is down, the key undoes the shifting.

Note: The shapes and arrangement of keys in Figures G-1
and G-2 follow the ANSI (American National Standards
Institute) standard, which is used mainly in North and South
America. The shapes and arrangement of keys in Figure G-3
follows the ISO (International Standards Organization)
standard used in Europe and elsewhere.

The only differences between the ANSI and ISO versions of the

USA keyboard are

e The shapes of three keys: the left key, (CAPS-LOCK),
and (RETURN).

e The resulting repositioning of two keys (() and () in
Figures G-1 and G-3.

e For some countries, there are arrow symbols on (TAB),
(CAPS-LOCK ), (RETURN), and the two keys (as shown in
Figure G-3).

Appendix G: USA and International Models

TN THRTARATTAAOAAOATLTTTLNIN

Tl



G.1.1 USA Standard (Sholes) Keyboard

Figure G-1 shows the Standard (Sholes) keyboard as it is laid
out for USA models of the Apple lic with the keyboard switch
up. Table G-1 lists the ASCII codes resulting from all simple and
combination keystrokes on this keyboard.

/fcf use Aﬂt’(ﬁ‘-’

Figure G-1. USA Stangard or Sholes Keyboard (Keyboard Switch Up)

ho @

g
¥ 3
=
*

I+

ifelete

fafh

comim

N

Fle v v |k |1t 2 ' e

shift

7
L v g N M ; 2 / shift

EA7s

ook

R EE D

L

G.1 Keyboard Layouts and Codes (85




Table G-1. Keys and ASCIl Codes. Codes are shown here in hexadecimal; to find the decimal equivalents, use

Table G-7.

86|

Key Alone
Hex

7F
08
09
0A
0B
0D
15
1B
20
27
2C
20
2E
oF
30
31

32
33
34
35
36
37
38
39
38
3D
58
5C
5D
60

Char

DEL
BS
HT
LF

CR
NAK
ESC
SP

oo~ aEON=0" "

CONTROL + Key

Hex

7F
08
09
OA
o
oD
15
B
20
27
2C
1F
2E
2F
30
31

00
33
34
35
1E
a7
as
39
3B
30
1B
1C
1D
60

Appendix G: USA and International Models

Char

DEL
BS
HT
LF
VT
CR
NAK
ESC
5P

—
w

c
-

OO AL E =0
w0

SHIFT + Key

Hex

7F
08

09

0A
0B
(1[0}
15

1B
20
22
ac
5F

3E
aF
29

21

40
23
24
25
5E
26

2A
28

3A
2B
7B
ic
7D
7E

Char

DEL
BS
HT
LF
VT
CR
NAK
ESC
SP

=

] Sa_nlm:‘t@-—"—"..o

Both + Key
Hex

7F
08
09
0A
08
0D
15
1B
20
22
ac
1F
3E
3F
29
21

00
23
24
25
1E
26
2A
28
3A
28
1B
1C
1D
7E

Char

DEL
BS
HT
LF

CR
NAK
ESC
SP

Mhedi.. .M F_F.FI.._F FE_EEmF. R

=1

] of B 4 TR

Irl



I &l & Er e £

Table G-1—Continued. Keys and ASCIl Codes. Codes are shown here in hexadecimal; to find the decimal equivalents,
use Table G-7.

Key Alone CONTROL + Key SHIFT + Key Both + Key
Key Hex Char Hex Char Hex Char Hex Char
A 61 a o1 SOH 41 A o1 SOH
B 62 b 02 STX 42 B 02 STX
c 63 c 03 ETX 43 c 03 ETX
D 64 d 04 EOT 44 D 04 EOT
E 65 = 05 ENG 45 E 05 ENQ
F 66 f 06 ACK 46 F 06 ACK
G 67 | o7 BEL 47 G o7 BEL
H 68 h 08 BS 48 H 08 BS
| 69 i 09 HT 49 | 09 HT
J 6A i 0A LF 44 J 0A LF
K 6B k 0B VT 4B K 0B VT
L 6C | oc FF 4C L oc FF
M 6D m oD CR 4D M 0D CR
N 6E n 0E S0 4E N 0E SO
(0] 6F o OF sl 4F o] OF Sl
P 70 p 10 DLE 50 P 10 DLE
Q 7 q 11 DC1 51 Q 11 DCA
R 72 r 12 DC2 52 R 12 DC2
5 73 5 13 Dc3 53 ] 13 DC3
T 74 t 14 DC4 54 T 14 DC4
u 75 u 15 NAK 55 u 15 NAK
v 76 v 16 SYN 56 v 16 SYN
W 77 W 17 ETB 57 w 17 ETBE
x 78 x 18 CAN 58 X 18 CAN
Y 79 y 19 EM 59 ¥ 19 EM
Z TA z 1A SuUB 5A Z 1A sSuB

G.1 Keyboard Layouts and Codes (87




G.1.2 USA Simplified (Dvorak) Keyboard

Figure G-2 shows the Dvorak layout of the USA keyboard.
Characters are paired up on keys in exactly the same way as
on the USA Standard keyboard; only individual key positions
are changed. In fact, you can change the keycap arrangement
to match Figure G-2, lock the keyboard switch in its down
position, and have a working Dvorak keyboard. All keystrokes
produce the same ASCIl codes as those shown in Table G-1.

Figure G.2. USA Simplified or Dvorak Keyboard (Keyboard Switch Down)

Mo

Can

Sy Lo

delels

M

g8l

Appendix G: USA and International Models

F.E. R

FL.FL. A Fl F_F

Fl_ FhofFLofFLIEL. FL TE)

o

—_— e



Figure G-3. ISO Version of USA Standard Keyboard (Keyboard Switch Up)

s ] s

1.

G.1.3 ISO Layout of USA Keyboard

Figure G-3 shows the layout of the keyboard of all ISO
European keyboards (except the ltalian keyboard) when the
keyboard switch is up. All keystrokes produce the same ASCII
codes as those shown in Table G-

fa o

S

-

.

e

-

|;i'

—

L

! a i $ % W 4 * { / = 1

—— ese ! Z 3 4 5 7 & g g = delste

] = :
> o |lw e s |7 v v |7 |o |7 e
coem A S 1) F i_':; H J K L !

- l T T

! P Y, z X A V 1) N M : : / o

! 3 G " - |4 )

E

L

E

| SPS G.1 Keyboard Layouts and Codes [89




G.1.4 English Keyboard

With the keyboard switch up, the English model of the Apple lic
keyboard layout is as shown in Figure G-3, and keystrokes
produce the ASCIl codes shown in Table G-1.

With the keyboard switch down, the English model keyboard
layout is as shown in Figure G-4. The change in ASCII code
production (from that in Table G-1) is shown in Table G-2.

The only changed character is the substitution of the British
pound-sterling symbol (g) for the cross-hatch symbol (#) on the
shifted 3-key.

Figure G-4. English Keyboard {Keyboard Switch Down)

ﬂﬂf"ﬂ %‘f /n /@

/ @ £ $ % - 4 *® { / = +
Bse I Z 7 4 5 i 7 & g i - = delere
{ 2
tab ] w £ A T ¥ U / f F [ ] tum
: N ~d
contol A 5 0 F G H J K { : ! L
| < 3 7
shift \ & X & v i N M . : / shilt
raps .
fock a ‘ - > i t
Table G-2. English Keyboard Code Differences From Table G-1
Key Alone CONTROL + Key SHIFT + Key Both + Key
Key Hex Char Hex Char Hex Char Hex Char
3€ 33 3 33 3 23 £ 23 =
90| Appendix G: USA and International Models

P F._E.F

Fl

Fl._ Fl

El. FhafFlfFL. FL. EL IFL TE1L [(E]l

L] B



G.1.5 French and Canadian Keyboards

With the keyboard switch up, the French model of the Apple lic
keyboard layout is as shown in Figure G-3, and the Canadian is
as shown in Figure G-1. On both models, keystrokes produce
the ASCIl codes shown in Table G-1.

Note: On the French keyboard, shifts to the
upper characters on all keys. With (caps-Lock) on, (SHIFT)
"unshifts” to the lower character on any key pressed with it.

With the keyboard switch down, the French model keyboard
layout is as shown in Figure G-5, and the Canadian model
keyboard layout is as shown in Figure G-6. The changes in
ASCIl code production (from that in Table G-1) are shown in
Table G-3.

Figure G-5. French Keyboard (Keyboard Switch Down)

Jo u fo

ase ifelere
—f A V4 £ A 7 ¥ I / ] P - i) <]
% £
cantral a 5 ] F & H J K { M ] A
> p / +
i o W X & I g N ! == £
g G [ € > ¥ 1

Er el Er—Er—Er- &£ & & e & Er e

G.1 Keyboard Layouts and Codes [91




Figure G-6. Canadian Keyboard (Keyboard Switch Down)

i

-
oo [fe [a [ &
...-l-d
. S
@° | #£ | 3§ g - I f / = +
ese z J 4 5 6 7 g ] - = delete
[ 8 H F 7
1ah W £ A r ¥ { ] P Falia
~ E
contl A S F [ H J K ! : ! P
< 2 R [
Z | v | 8 M /6 | s =
£aps
3 ¢ |= =4 |¥]| B
Table G-3. French and Canadian Keyboard Code Differences From Table G-1 g
Key Alone CONTROL + Key SHIFT + Key Both + Key
Key Hex Char Hex Char Hex Char Hex Char o
&1 26 & 26 & 31 : 31 1 =
ez B @ 7B é 3z 2 32 2
"3 22 \ 22 : 33 3 a3 3 4
‘4 27 27 a4 4 34 4 B
5 28 { 28 ( a5 5 35 5 —
§6 5D § 1D GS 36 6 1D GS
e7 7D @ 7D ] a7 7 a7 7 4
18 21 ! 21 ! 38 8 as 8 >
G9 5C g 1C FS 39 9 iC FS —
al 40 a 00 NUL 3o 0 00 NUL
) 29 ) 1B ESC 5B - 1B ESC _d
o8 5E : 1E RS 7E 7 1E RS B
$* 24 § 24 $ 2A ¥ 2A ; P
0% TC u ic v} 25 o 25 %
i 60 ' 60 ' 23 £ 23 £
- > 3C ac 3E 3E ;
7 2C 2c aF ? aF ? -
3B 3B 2E 2E
3A 34 2F ! 2F /
-
[
Lo
e
e
-
2 . i
g2 Appendix G: USA and International Models o

— ]




£l Er T

G.1.6 German Keyboard

With the keyboard switch up, the German model of the Apple lic
keyboard layout ‘s as shown in Figure G-3, and keystrokes

produce the ASCII codes shown in Table G-1.

With the keyboard switch down, the German model keyboard
layout is as shown in Figure G-7. The change in ASCIl code
production (from that in Table G-1) is shown in Table G-4.

Figure G-7. German Keyboard (Keyboard Switch Down)

[ [

!

|

" § ) % 4 / { / = ?
(aTh by J 4 5 g 7 8 g { 8 fiere
! —f w F A [ r z ) / { U <
| — ool A b F If; .H ..-l'l K ! f'-[
e o y X v B Nl M - | e
E & G ® > ?
L Table G-4. German Keyboard Code Differences From Table G-1
- Key Alone CONTROL + Key SHIFT + Key Both + Key
Key Hex Char Hex Char Hex Char Hex Char
Al 2 32 2 32 2 22 ' 22 '
3§ 33 3 00 NUL 40 § 00 NUL
B& 36 6 36 ] 26 & 26 &
7 i 7 37 7 2F 2F
B g 38 8 38 8 28 ( 28 (
9) 39 9 39 9 29 ) 29 )
0 ao 0 30 0 3D = 3D
B2 7E 8 7E ] 3F ? 3F ?
m U 7D U 1D GS 50 U 1D GS
+* 2B i 2B + 2A * 2A .
0 7C o] 1C FS 5C o] 1C FS
: A B A 1B ESC 5B A 1B ESC
h'.. #° 23 # 1E RS 5E i 1E RS
< ac < 3c 3E > 3E =
: 2c 2C i B aB
- 2E 2E . 3A 3A
L__LL G.1 Keyboard Layouts and Codes [93




G.1.7 Italian Keyboard

With the keyboard switch down, the Italian model keyboard
layout is as shown in Figure G-8. The change in ASCII code
production (from that in Table G-1) is shown in Table G-5.

With the keyboard switch up, the Italian model keyboard

produces exactly the same ASCII codes for each key, but what
is displayed differs for the ten characters shown in Table G-5 or

Table G-7.

Figure G-8. ltalian Keyboard (Keyboard Switch Down)

[l

Jia &

2 A A P I O A 3 O M o

— z R 7 Y /] / ) P <«

cont s Fle lw |y le | |m]i

o v B N ! : '_:J

o [ 3 . < > T
941 Appendix G: USA and International Models

L FL FL FL FI A A W T W T

!

[N T R -

TF\



[ Y ¥ ¥ Y Y

Table G-5. ltalian Keyboard Code Differences From Table G-1

Key

&1
)
3
(4
G5

86
)7
£8

Key Alone
Hex

CONTROL + Key
Char Hex Char

& 26 &
by 25 3
] 27

28 {
1C F
7D é
29 )
23 £
7B a
1D G
1E R
24 5
60 u
00 NUL
3ac <
2C

3B

3A

pun Egn = B By — @0 —

d 7C o

G.1 Keyboard Layouts and Codes

SHIFT + Key

Hex

AN

32
33
34
35
36
37
38
39
30
5E
24
25
5B
3E

Char

PO WO P -

5.0
2

Both + Key
Hex

31

32
33
34
1C
36
37
38
39
1D
1E
2A
25
1B
3E
3F
2E
2F
21

Char

w

FTOOO@NO T BN -
waow

V e
o0

o W)

[95°




Figure G-9. Western Spanish Keyboard (Keyboard Switch Down)

ﬂfﬂjﬁﬂ ﬂﬁ

G.1.8 Western Spanish Keyboard

With the keyboard switch up, the Western (that is, American)

Spanish model of the lic keyboard layout is as shown in Figure
G-1, and keystrokes produce the ASCII codes shown in Table

G-1.

With the keyboard switch down, the Western Spanish model

keyboard layout is as shown in Figure G-9. The change in ASCII
code production (from that in Table G-1) is shown in Table G-6.

fa /.

é £ ) % / d * { J i +
ese z J 4 5 ) / ) g i oy delete
a A §
— w £ A T ¥ / ; . =
controf A S 0 F [ H J K L —
[l
S Z X v N M ¢ 7
s a > ¥ 1
Table G-6. Western Spanish Keyboard Code Differences From Table G-1
Key Alone CONTROL + Key SHIFT + Key Both + Key
Key Hex Char Hex Char Hex Char Hex Char
2" 32 2 32 2 22 B 22 "
3£ 33 3 33 a 23 £ 23 £
6& 36 ] 00 NUL 26 & 0o NUL
T 37 7 37 7 2F / 2F
B( 38 8 38 8 28 { 28 {
9) 39 9 39 9 29 ) 29 )
a 30 0 30 0 3D ao =
"7 27 ' 27 : 3F ? 3F ?
b 60 60 5D & 50 [
o TE = 1E RS 5E - 1E RS
+ 2B + 1B ESC 2A . 1B ESC
N ic N 1C FS 5C N 1Cc FS
Gi 7D G D G 5B i 5B i
3 7B . 0o NUL 40 § 00 NUL
ac 1E RS 3E = 1E RS
2C 2C 3B 3B :
2E 2E 3A 3A
96 | Appendix G: USA and International Models

Fi

i

'Fl

Bl EhkefMedEL_IEL IEl1 IFL IFl 1 FT1I W1 !

fri



RS

B e EEE

B G.2 Ascli Character Sets

Table G-7 lists the ASCIlI (American National Standard Code for
Information Interchange) codes that the Apple lic uses, as well
as the decimal and hexadecimal equivalents. Where there are
differences between character sets, a circled number in the
main table refers to a column in the lower part of the table.

G.2 ASCII Character Sets [97




o8]

Table G-7. ASCIl Code Equivalents

ASCIl DEC HEX ASCHl DEC HEX ASCH DEC HEX ASCIl DEC HEX
NUL 00 00| sp 32 20|'®@ 6 40 |*@ 96 60
SOH 01 01 I 33 21 A 65 41 a 97 61
STX 02 02 34 22 B 6 42| b 98 62
ETX 03 03 |'@ 35 23| €© 67 43| ¢ 99 63
EOT 04 04 |- 36 24 D 68 44| d 100 64
ENQ 05 05| % 37 25 E 69 45| e 101 65
ACK 06 06 | & 8 26 F 70 46 i 102 66
BEL 07 07 s 27| 6 71 47| g 103 67
BS 08 08 { 40 28 H 72 48| h 104 68
HT 09 09 ) 41 29 I 73 49 i 105 69
LF 10 DA : 42 2A J 74 4A| | 106 BA
vT 11 0B | + 43 2B| K 75 4B| k 107 6B
FF- 12 0C 4 2¢| L 76 4C | 108 6C
CR 13 0D a5 20| M 77 4D| m 109 6D
SO 14 OE ! 4 2E| N 78 4E| n 110 BE
si 15 OF ! 47 2F| O 79 4F| o 111 6F
DLE 16 10| 0O 48 30 P 80 50| p 112 70
pci 17 1 1 49 3 Q 81 51 q 113 71
pce 18 12| 2 50 32 R B2 52 ro114 72
pca 19 13| 3 51 33 s 83 53| s 115 73
DC4 20 14| 4 52 34 T 84 54 t 116 74
NAK 21 15| 5 53 35| U 8 55| u 117 75
SYN 22 16| & 54 3| v 8 56| v 118 76
ETB 23 17| 7 55 37| W 87 s | w 119 77
CAN 24 18| 8 56 38 X 88 58| x 120 78
EM 25 19| 9 57 a9 Yy 89 59| y 121 79
SUB 26 1A : 58 3A| 2Z 90 O5A| z 122 7A
ESC 27 1B 59 3B |@® 91 s8|'@® 123 7B
FS 28 1C 60 3C | @ 92 s5c|-@ 124 7C
GS 29 1iD| = 61 ab | ® 93 sD|:0@ 125 7D
RS 30 1E g2 3E|® 94 SE|-GD 126 TE
us 3 F| ? 63 3F| — @ 5F| DEL 127 7F
@ @ @ @ @ @ ® @ @ @ @
Hexadecimal 23 24 40 58 5C 5D S5E 60 7B 7C 7D 7E
English(USA) # & (@ [~ | { | !
English (UK) e @ [ N 1 ° { | !
Deutsch # $ § A O U & o6 U B
Frangais £ % a = [ § e u =4
Italiano £ % § G é i a o] é i
Espafiolo £ % § ™l 5 iog

Appendix G: USA and International Models

T TL Tl

T 1 1 T T

Fi

IFl

Fi

FL (PRl lFL

(ri

—_—



1 4

. G.3 Certifications

In the countries where they are applicable, these certifications
replace the USA FCC Class B notice printed on the inside front
cover of this manual. The safety instructions apply to all
countries.

G.3.1 Radio Interference

This product is designed to comply with specification
VDE 0871/6.78, Radio Frequency Interference Suppression of
Radio Frequency Equipment, Level B.

G.3.2 Product Safety

This product is designed to meet the requirements of safety
standard IEC 380, Safety of Electrically Energized Office
Machines.

G.3.3 Important Safety Instructions

This equipment is intended to be electrically grounded. This
product is equipped with a plug having a third (grounding) pin.
This plug will fit only into a grounding-type alternating current
outlet. This is a safety feature.

If you are unable to insert the plug into the outlet, contact a
licensed electrician to replace the outlet and, if necessary, install
a grounding conductor.

Do not defeat the purpose of the grounding-type plug.

G.3 Certifications @




W G.4 Power Supply Specifications

1001

The basic specifications of the power supply furnished with the
Apple llc for use in Europe and other countries having 50 Hz
alternating current are shown in Table G-8.

Table G-8. 50 Hz Power Supply Specifications

Line voltage 199 to 255 VAC, 50 Hz
Maximum input

power consumption 25 W

Supply voltage +15 V DC (nominal)
Supply current 1.2 A (nominal)

Appendix G: USA and International Models

P QU UGV [ UV U] S | 0 W | o WU | o VO o U U | M | T | A . Y

19 3

VIS = W




SN A Y O T T (A L O O (O (O (O (™




sa|qe| UoISIaAU0Y)




A

Uyxipuadde

This appendix briefly discusses bits and bytes and what they
can represent. It also contains conversion tables for
hexadecimal to decimal and negative decimal, for
low-resolution display dot patterns, display color values, and a
number of 8-bit codes.

These tables are intended for convenient reference. This
appendix is not intended as a tutorial for the materials
discussed. The brief section introductions are for orientation
only.

M ~.7 Bits and Bytes

This section discusses the relationships between bit values and
their position within a byte. The following are some rules of
thumb regarding the 65C02.

e A bit is a binary digit; it can be either a 0 or a 1.

e A bit can be used to represent any two-way choice. Some
choices that a bit can represent in the Apple llc are listed in
Table H-1.

H.1 Bits and Bytes [103




Table H-1. What a Bit Can Represent

Context

Binary number
Logic

Any switch
Any switch

Serial transfer
Serial transfer
Serial transfer
Searial transfer
Serial transfer

P reg. bit N
P reg. bit V
P reg. bit B
P reg. bit D
P reg. bit |

P reg. bit Z
P reg. bit C

Representing

Place value
Condition

Position
Paosition

Beginning

Data

Parity

End
Communication
state

MNeg. result?
Overflow?

BRK command?
Decimal mode?
IRQ interrupts
Zero result?
Carry required?

+ Sometimes ambiguously termed reset .

1041

0=

0
False

Off
Cleart

Start
0 value
SPACE

BREAK

No
No
NO
No
Enabled
No
No

1 =

1 x that power of 2
True

on
Set

Carrier (no information yet)
1 value

MARK

Stop bit(s)

Carrier

Yes
Yes
Yes
Yes
Disabled (masked out)
Yes
Yes

e Bits can also be combined in groups of any size to
represent numbers. Most of the commonly used sizes are
multiples of four bits.

e Four bits comprise a nibble (sometimes spelled nybble).

e One nibble can represent any of 16 values. Each of these

values is assigned a number from 0 through 9 and (because

our decimal system has only ten of the sixteen digits we
need) A through F.

e Eight bits (two nibbles) make a byte (Figure H-1).

Appendix H: Conversion Tables

It Tt

FL Tl

Tl

mJA M T T | TT A A



Figure H-1. Bits, Nibbles, and Bytes

High Nibbie Low Nibble

e

MSB LsSB
7 6 5 4 3 2 1 0

Hexadecimal 580 540 $20 S$10 S08 S04 02 s01

Decimal 128 64 32 16 3] 4 2 1
Binary Hexadecimal Decimal
0000 $0 0
0001 B1 1
0010 $2 2
0011 %3 3
0100 54 4
0101 $5 5
0110 56 6
0111 87 7
1000 8 B
1001 £9 9
1010 SA 10
1011 %8 11
1100 SC 12
1101 D 13
1110 $E 14
1111 8F 15

® One byte can represent any of 16 x 16 or 256 values. The
value can be specified by exactly two hexadecimal digits.

® Bits within a byte are numbered from bit 0 on the right to
bit 7 on the left.

® The bit number is the same as the power of 2 that it
represents, in a manner completely analogous to the digits
in a decimal number.

® One memory position in the Apple llc contains one eight-bit
byte of data.

e How byte values are interpreted depends on whether the
byte is an instruction in a language, part or all of an
address, an ASCIl code, or some other form of data.
Tables H-6 through H-13 list some of the ways bytes are
commonly interpreted.

ell B EF & & & & & e e eI

e

H.1 Bits and Bytes 1105




e Two bytes make a word. The sixteen bits of a word can
represent any one of 256 x 256 or 65536 different values.

e The 65C02 uses a 16-bit word to represent memory
locations. It can therefore distinguish among 65536
(64K) locations at any given time.

e A memory location is one byte of a 256-byte page. The
low-order byte of an address specifies this byte. The
high-order byte specifies the memory page the byte is on.

._H.z Hexadecimal and Decimal

106

TLE BB

Use Table H-2 for conversion of hexadecimal and decimal —
numbers. ke
Table H-2. Hexadecimal/Decimal Conversion
———
Digit $x000 $0x00 $00x0 $000x e
F 61440 3840 240 15
E 57344 3584 224 14 g
D 53248 3328 208 13
(4 49152 3072 192 12
B 45056 2816 176 1
A 40960 2560 160 10 g
9 36864 2304 144 9
8 32768 2048 128 8
7 28672 1792 112 7
6 24576 1536 96 B F
5 20480 1280 80 5
4 16384 1024 64 4
3 12288 768 48 a
2 8192 512 32 2
1 4096 256 16 1

To convert a hexadecimal number to a decimal number, find the
decimal numbers corresponding to the positions of each
hexadecimal digit. Write them down and add them up.

Examples:

$3C = 7 $FD47 = 7

$30 = 48 $FOO0O0

$0C = 12 $ DOO

________ $ 40 64
$ 7 7

$3C = B0 0 e

. o O o) S0 T, O O S

Appendix H: Conversion Tables

L




To convert a decimal number to hexadecimal, subtract from the
decimal number the largest decimal entry in the table that is
less than it. Write down the hexadecimal digit (noting its place
value) also. Now subtract the largest decimal number in the
table that is less than the decimal remainder, and write down
the next hexadecimal digit. Continue until you have zero left.
Add up the hexadecimal numbers.

Example:
16215 = & 7
16215 - 12288 = 3927 12288 = $7000
3927 - 3840 = 87 3840 = § FOO
87 - 80 = 7 80 = $ 50
7 7 = 8 7

B +.3 Hexadecimal and Negative Decimal

It a number is larger than decimal 32767, Applesoft BASIC
allows and Integer BASIC requires that you use the
negative-decimal equivalent of the number. Table H-3 is set up
to make it easy for you to convert a hexadecimal number
directly to a negative decimal number.

R RS

H.3 Hexadecimal and Negative Decimal [107




108

Table H-3. Decimal to Negative Decimal Conversion

'TL Ti

Digit $x000 $50x00 $500x0 $5000x
F 0 0 D 1
E -4096 -256 -16 2
D -8192 -512 -32 3 ——
C -12288 -768 -48 4
8 -16384 -1024 -64 5
A -20480 -1280 -80 6
9 -24576 -1536 -96 7 ——
] -28672 1792 112 -8 &-
7 -2048 -128 -9
[ -2304 -144 -10
5 -2560 -160 -1 p——
4 -2816 -176 12 [TV
3 -3072 -192 13 -
2 -3328 -208 14
1 -3584 224 -15
0 -3840 -240 -16

To perform this conversion, write down the four decimal
numbers corresponding to the four hexadecimal digits (zeros
included). Then add their values (ignoring their signs for a
moment). The resulting number, with a minus sign in front of it,
is the desired negative decimal number.

Example:

$C010 = - 7
$C000: -12288
$ 000: - 3840
$ 10: - 224
$ 0: - 16
$C010 -16368

To convert a negative-decimal number directly to a positive
decimal number, add it to 65536. (This addition ends up looking
like subtraction.)

Example:
-1581 = + 7
65536 + (-151) = 65536 - 151 = B5385

To convert a negative-decimal number to a hexadecimal
number, first convert it to a positive decimal number, then use
Table H-2.

Term AT . TlL.TM Tl TL Tl F

Appendix H: Conversion Tables

|




WHs Graphics Bits and Pieces

Table H-4 is a quick guide to the hexadecimal values
corresponding to 7-bit high-resolution patterns on the display
screen. Since the bits are displayed in reverse order, it takes
some calculation to determine these values. Table H-4 should
make it easy.

The x represents bit 7. Zeros represent bits that are off; ones
bits that are on. Use the first hexadecimal value if bit 7 is to be
off, and the second if it is to be on.

For example, to get bit pattern 00101110, use $3A; for
10101110, use $BA.

Table H-4. Hexadecimal Values for High-Resolution Dot Patterns

Bit pattern  (x—0) (x=1) Bits in Data Byte
x0000000 300 580 7 6ls5lalas]|o>z i 0
x0000001 §40 sCo

x0000010 $20 A0

x0000011 §60 $E0

x0000100 §10 $90

x0000101 $50 $D0

x0000110 $30 $B0

%0000111 $70 $FO

x0001000 $08 588

x0001001 $48 5C8

x0001010  $28 $A8 olv|2|3|4]5]°®
x0001011 $68 SE8

x0001100 18 $98 Dots on Graphics Screen
x0001101 $58 $D8

%*0001110 538 B8

x0001111 578 SF8

x0010000 504 584

x0010001 $44 sC4

x0010010 524 SA4

x0010011 564 SE4

x0010100 514 $94

x0010101 $54 $D4

x0010110 $34 $B4

x0010111 $74 3F4

x0011000 $0C $8C

x0011001 $4C $CC

x0011010 §2C SAC

x0011011 56C $EC

x0011100 §1C $9C

x0011101 §5C $DC

x0011110 §3C s$8C

x0011111 §7C SFC

"
E
L
N
N
-
-
=
L
L
L
I
L
[

- H.4 Graphics Bits and Pieces 109




70l

Fi

Table H-4—Continued. Hexadecimal Values for High-Resolution Dot Patterns

Bit pattern

x0100000
x0100001

x0100010
x0100011

x0100100
x0100101
x0100110
x0100111
x0101000
x0101001
x0101010
x0101011
x0101100
x0101101
*x0101110
x0101111
x0110000
x0110001

%x0110010
%0110011

®0110100
x0110101

x0110110
x0110111

x0111000
x0111001

x0111010
x0111011

x0111100
x0111101

0111110
x0111111

%*1000000
x1000001
x1000010
1000011
x1000100
x1000101
x1000110
x1000111
x1001000
*x1001001
x1001010
x1001011
x1001100
x1001101
x1001110
x1001111

Appendix H: Conversion Tables

(x=0)

$02
542
$22
§62
12
§52
$az2
§72
$0A
$4A
$2A
S6A
S1A
B5A
$3A
ETA
506
$46
$26
$66
$16
$56
$36
§76
S0E
S4E
S2E
SBE
$1E
$5E
$3E
$7E

501
541
521
561
%11
$51
31
$71
09
$49
$29
69
19
£59
539
579

(x=1)

P

382

5C2
SA2

SE2

$92

D2
$B2
$F2

$8A
HCA
FAA
SEA
F9A
SDA
EBA
SFA
86

5C6
SAB
SEG
$96

506
386
3FB

$8E
$CE
SAE
$EE
$9E
$DE
$BE
$FE

%81
%C1
$A1
$E1
$91
$D1
£B1
$F1
£89
§C9
$A9
SEQ
$99
$D9
$B9
SF9

FL FL Fl Pl FLCF

Fl

IF

TR F e (FL.. FL

}




Table H-4—Continued. Hexadecimal Values for High-Resolution Dot Patterns

Bit pattern  (x=0) {x=1)
%x1010000 $05 $85
x1010001 $45 $C5
%x1010010 $25 $AS
x1010011 $65 $ES
x1010100 $15 $95
x1010101 $55 $D5
x1010110 535 $B5
x1010111 875 §F5
x1011000 s0D §8D
x1011001 54D $CD
— x1011010 20 SAD
x1011011 6D SED
x1011100 1D $aD
x1011101 35D $0D
x1011110 53D $BD
x1011111 $7D $FD
x1100000 $03 $83
— x1100001  $43 $C3
x1100010 $23 $A3
x1100011 $63 $SE3
x1100100 $13 $93
x1100101 §53 %03
%x1100110 $33 $B3
x1100111 §73 $F3
x1101000 s0B 8B
_ x1101001 S4B 5CB
x1101010 528 BAB
x1101011 $68 $EB
x1101100 1B 598
, x1101101  $5B $0B
o x1101110  $3B $BB
I x1101111 378 SFB
x1110000 $07 $87
%x1110001 547 $C7
Lo x1110010 827 $A7
x1110011 $67 SEY
x1110100 $17 597
x1110101 $57 sD7
x1110110 $37 587
x1110111 £77 5F7
x1111000 $0F $8F
x1111001 F4F SCF
x1111010 $2F SAF
x1111011 $6F $EF
x1111100 $1F $9F
x1111101 $5F SDF
x1111110 $3F $BF
x1111111 $7F $FF

BB

H.4 Graphics Bits and Pieces 111




W A5 Peripheral Identification Numbers

1121

Many Apple products now use Peripheral Identification Numbers
(called PIN numbers) as shorthand for serial device
characteristics. The Apple Il Series System Utilities Disk
presents a menu from which to select the characteristics of,
say, a printer or modem. From the selections made, it generates
a PIN for the user. Other products have a ready-made PIN that
the user can simply type in.

Table H-5 is a definition of the PIN number digits. When
communication mode is selected, the seventh digit is ignored.

Example:
252/1111 means:

Communication mode
8 data bits, 1 stop bit
300 baud (bits per second)

No parity

Do not echo output to display
No linefeed after carriage return
Do not generate carriage returns

Appendix H: Conversion Tables

L EL F1 'FL Pl 'FL 'L T

IFl

lmmn!ﬁ!ﬂrﬁnn



R

Table H-5. PIN Numbers

b 4 I R I Y = B B - P N =k

On b GO RS =

Ry =

B -

ok W -

Printer Mode
Communication Mode *

6 data bits, 1 stop bit
6 data bits, 2 stop bits

= 7 data bits, 1 stop bit

7 data bits, 2 stop bits
8 data bits, 1 stop bit

= @ data bits, 2 stop bits

110 bits per second
300 bits per second
1200 bits per second
2400 bits per second
4800 bits per second

= 9600 bits per second

19200 bits per second

Mo parity

Even parity (total on = even)
Odd parity (total on = odd)

= MARK parity (parity bit = 1)
= SPACE parity (parity bit = 0)

= Do not echo output on screen

Echo output on screen

Do not generate LF after CR
= Generate LF after CR

= Do not generate CR *
= Ganerate CR after 40 characters
Generate CR after 72 characters
Generate CR after 80 characters

|

_ L

—

Generate CR after 132 characters __

* If you select Communication Mode, then seventh digit must equal 1,
This value is supplied automatically when you use the UUD.

H.5 Peripheral Identification Numbers

113



M s Eight-Bit Code Conversions

Tables H-6 through H-13 show the entire ASCII character set
twice: once with the high bit off, and once with it on. Here is
how to interpret these tables.

e The Binary column has the 8-bit code for each ASCII
character.

e The first 128 ASCII entries represent 7-bit ASCII codes plus

a high-order bit of 0 (SPACE parity or Pascal)—for example,

01001000 for the letter H.

e The last 128 ASCII entries (from 128 through 255) represent
7-bit ASCII codes plus a high-order bit of 1 (MARK parity or
BASIC)—for example, 11001000 for the letter H.

e A transmitted or received ASCIl character will take
whichever form (in the communication register) is
appropriate if odd or even parity is selected—for example,
11001000 for an odd-parity H, 01001000 for an even-parity
H.

e The ASCII Char column gives the ASCII character name.

e The Interpretation column spells out the meaning of special
symbols and abbreviations, where necessary.

e The What to Type column indicates what keystrokes
generate the ASCII character (where it is not obvious). The
numbers between columns refer to footnotes.

e The columns marked Pri and Alt indicate what displayed
character results from each code when using the primary or
alternate display character set, respectively. Boldface is
used for inverse characters; italic is used for flashing
characters.

Note that the values $40 through $5F (and $CO through
$DF) in the alternate character set are displayed as
MouseText characters (Figure 5-1) if the firmware is set to
do so (section 5.2.2), or if the firmware is bypassed.

Appendix H: Conversion Tables

Tl T

Tl

Tl

FL FL FlL T1 Fl

Fl

IFL

fEl

| 2 B 1 L &)

Ly ot



o —
el
Note: The primary and alternate displayed character sets in
el Tables H-6 through H-13 are the result of firmware mapping.
The CHARGEN ROM actually contains only one character
set. The firmware mapping procedure is described in
| section 3.36.
Table H-6. Control Characters, High Bit Off
I""".. ASCII
Binary Dec Hex Char Interpretation What to Type Pri Alt
o 0000000 0 $00 NUL Blank (null) (ConTROLHE) @ @
b-d 0000001 1 501 SOH Start of Header (ConpoLHA) A A
0000010 2 502 STX Start of Text 2] B
0000011 3 $03 ETX End of Text CONTROL c c
I_—I 0000100 4 $04 EQT End of Transm. (conTROLHD) D D
— 0000101 5 305 ENG Enquiry (ConTROL HE) E E
0000110 6 $06 ACK Acknowledge (CoNTROL-(F) F F
0000111 7 507 BEL Bell (GoNTROL H(G) G G
S 0001000 8 $08 BS Backspace CONTROL-(H H H
—— or (&
0001001 g $09 HT Horizontal Tab (conTRoL 1) | 1
or
T | 0001010 10 $0A LF Line Feed (ConTROLHJ) J J
Lo or ()
0001011 11 S0B VT Vertical Tab (CONTROL HX) K K
or (1)
T 0001100 12 30C FF Form Feed (CoNTRBLHL) L: L
Lo 0001101 13 $0D CR Carriage Return (CoNTROL H ™) M M
or (RETURN)
0001110 14 $0E S0 Shift Out {CONTROL N N
0001111 15 SOF s Shift In (GONTROLHD) 0 (o]
el 0010000 16 510 DLE Data Link Escape (ConTROLHE) P P
0010001 17 511 DC1 Device Control 1 (ConTROLHG) Q Q
0010010 18 $12 Dc2 Device Control 2 R R
0010011 19 $13 Dca Device Control 3 S s
Rl oo10100 20 $14  DC4  Device Control 4 T T T
0010101 21 $15 NAK Neg. Acknowledge (CoNTROL H(1U) u u
or (=)
- 0010110 22 $16 SYN Synchronization (CconTROL MV v v
L 0010111 23 §17 ETB End of Text Blk. W w w
0011000 24 $18 CAN Cancel (CONTROLH X) X X
0011001 25 $19 EM End of Medium (CONTROLHY) Y Y
- 0011010 26 S1A SUB Substitute CONTROL H Z Zz Z
B 0011011 27 $18  ESC  Escape (ConTROLHD [ [
or (EsC)
0011100 28 $1C FS File Separator {ConTROL HW) \
| — 0011101 29 31D GS Group Separator (ConTROLHD 1
e 0011110 3o $1E RS Record Separator CONTROL (™)
I 0011111 N B1F us Unit Separator (ConTROL H )
E
b

- H.6 Eight-Bit Code Conversions 115




H

Table H-7. Special Characters, High Bit Off

Binary

0100000
0100001
0100010
0100011
0100100
0100101
0100110
0100111
0101000
0101001
0101010
0101011
0101100
0101101
0101110
0101111
0110000
0110001
0110010
0110011
0110100
0110101
0110110
0110111
0111000
0111001
0111010
g111011
0111100
g111101
0111110
0111111

1161

Dec

a2
33
34
35
36
a7
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Hex

520
$21

522
$23
524
$25
526
527
528
29
524
2B
$2C
£2D
$2E
S2F
$30
831

$32
§33
$34
§35
$36
$37
§38
$39
S53A
3B
33C
33D
S3E
$3F

ASCIl ra
Char Interpretation What to Type Pri Alt ﬁ
sP Space SPACE bar
! ! ! =
" ” #
# # # =
$ $ $
%o % % —
& & & ey
¢ Closing Quote !
| L
e
J‘ - L] h
* + + =
. Comma '
- Hyphen - - L
. Period . __L_
) i /
0 0 0
1 1 1 —
2 2 2 | "I
3 3 3 h
4 4 4
5 5 5 —
6 6 6 [
7 7 7 -
8 8 8
9 9 9 e
: : : E—
— == = ]
> > = [
7 ?

Appendix H: Conversion Tables

l_ Pl Fhan Tl 'FL. F]




& E Ol R B

Ir &

Table H-8. Uppercase Characters, High Bit Off

Binary

1000000
1000001
1000010
1000011
1000100
1000101
1000110
1000111
1001000
1001001
1001010
1001011
1001100
1001101
1001110
1001111
1010000
1010001
1010010
1010011
1010100
1010101
1010110
1010111
1011000
1011001
1011010
1011011
1011100
1011101
1011110
1011111

Hex

$40
$41

542
343
544
345
346
547
548
549
S4A
%48
$4C
$4D
S4E
$4F
550
$51

552
$53
554
855
556
857
358
559
S5A
358
$5C
$5D
$5E
$5F

ASCI
Char

-—N{xE*:c—!m:UD‘OOZgI‘IL_ImﬂMDﬂm}@

I
Interpretation

Opening Bracket
Reverse Slant
Closing Bracket
Caret

Underline

H.6 Eight-Bit Code Conversions

What to Type

)
=

-"‘“N'{RE*:QHU}:BD‘UQZ?‘”RR“IC)*\FHDGW:F'@

§

=

=& PARLEINKY O/

Tl le_U NEEE LT | e v EL

117




Table H-9. Lowsrcase Characters, High Bit Off

Binary

1100000
1100001
1100010
1100011
1100100
1100101
1100110
1100111
1101000
1101001
1101010
1101011
1101100
1101101
1101110
1101111
1110000
1110001
1110010
1110011
1110100
1110101
1110110
1110111
1111000
1111001
1111010
1111011
1111100
111110
1111110
111111

118

Dec

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Hex

$60
$61

562
563
564
565
566
$67

$68
$69
36A
568
36C
$6D
$6E
$6F
570
71

$72
$73
$74
$75
§76
s77
578
$79
$7A
$78
g7C
7D
$7E
$7F

ASCI :
Char Interpretation

'N"‘:Ni'ﬂ.’.':"’mﬂ_ﬂ‘uo:la_:\"_":'@"ml:l.ﬁﬂ'm’

DEL

Opening Quote

Opening Brace
Vertical Line
Closing Brace
Qverline (Tilde)
Delete/Rubout

Appendix H: Conversion Tables

What to Type

Pri

"REny

R

TN AWNND ™

=N A T

Alt

.

"N X g<E=®WTOTDO3Ix]TETTTaecoow

DEL

Fl-FhafleafELIELFL'FL'FLLFLLAL T L 'L 'RV 'Y T

4l



Er & e G ErE i

Table H-10. Control Characters, High Bit On

Binary

10000000
10000001
10000010
10000011
10000100
10000101
10000110
10000111
10001000

10001001
10001010
10001011

10001100
10001101

10001110
10001111
10010000
10010001
10010010
10010011
10010100
10010101

10010110
10010111
10011000
10011001
10011010
10011011

10011100
10011101
10011110
10011111

Dec

128
129
130
13
132
133
134
135
136

137
138
139

140
141

142
143
144
145
146
147
148
149

150
151
152
153
154
155

156
157
158
159

Hex

$80
%81
82
583
584
$85
586
587
$88

589
SBA
588

s8C
$8D

$8E
$8F
$80
91
$92
$93
594
$95

$96
$97
$98
§99
F9A
$9B

F9C
$9D
$9E
$9F

ASCIHI
Char

NUL
SOH
8TX

ETX

EOT
ENG
ACK
BEL
BS

HT
Ay
VT

FF
CR

SO
Sl
DLE
DC1
DCc2
DC3
DC4
NAK

SYN
ETB
CAN
EM

suB
ESC

FS
GS
RS
us

H.6 Eight-Bit Code Conversions

Interpretation

Blank (null)
Start of Header
Start of Text
End of Text
End of Transm.
Enquiry
Acknowledge
Bell

Backspace

Horizontal Tab
Line Feed
Vertical Tab

Form Feed
Carriage Return

Shift Out

Shift In

Data Link Escape
Device Control 1
Device Control 2
Device Control 3
Device Control 4
Neg. Acknowledge

Synchronization
End of Text Blk.
Cancel

End of Medium
Substitute
Escape

File Separator
Group Separator
Record Separator
Unit Separator

What to Type

(conTROL H @)
(CONTROL H(A)
(CONTROL HB)

CONTROL
{CONTROL H D)
(CONTROL HE)
(CONTROL HF)
(CONTROL HG)
CONTROL HH
or (=)
(conTROL-(T)
or (TAB)
(EoNTROLH(J)
or (1)
(CONTROLHK)
or (1)
(ConTROL HL)
[(CONTROL H(M
or
(CoNTROL HD)
(P)
(CoNTROLHG)
(ConTROLH®)
(CONTROLH(S)
(CoNTROLHT)
or (=)
(CONTROLHW)
(%]
{CONTROL +{¥)
{CONTROL +(Z)
(conTROLHT)
or (E56)
(GoNTROLHD)
(CONTROL H(*)
(conTROLHZ)

o
=

IQTMMOOD>PE

- S

z=r-

TNLXXs< CHOIOTVOZ

B s

- IOTMmMOODEg B

[ -

=

=r

THNL<XE< CHWIOQUOZ

19



Tl

Table H-11. Special Characters, High Bit On

Binary

10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111

10101000
10101001
10101010
10101011
10101100
10101101
10101110
10101111
10110000
10110001
10110010
10110011
10110100
10110101
10110110
1011011
10111000
10111001
10111010
10111011
10111100
10111101
10111110
1011111

120

Dec

160
161
162
163
164
165
166
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

Hex

$A0
SA1
SA2
$A3
BA4
$AS
SA6
BA7

SAB
$A9
SAA
SAB
SAC
$AD
$SAE
SAF
$BO
5B1

$B2
§B3
§B84
$B5
SB6
587
$B8
$B9
$BA
SBB
$BC
$ED
$BE
$BF

ASCII y 5
Char Interpretation What to Type Pri Alt s
SP Space SPACE bar
! ! ! ——
e " —
# # # -
5 $ B
B % % il
& & -
Closed Quote "
(acute accent)
( ( { o
) ) ) .
+ + +
Comma . . -
Hyphen - - __H,_
) Period .
{ / /
0 0 0 P
1 1 1 B
2 2 2 =
3 3 3
5 5 5 e
] 6 6 -
7 7 T
8 B 8 —
I-c:' e
= - e
o 2 ?
e
-
—)
e
-
—
ot
-

L m

i
1

Appendix H: Conversion Tables

l Il Fl




[ A

Table H-12. Uppercase Characlers, High Bit On

Binary

11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001110
11001111
11010000
11010001
11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001
11011010
11011011
11011100
11011101
11011110
11011111

Dec

192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221

222
223

Hex

sCO
5C1

sC2
5C3
5C4
$Cs5
$C6
SC7
3C8
SCo
SCA
$CB
§CC
$CD
$CE
SCF

$D0
D1

sD2
gD3
D4
D5
5D6
§D7
$D8
sDa
DA
sDB
$DC
$DD
$DE
$DF

ASCIll

Char

TNLXZ<CHODIOTDVOZZIr A" IOTMOOD>E

Interpretation

Opening Bracket
Reverse Slant
Clesing Bracket
Caret

Underline

H.6 Eight-Bit Code Conversions

What to Type

—N*(XE‘ZC—'-U?I‘D'UOZEF_X‘——ID""I"'IDOUJ}@ 0

e
-

TNLXE<CHUIDTDVOZErZ-"IOTMOODEEG



Tl

Table H-13. Lowercase Characters, High Bit On

Binary

11100000
11100001
11100010
11100011
11100100
11100101
11100110
11100111
11101000
11101001
11101010
11101011
11101100
11101101
11101110
11101111
11110000
11110001
11110010
11110011
11110100
11110101
11110110
11110111
11111000
11111001
11111010
11111011
11111100
1111110
11111110
1111111

122

Dec

224
225
226
227
228
229
230
231

232
233
234
235
236
237
238
239
240
241

242
243
244
245
246
247
248
249
250
251

252
253
254
2565

Hex

$EO

SE1

SE2

SE3
SE4
$ES
$E6
$E7
$EB
$E9
SEA
SEB
SEC
$ED
SEE
$EF
§F0
£F1

$F2
$F3
$F4
$F5

SF6
&F7

SF8
SF9
SFA
SFB
$FC
$FD
$FE
SFF

ASCII

Char

'—N\-:xi-ﬁl:'-ﬁﬂ“ﬂ'ﬂo:la_r'_'_'ztﬂ"m anoomw

DEL

L
Interpretation What to Type Pri Alt !':"
Quote
Open Quo . X >
b b s
c G
d d
e e g
f f _u'-"
g g
h h
i i et
l j e
k k
I I
m m —_—
i i e
o o
P P
q q ——
r r b
s 5
t t
u u gl
v v b
w W
X X
y ? —
& _
Opening Brace | {
Vertical Line l. I. 4
Closing Brace H i i~
Overline (Tilde) L
Delete (Rubout) DELETE DEL DEL
+
e
e
iiperd
-
-
duesi
L
&
o
-
re——
L
R
-
-

Appendix H: Conversion Tables

S e e b= 5= |




)M T T T T T O O Y Y




sbunsiry ailemuwny




IX 1 puadde

Appendix | comprises a listing of the source code for the
Monitor, enhanced video firmware, and input/output firmware
contained in the Apple llc.

ErEr e e ErEr—ErEr—r—Er—Er-Erfrdr—

Appendix |: Firmware Listings 125




Cl00:
Clo0:
cl00:
Clo0:
C100:
C100:
Cl00:
cl100:
C100:
cl100:
Cl100:
Cl00:
Ccl100:
Cl00:
Clo0:
Cl00:
Cl00:
Cl00:
Cl00:
Cl00:
cl00:
Cl100:
Cl100:
Cl00:
Cl00:
C100:
cl00:
C100:
C100:
Cl00:
Cl100:
Cl00:
C100:
Cl00:
Ccloo:
C100;
C100:
Cl00:
C100:
C100:
Ccl00:
Cl00:
C100:
Cl00:
C100:
Cl100:
c100:
Cl00:
Cl100:
C100:
Cl100:
Ccl00:
Cl100:
cl100:
Cl00:
C100:
C100:
Cl00:

1261

0000
0001
0020
0021
0022
0023
0024
0025
0026
0027
0028
o029
002a
0028
op2c
0o2c
002D
002D
002E
002E
002F
0030
0031
0032
0033
0034
0035
0036
0037
0028
0039
003a
003B
D03c
D03D
003E
003F

o v e o ok o o g o ok ok ol o ok e ok e o o e ok e ok ok ke e e ek ok

19

*

* Apple //c et
* Video Firmware and ﬂ
* Monitor ROM Source

*

* COPYRIGHT 1977-1983 BY e
* APPLE COMPUTER, INC. 5
&

* ALL RIGHTS RESERVED »
. ek
* 5., WOZNIAK 1977 v
* A, BAUM 1977

* JOHN A NOV 1978

* R, AURICCHIO SEP 1981 E
* E. BEERNINK 1983 —
*

e e ek o e ok ook ok ke e

* m
* ZERD PAGE FQUATES =
*

Loco EQU 500 :vector for autostart from disk —_—
Locl EQU s01 H
WNDLFT EQU §20 ;left edge of text window *
WNDWDTH EQuU §21 iwidth of text window

WNDTOP EQU 522 stop of text window —
WNDBTM EQU  $23 sbottom+l of text window il
CH EQU  §24 scursor horizontal position -
cv EQU 525 jcursor vertical position

GRASL EQU 526 ;lo-res graphics base addr. e
GBASH EQU  $27 _i-_l-
BASL EQU 528 itext base address

BASH EQu 5§29

BASZL EQU S2A stemp base for scrolling e
BAS2H EQU  §2B i
H2 EQU §2C ;temp for lo-res graphics

LMNEM EQU s20 itemp for mnemonic decoding

v2 EQU 2D stemp for lo-res graphics e
RMNEM EQU  $2D stemp for mnemonic decoding !!‘
MASK EQU §2E ;color mask for lo-res gr.

FORMAT EQU  52E ;temp for opcode decode 4
LENGTH EQU §2F ;temp for opcode decode i
COLOR EQU  $30 ;color for lo-res graphics —
MODE EQU 531 ;Monitor mode

INVFLG EQU 532 inormal/inverse(/flash} A
PROMPT EQU 533 sprompt character Eﬁ‘
YSAV EQU S$34 ;sposition in Monitor command =1
YSAVI EQU §35 stemp for Y register

CSWL EQU 536 ;character output hook v
CSWH EQU  §37 @
KSWL EQU 5138 ;character input hook i
KSWH EQU $39

PCL EQU 53A stemp for program counter

PCH EQU $3B

AlL EQU $3c ;:Monitor temp

AlH EQU §3D sMoniter temp

A?L EQU 53E ;Monitor temp

A2H EQU S83F sMonitor temp

Appendix |: Firmware Listings

AL E

[




& (e € ¢

C100:
C100:
Ccl100:
Cl00:
Cl100:
Cl00:
Cl100:
Cl00:
C100:
C100:
Cc100:
Cclo0:
C100:
Cl00:
Cl00:
Cl00:
Cl00:
Cl00:
Cl00:
C100:
C100:
cl00:
Cl100:
Cl00:
Cl00:
CL00:
Cl00:

Cl00:
Cl00:
Cl00:
C100:

Cl100:

Cl100:

C100:

Cl100:

cl100:

Clo0:

Ccl00:
Cl00:
Cl100:
C100:

C100:

C100:

Cl00:

Cl100:

C100:
C100:
Cl00:
Cl00:

C100:

Cl00:
Cl00:

C100:

Cl00:

C100:

Ccl100:

Cl100:

C100:

0040
0041
D042
0043
0044
0045

0044
0045

0046
0047
0048
0049
004E
DO4F

0006
0095
0098

0200

03F0
03F2
03F4
03F5
D3F8
03FB
03FE
0400
07FB

cooo
C000
cooo
cool
cooz
co03
COo04
co0s
coos
coo9
cooc
coop

115
116
117

AJL EQU 540 iMonitor temp
A3H EQU S41 ;Monitor temp
ALL EQU 542 ;Monitor temp
ALH EQU 543 sMonitor temp
ASL EQU 544 ;Monitor temp
ASH EQU 845 ;Moniter temp
-
Note: In Apple II, //e, both interrupts and BRE destroyed

*
* location $45. MNow only BRK destroys 545 (ACC) and it
* also destroys $44 (MACSTAT).
*

MACSTAT EQU 544 ;Machine state after BRK
ACC EQU  $45 ;Ace after BRK

*

XREG EQU  §46 ;X reg after break
YREG EQU 547 ;Y reg after break
STATUS EQU S48 ;P reg after break
SPNT EQU 549 1SP after break

RNDL EQU  $4E irandom counter low
RNDH EQU S4F srandom counter high
*

* Value equates

-
GOODFA EQU 506 ;value of //e, lolly ID byte
PICK EQU 595 ;CONTROL-U character

ESC EQU  $9B iwhat ESC generates

»

* Characters read by GETLN are placed in

* IN, terminated by a carriage return.
*

IN EQU $0200 ;input buffer for GETLN

* Page 3 vectors

-

BRKV EQU  SD3F0 ;vectors here after break
SOFTEV EQU $03F2 ;vector for warm start

PWREDUP EQU S03F4 ;THIS MUST = EOR #$AS OF SOFTEV+1
AMPERV EQU S03F5 ;APPLESOFT & EXIT VECTOR
USRADR EQU 503F8 ;APPLESOFT USR function vector
NMI EQU S03FR sNMI vector

IRQLOC EQU S03FE ;Maskable interrupt vector
LIKEL EQU 50400 ;first line of text screen
MSLOT EQU S07F8 ;owner of SCB space

*

* HARDWARE EQUATES
&

IOADR EQU  $CO00 ;for IN#, PR# vector

KEBD EQU $CO00 32127 if keystroke
CLRBOCOL EQU 5C000 ;disable B0 column store
SETBOCOL EQU  SC0O01 ;enable 80 column store
RDMAINEAM EQU sC002 ;read from main 48K RAM
RDCARDRAM EQU $C003 iread from alt. 48K RAM
WRMAINRAM EQU SC004 iywrite to main 4BK RAM
WRCARDRAM EQU $C005 iwrite to alt. 4BK RAM
SETSTDZP EQU  $SCO0B ;use main zero page/stack
SETALTZP EQU sco09 juse alt. zero page/stack
CLRBOVID EQU $cooc ;disable 80 column hardware
SETBOVID EQU Sc00D ;enable 80 column hardware

Appendix I: Firmware Listings 127




c100:
Clo0:
C100:
Cl100:
Cc100:
C100:
Cc100:
Cl100:
c100:
c100:
cl100:
C100:
Cc100:
Ccloo:
clo0:
Ccl00:
cloD:
ClO0:
Cl00:
ClO0:
C100:
c100:
c100:
Cl00:
c100:
C100:
C100:
Cc100:
cl100:
C100:
clo0:
C100:
C100:
Cl00:
C100:
Cl00:
Cl100:
Cl100:
cl00:
Cl00:
cl100:
Cc100:
C100:
C100:
Cl00:
c100:
Cl00:
Cl00:
Cl100:
C100:
Cl100:
c100:
Cl0o0:
C1l00:
C100:
C100:
cl100:
cLOD:

128

COOE
COOF
col10
coll
colz2
col13
col4
colé
cois
co19
COl1A
COlB
colc
cOo1D
CD1E
COLF
cO20
c030
C050
€051
cos2
C053
cO054
€055
co56
€057
coss
co59
CO5A
CO5B
Cc0sC
cOs5D
COSE
CO5F
coe0
co6l
Cc062
CO64
co70
cosl
coa3
CO8B
CFFF
ECOO
EOD3

D4FB

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
L6h
167
163
169
170
171
172
173
174
175

CLRALTCHAR EQU $COOE
SETALTCHAR EQU S$COOF

k

inormal LC, flashing UC
jnormal inverse, LC; no flash

3 turm
12127
12127
12127
1»127
12127
;2127
;2127
s»127
12127
;2127
12127
2127
i>127
swhat

sclicks the speaker
;switch in graphics (not text)
;switch in text (not graphics)

off key pressed flag

if
if
if
if
if
if
if
if
if
if
if
if
if
is

i

LC bank 2 is im

LC RAM read enabled
reading main 48K

writing main 48K

Alt ZP and LC switched in
80 column store

not VBL

text (not graphies)

mixed mode on

TXTPAGEZ switched im
HIRES is on

alternate char set in use
B0 column hardware in
this??

|l Kbl E s

jclear mixed-mode

;set mixed-mode (4 lines text)
:ewitch in text page 1
sawitch Iin text page 2

£l

:low-resolution graphics

;high-resolution graphics

32127 if 40/80 switch in 40 pos

IEbemlk]

[E)

;open apple key
;closed apple key

iread paddle 0
serigger the paddles

'El

sgwitch in SDODD-$FFFF ROM
;switch in LC bank 2

:switch in LC bank 1

i

;switch out $C3 ROMs
;BASIC entry point

;BASIC warm entry point

;OPERATING MODE

Print control characters
Don't print ctrl chars

KBDSTRB EQU  $CO010
RDLCBNK2Z EQU  $CO11
RDLCRAM EQU  5$cC012
RDRAMRD EQU  $C013
RDRAMWRT EQU  5SCOl4
RDALTZP  EQU  $CO16
RDBOCOL  EQU  5CO18
RDVBLEAR EQU  5C019
RDTEXT EQU  SCO1A
RDMIX EQU  SCO1B
RDPAGE2 EQU  $COIC
RDHIRES EQU SCO1D
ALTCHARSET EQU S$COLE
RDBOVID EQU  SCOLF
TAPEOUT EQU  $C020
SPKR EQU  $C030
TXTCLR EQU  $C050
TXTSET EQU  5C051
MIXCLR EQU  $CD52
MIXSET EQU  $C053
TXTPAGEl EQU  $CD54
TXTPAGE2Z EQU  $CD55
LORES EQU  $C056
HIRES EQU  $C057
CLRANO EQU  $C0DS8
SETAND EQU  5CD59
CLRANI EQU  $C05A
SETAN] EQU  S$CO5B
CLRAN2 EQU  $CO5C
SETAN2 EQU $C0SD
CLRAN3 EQU  $COSE
SETAN3 EQU  SCOSF
RDADSW EQU  $CO060
BUTNO EQU  5C061
BUTNL EQU  5C0A2
PADDLD EQU  S$COR4
PTRIG EQU  5C070
ROMIN EQU  SCDB81
LCBANK2  EQU  SCOB83
LCBANK1  EQU  SCOBB
CLRROM EQU  SCFFF
BASIC EQU  $EDDO
BASTIC2 EQU  S$E0D3
*

VMODE EQU S4FB+3
*®

* BASIC VMODE BITS

&

* l...uuae = BASIC active
% Jusewsss — Pascal active
A | SO

* L lewuess

* L 0eanes =

E calyoevi=

R A o

*orealewe. -

Appendix |: Firmware Listings

(kL

l L T e ol




X ¢ (e ¢ ¢

Clo0:
Cl00:
Cclo0:
Cl00:
Cl100:
Clo0:
C100:
C100:
c100:
C100:
C100:
cl00:
C100:
C100:
Cc100:
Cl00:
C100:
Cl00:
Cl00:
Cl0o0:
Cl100;:
C100:
C100:
Cl0o0:
Cl00:
Ccl100:
CLl00:
Ccl00:
C100:
C100:
Cl00:
Cl00:
Cl100:
C100:
cl00:
C100:
Cl00:
C100:
C100:
C100:
C100;:
Ccl00:
Cl00:
C100:
Cl100:
Cl00:
Cl00:
Cl00:
c100:
Cl00:
cl100:

0040
0020
0008
0001

0080
0010
0008
0004

0478
04F8
0578
05F8

D4T7R
0578
05FB
0678
06FB
0778
07FB

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

17

PRI | P
PRI
euwnaOis
T
seseesla
eannanla

ssaesssl

¥ 3 % N R 3 N ¥

M. 40
M.CTL2
M.CTL

M. MOUSE
&

EQU
EQU
EQU
EQU

Print ¢
Don't p

Print mouse characters
Don't print mouse characters

540
520
508
501

Pascal Mode Bits

*
*

Ll T
* Qussanan
2 Buiasna
* ulesanns
* paDevene
¥ calecsss
LY |
* seulanas
* saeslass
¥ ianleas
* Lawselas
* eeseles
L |
% inanaals
L g
*

*

M.

ssasnnal

PASCAL
M.CURSOR
M. GOXY
M. VMODE
*

ROMSTATE
TEMP1
TEMPA
TEMPY
&
OLDCH
OURCH
OURCV
VFACTV
XCOORD
NXTCUR
CURSOR

Appendix I: Firmware Listings 129

= BASIC active

Pascal

Cursor

= Cursor

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

INCLUDE SERIAL

GOTOXY
GOTOXY
Normal
Inverse

Print mouse chars
Don't print mouse chars

580 ;Pascal active

§10 :Don't print cursor

508 :GOTOXY IN PROGRESS

504

S478 ;temp store of ROM state
S4F8 ;used by CTLCHAR

$578 ;used by scroll

§5F8 ;used by scroll

547843 slast value of CH

$578+3 :B0-COL CH

$SFB+3 :CURSOR VERTICAL

5678+3 ;Bit7=video firmware inactive
S6FB+3 ;X=COORD (GOTOXY)

5778+3 inext cursor to display
STF8+3 ;jthe current cursor char

ontrol characters
rint ctrl chars.

;:Don't print controls
;Don't print controls
;Don't print mouse chars

active

always on
always off
n/a

in progress
Video
Video

:Equates for serial code




Ccl100:
C100:
cl00:
cl00:
Cl00:
c100:
Cl100:
Cl00:
Cl00:
C100:
Ccl100:
Cl00:
cl00:
Cl00:
C100:
Cl00:
Cl00:
Cl00:
Cloo:
Ccl00:
clo0:
Cl00:
clo0:
CLlO0:
cl100:
C100:
Cc100:
C100:
C100:
C100:
Cl00:
Cl00:
Cl00:
c100:
Cl00:
C100:
C100:
Cc100:
Cl00:
Cc100:
c100:
C100:
Cl00:
cl100:
Cl100:
C100:
Cl00:
cl100:
ClD0:
C100:
cl00:
cl100:
C100:
Cclon:
C100:
Cl00:
Clo0:
C100:

1301

C100
c200

O0BF
00DF

0091
0388
0438
04B8
0538
05F9
05FA
0679
0a7A
0638
0688
0738
D47F
O4FF
057F
05FF
067F
06FF
Q800
06F8
BFF8

e vk e e o ok ool e vk o o o o ok o o e e e o o ol ol o ok ok e o ok ol o e e e e
*
* ppple Lolly communications driver
*
* By
* Rich Williams
* August 1983
* November 5 = j.r.huston
*
e o o e o ok e ook e e e o e o o e ok e o o e ol e sl e e o e e ok e e e
*
* Command codes
-
* Default command char is ctrl-A ("A)
*
* “AnnB: Set baud rate to nn
* “AnnD: Set data format bits to nn
* “AI: Enable video echo
* “AK: Disable CRLF
* “AL: Enable CRLF
* ~“AnnN: Disable video echo & set printer width
* “AnnP: Set parity bits to on
* ~AQ Quit terminal mode
® “AR Reset the ACIA, IN#O PR#D
* ~AS Send a 233 ms break character
* “AT Enter terminal mode
* CAL: Zap control commands
* “Ax: Set command char to “x
* “AnnCR:Set printer width (CR = carriage return)
%*
e dede deod e e e ok ok ok ok ok ok e e ok ke Rk R Rk
serslot equ SC100
comslot equ $C200
MSE ON
cmdcur equ b ;Cursor while on command mode
termcurt equ L :Cursor while in terminal mode
MSB  OFF
xon aqu $91 +%¥0N character
sermode equ  S$3B8 :D7=1 if in emd; D6=1 if term 479 & 47A
ascat equ 5438 sAcla status from int 4F9 & A4FA
pwdth equ S4EB :Printer width 579 & 574
extint equ 5538 ;extrint & typhed emable 5F9 & 5FA
extint? equ  §5F9
typhed equ S5FA
oldcur equ 5679 ;S5aves cursor while in command
oldcur? equ 567A :Saves cursor while in terminal mode
eschar equ 5h38 ;Current escape character 6F9 & 6FA
flags equ  SBB8 ;07 = Video eche D6 = CRLF 779 & 774
col equ §738 ;Current printer column 7F9 & 7FA
number equ S4TF sNumber accumulated in command
aclabuf equ S4FF ;0wner of serial buffer
twser equ $57F :5torage pointer for serial buffer
twkey equ 55FF ;5torage pointer for type ahead buffer
trser equ  SATF ;Retrieve pointer for serial buffer
trkey equ S6FF ;Retrieve buffer for type ahead buffer
thbuf Bqu 5800 ;Buffer in alt ram space
temp equ S6FR ;Temp storage
sdata equ  §BFFB 1+5NO+590 is output port

Appendix |: Firmware Listings

T TL T T1

Tl

T Tl

Tl

I Rt E b E b L E b ! 'L 'Fl

i

‘T



l[ l[ I[ I[’_I[l_

ll L eI

oo

cl00:
Cl00:
Cl00:
Cl00:
cl00:

BFF9
BFFA
BFFB
FF58

61
62
63

18

sstat
gcomd
scntl
iorts

equ
equ
equ
equ

SBFF9
$BFFA
SBFFB
SFF58

INCLUDE SER

+ACIA status register

;ACIA command register
;ACTA control register
+RTS opcode

:Printer port @ SC100

Appendix I: Firmware Listings

ot



Cl00:

Cl00:2C 58 FF

cl03:70
Cl05:38
C106:90
Ccl07:18
Cl108:B8
€109:50

Cl0B:01
cl10Cc:31
Cl0D:E4
Cl0E:EE
Cl10F:F&
Cl10:FB

Cl11:DA
Cl12:A2
Clld:4C
c117:90
Cl19:20
cllc:B0
CL1E: DA
CLIF:7A
Cl20:5A
Cl21:BD
Cl24:F0
Cl26:A5
C128:B0
Cl12A:DD
£12p:90
Cl2F:BD
c132:DD
Cl35:B0
C137:C9
Cl139:B0
Cl3B:09
Cl3D:3D
Cl40:65
Cl42:8B5
Cl44:B0
Cl46:C5
Cl48:90
Cl4A:bb

Cl4cC:

Cl4C:7A
Cl4D:5A
Cl4E:BD
Cl51:DD
Cl154:B0
Cl156:C5
C158:B0
Cl5A:A9
C15C: 80
CL5E: A9

1321

0c

06

Ccl
33
03

B6A

38
B8
D8
24
0E
40
02
1A

c2

CE

07
04

Ccl11

Cl11

CL1E

clas

Cl4C

Clac

C15E

Cl6B

cle0

3 *org serslot

4 bit
5 bvs
6 sec
7 dfb
B ele
9 clv
10 bve
12 dfb
13 dfb
14 dfb
15 dfb
16 dfb
17 dfb
19 entrl phx
20 1dx
21 jmp
22 serport bce
23 jsr
24 bra
25 serisout asl
26 ply
27 phy
28 1da
29 beq
30 lda
11 bes
32 cmp
33 bee
34 lda
15 chok cmp
36 becs
37 cmp
38 bes
i9 ora
40 and
41 ade
42 fixch sta
43 bra
44 servid cmp
45 blt
46 stz

48 * We have

49 prnt
50
51

57
58 toofar

iorts
entrl

590

entrl

501

§31
>plinit
>plread
>plurite
>plstatus

f#<{serslot
setup
serisout
zzquit
done

A

pwdth,x
pronow
ch
servid
pwdth,x
chok
col,x
col,x
fixch
#511
prnt
#5F0
col,x
ch

ch

prat
wndwdth
prot

ch

a char to print

ply
phy
lda
cmp
bge
cmp
bge
lda
bra
1lda

col ,x
pwdth,x
toofar
ch
proow
#540
tab
#514

;Set V to indicate initial entry
;Always taken

;Input entry point

; BCC opcode

:V = 0 since not initial entry
;Always taken

;pascal signiture byte
;device signiture

;Save the reg

X = Cn

;Set mslot, etc
:0nly output allowed
:Reset the hooks

A = flags
;Get char

;Formatting enabled?
:Get current horiz position

;Branch if video echo
s1f CH >= PWIDTH, then CH = COL

:Must be » col for wvalid tab

;Branch 1if ok

:8 or 167

sI1f > forget it

:Find next comma cheaply

;Don't blame me it's Dick's trick

;5ave the new position

:If chd>= wndwdth go back to start of line

:Go back to left edge

;Have we exceeded width?

;Are we tabbing?
;:Space * 2

+CR * 2

Appendix |: Firmware Listings

L IEL D el TEL . (EL EREDOEL (EL (KL OIEL KD

fEl

S ) . |



Y U

[

cle0:CO
Clb2:6A
Cl163:20
Cle6:80
Cl68:98
C169:20
Cl6C:BD
Cl6F:FO
Ccl71:3C
C174:30
Cl76:BD
Cl179:FD
cl7c:c9
C17E:90
Cl80:18
Cl81:65
Cl183:AC
C184:49
ClBA:85
C188:68
Cl189:7A
ClBA:FA
C18B:60

Cl8cC:

Cl18C:20
C18F:90
Cl191:

C191:3C
C194:10
C196:C9
C198:F0
C19A:20
C19D:

C19D:BC
ClAO:48
ClAal:2C
ClA4:FO
ClA6:FE
Cla9:08
Claa:78
ClAB: B9
ClAE: 10
ClBO:48
CLBl:5A
ClB2:2C
ClB5:08
ClB6:20
ClB9:28
ClBA:10
ClBC:8D
CIBF:7A
Clc0:68
Clcl:28
clc2:29
Clc4:C9

EB
FA

B8
07
91
FO
85
58
38

F9
11

03
05

30

Cl
Cl4C

Cl

04
CLl88

06
clL88

07

04

Cl84

Cl8cC
c9
Clésn
cl191
06
c19D

Cl19D
FD

cl9D
c8

FF

ClA9
07

BF

clcl

co

co

C1BF
ca

prnow

setch

done

socmd

serout

serout?

serout]d

sordy

somain

sordy2

cpy
TOoTr
jsr
bra
tya
jsr
lda
beq
bit

lda
ghe
emp
bce
cle
ade
dfb
lda
sta
pla
ply
plx
rts

equ
jar
bece
equ
bit
bpl
cmp
beq
jsr
equ
ldy
pha
bit
beq
inc
php
sei
lda
bpl
pha
phy
bit
php
jsr
plp
bpl
sta
ply
pla
plp
and
cmp

Appendix I: Firmware Listings

#580

A
serout]d
prnt

serout
pwdth,x
done
flags,x
done
col,x
pwdth,x
#5F8

setch

wndwdth
SAC

#0

ch

*

command
socmd

*
flags,x
seroutd
fxon
seroutl
coutl

*

devno,x
iorts

sordy
col,x

sstat,y
sordy2
rdramwrt
aitst2

somain
wrcardram

#530
#510

;C = High bit
;Shift it into char
s0ut it goes

;Print the actual char
;Formatting enabled
;In video echo?

:Check if within 8 chars of right edge
;50 BASIC can format output

;1f not within 8, we're done
sDummy LDY to skip next two bytes
iKeep cursor at 0 if video off

iRestore regs

;Serial output
;Check 1if command
;All done if it is
;N=1 iff video on
;Don't echo ~Q
sEcho it
:¥ points to ACIA
;Save the char
;Control char?
;Don't inc column if so
;jcan't have real interrupts for a while
;Check XMIT empty & DCD
:branch if not clearing an interrupt

;gave original status

;Save state of aux ram

:Branch 1if was main
;Was alt ram

[133




CclCc6:DO
ClC8:68
ClC9:48
clca:99
ClCD:3C
ClDD: 49
ClD2:04
C1D2:p0
CID5:50
ClD7:A9
CID9:6A
C1DA:20
ClDD:64
ClDF:9E
ClE2:68
ClE3:60

1341

El

F8
BB
oD

oD
06
14

9D
24
38

BF
06

cl

07

ClA9

ClE2
ClDD

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

clrcol

sodone

bne
pla
pha
sta
bit
eor
asl
bne
bve
lda
ror
jsr
stz
Stz
pla
rts

Appendix |: Firmware Listings

sordy

sdata,y
flags,x
#50D

A
sodone
clreal
#514

A
serout]
ch
col,x

:Get char to XMIT

;0ut it goes

3V=1 if LF after CR
;check for CR.

;jpreserve bit 7

;branch if not CR.
;branch if no LF after CR
;Get LF*®2
;no shift in high bit
;O0utput the LF but don't echo it
;0 position & column

:Get the char back

TTLTO'TE T T

TR BT TETL

L TL




[ (e ¥

ClE&:

ClE4:48
C1E5:20
ClE8:9E
ClEB:68
ClEC:80

ClEE: 20
CIF1:90
CIF3:A2
ClF5:60

ClF6:20
ClF9:80
CLFB:B0

ClFD:
C200:

C& C2

BR 06

05 CLlF3

c5 C8

FB  ClEE

o0

BC cl

F8 CIF3

14 c217
0003

132 * Pascal support stuff

134
135
136
137
138

140
141
142
143

145
146
147

149
19

plinit

plread

plread2

plwrite

plstatus

pha
jer
stz
pla
bra

jsr
bece
ld=
rts

jsr
bra

bra

ds

default
flags,x

plread2
XRDSER

plread
#0

serout
plread?
p2status

comslot=*, 500

INCLUDE COMM

;set defaults, enable acia

»all done...

;read data from serial port (or buffer)

;Branch if data not ready

;Go output character

;Communications port @ SC200

Appendix |: Firmware Listings

135




C200:2C 58 FF

C203:70
C205:38
€206:90
c207:18
c208:88
€209:50

C20B:01
€20C:31
€20D:11
C20E:13
C20F:15
€210:17

C21l:

C211:80
C213:80
C215:80

C217:

C217: A2
C219:4A
C21A:D0
CZ1C: AA
C21D: A9
C21F:BO
C221:0A
c222:09
C224:39
C227:F0
C229:49
C22B:38
C22C:D0
C22E:18
C22F:60

C230:DA
C231:A2
€233

C233:54
C234:48
C235:8BE
C238:50
C23A: A5
C23C:45
C23E:FO
C240: A5
C242:C5
C244:FD
C246:20
C249:8a
C24A:45
C24C:05
C24E:DO
C250: A9
C252:85

1361

2B

25

Dl
D9
DF

40

D8
01

20

05
20

0l

c2

F8
22

38
06
37
39
03
c8

39
o7

05
38

€230

c230

ClE4
CLEE
C1F6
c217
C22E

€222

C22E

C22F

€233

o7
c25cC

C246

C249
cz2

C257

sin

sout

bit
bvs
sec
dfb
cle
clv
bve

dfb
dfhb
dfb
dfb
dfb
dfb

iorts ;Set V to indicate initial entry
entr
;Input entry point
$90 ;BCC opcode to skip next byte
;0utput entry point
;Mark not initial entry
entr :Branch around pascal entry stuff

s01 ipascal signiture byte
531 rdevice signiture
»plinit

>p2read

»plwrite

>p2status

* Pascal support stuff

p2init
p2read
plurite

p2status

pstat2

notrdy
isrdy

entcr

setup

sudodef
sunodef

bra
bra
bra

equ
1dx
1sr
bne
tax
lda
bes
asl
ora
and
beq
eor
sec
bne
cle
rts

phx
1d=x
equ
phy
pha
5tX
bve
lda
aor
beq
lda
cmp

jsr
txa
eor
ora
bne
lda
Bta

plinit
plread
plurite
*
#3540 ;anticipate bad status request
a ;shift request to carry
notrdy

;clear x for no error return code
#8 ;anticpate input ready request
pstat2 ;branch if good guess.
a
#520 ;include DCD in test
sstat+590,vy
notrdy ;branch if not ready for I1/0
#520

;assume port is ready
isrdy sbranch 1f good assumption
:indicate acia not ready for 1/0

f#<{comslot X = {CNOOD

*

mslot

sudone ;First call?

cswl ;1If both hooks CNOD setup defaults
kswl

sudodef

cswh s1f both hooks CN then don't do def
kswh ;since it has already been done
sunodef

default ;5et up defaults

kswh sInput call?

kswl

suout ;Must be Cn00

#>sin ;Fix the input hook

kswl

Appendix I: Firmware Listings

Ll

IE|

LWL H_HL'H H E

Fl

(F

TE L TH

J ! B



[ ¥ (€

€254:38
C255:80
C257:A9
C259:85
C25B:18
C25C:BD
C25F:89
C261:D0
C263:4C
C266:90
C268:68
C269:80
C26B:3C
C26E: 50
C270:20
C273:80
C275:

C275:68
C276:20
€279:10
C27B:20
C27E:B0O
C2B0:29
C282:C9
C2B4:FO0
C2B6:C9
C288:D0
C28A:A9
C28C:7A
C2BD:FA
CZBE:60
C28F: 18
€290:20
C293:

C293:20
C296: 48
C297:20
C29A:90
C29C: A8
C29D:68
C29E:5A
C29F:20
C2A2:68
C2A3:BC
C2A6:FO
C2ZAB:09
C2AA:C9
C2AC:FO
C2AE:C9
CZBO:FO
C2B2:C9
C2B4:FO
C2B6:0C9
C2BB:FO
C2BA:C9
CZBC:FO
C2BE: 3C
C2C1:50

ch

4C

C5
Dg

B8

38
16
80
BA

91
El
FF
(1]
92
D5
94
D2
B8
c9

C25C

06

C266
Cl
C263

€293
03
C28C
Cl
c293
Cc275

cc
Cc296

c9
C26B
C28a

c293

CA
c293
cC

caé
Cc275

c3

06
C2BE
C293
c293
€293
C28F
€290

03
C2BC

L16
117
118

suout

sudone

comout
commpoTt

noesc

testkhbd

exitX
exitl

goremote
goterm
terml

serin

sinomod

sec
bra
1lda
sta
cle
lda
bit
bne
jmp
bee
pla
bra
bit
bve
jsr
bra
equ
pla
jsr
bpl
jsr
bes
and
cmp
beq
cmp
bne
lda
ply
plx
rts
cle
jsr
equ
jor
pha
jsr
bee
tay
pla
phy
jsr
pla
ldy
beq
ora
cmp
beq
cmp
beq
cmp
beq
cmp
beq
cmp

bit
bve

sudone
#rsout
ecswl

flags,x
#1
commport
serport
comout

terml
sermode ,x
exitl
serout?

terml
*

update
serin
command
noesc
#55¢
#TQI
exicX
#TRI
terml

#598

setterm
&

showcur

XRDSER
testkbd

storch

eschar,x
sinomod
#580
#58A
terml
#xon
terml
#SFF
terml
#592
gnremote
#594
goterm
sermode , x
exitl

;€ =1 for input call

;Fix output hook
;Note C might not be O
;C=0 for output
;Check if serial or comm port
;Leave flags in a for serport

sOutput?

;Get the char

s Input

;In terminal mode?
+If not, return key
;0ur it goes

;Get current char

:Update cursor & check keyboard
;N=0 if no new key

;Test for command

:Branch 1if not

;upshift for following tests

s Quit?

;Reset?
sGo check serial
sreturn a CTRL-X

;Into remote mode
;Into terminal mode

;Get current char on screen

+Is it ready?

:If not, try the keyboard
;S5ave new input in y for now
;Save new char on stack

:Fix the screen
:Get the new data

;I1f 0, don't modify char

;Apple loves the high bit

;Ignore line feed

sLgnore "Q

;Ignore FFs

: "R for remote?

:"T for terminal mode?

;In terminal mode?
;Return to user if not A = char

Appendix I: Firmware Listings

[137




———
]

C2C3:20 ED FD 119 jsr  cout ;0nto the screen with it g

C2C&:80 CB €293 120 bra terml

c2ca: c2c8 121 default equ * ;5et up the defaults R

C2C8:20 A2 C8 122 jsr moveirq ;jmake sure irq vectors ok _L:—l

C2CB:BC 3B C2 123 ldy defidx-5Cl,x ;Index into alt screen. Table in command

C2CE:20 7C C3 124 defloop jsr  pgetalt ;Get default from alt screen

C2D1:48 125 pha il

C2D2:88 126 dey e

C2D3:30 04 C2D9 127 bmi defff ;Done if minus

€2D5:c0 03 128 cpy #3

C2D7:D0 F5 C2CE 129 bne  defloop ;0r if 2 .

C2D9:20 A2 c8 130 defff jsr  moveirg jJam irq vector into LC ',.:'d

C2DC:68 131 pla ;Command, control & flags on stack

C2DD:BC 85 C8 132 ldy devno,x

C2E0:99 FB BF 133 sta  sentl,y ;Set command reg ancll

C2E3:68 134 pla At

C2E4:99 FA BF 135 sta scomd, ¥y

C2E7:68 136 pla _—

C2EB:9D B8 06 137 sta flags,x ;And the flags L

C2EB:29 01 138 and #1 A = 501 ("A) if comm mode =

CZED:DD 02 C2F1 139 bne defcom

C2EF:A9 09 140 lda #9 +"1 for serial port -

C2F1:9D 38 06 141 defcom sta  eschar,x Ll

C2F4:68 142 pla ;Get printer width -

C2F5:9D B8 04 143 sta pwdth,x

C2FB:9E B8 03 144 stz sermode, x J—

CZFB:60 145 rts [l

C2FC:03 07 146 defidx dfb 3,7 '_'

C2ZFE: 0002 147 ds $C300-*,300

C300: 20 INCLUDE C3SPACE ;80 column card @ $C300 —
_":-i
P
:l._-

Tl

g W { B

Iyt

LTl

1381 Appendix |: Firmware Listings




[ /e Y I

C300:
C300:
C300:
C300:
C300:
C300:48
C301:DA
C302:54
C303:80
C305:38
C306:90
Cc307:18
C308:80
C30A:EA
C30B:
C308B:
C308:
C308:01
C30C:88
C30D:
C30D:2¢C
C30E:2F
C30F:32
C310:35
Cc3ll:
Cill:
£3ll:
Ccill:
C311:4C
C3l4:4C
C3L7:
Cc317:
c317:
C317:
Ci17:
C3il7:
C317:20
CI1A:20
C31D:20
C320:7A
C321:FA
C322:68
C323:18
C324:
C324:80
C326:4C
C329:4C
c32c:
C32C:4C
CI2F:4C
C332:4C
C335:4¢C
C338:
C338:
C338:
C338:
C338;
C338:

12

1A

a6
cD

20
BE
58

03
Fb
1B

41
35
c2
Bl

c317

C324

CF
CF

CE
cD
FC

£329
FD
FD

CF
CF
CE
CE

R T T T B B T B e e
#*
* THIS IS THE $SC3IXX ROM SPACE:
*
e e ek ok e ok ok ok ko sk ok sk e ek ek ok
C3IENTRY  PHA ;save regs
PHX
PHY
BRA BASICINIT ;and init video firmware
CIKEYIN SEC ;Pascal 1.1 ID byte
DFB 590 ;BCC OPCODE (NEVER TAKEN)

c3couTl CLC
BRA BASICENT
HOP

;Pascal 1.1 ID byte
;=»go print/read char

* PASCAL 1.1 FIRMWARE PROTOCOL TABLE:
*

DFB 501 ;GENERIC SIGNATURE BYTE

DFB 588 ;DEVICE SIGNATURE BYTE
*

DFB 2JPINIT ; PASCAL INIT

DFB >JPREAD 3 PASCAL READ

DFB >JPWRITE + PASCAL WRITE

DFB »JPSTAT s PASCAL STATUS
dek e de etk ok ok kA Rk ok ok ok

*

* 128K SUPPORT ROUTINE ENTRIES:

*
JMP MOVEAUX ;MEMORY MOVE ACROSS BANKS
JMP  XFER ; TRANSFER ACROSS BANKS

hkkhkAkkhhhhhhhhhdhhkdhhhdhhedkhhkhdhkhihhk

*

LR R R st T TR L

* BASIC I/0 ENTRY POINT:

dhkkhkhk kA khhhhhh kb hhkh Ak kb d ki hhhkdd

*

BASICINIT JSR HOOKUP ;COPYROM if needed, sethooks

JS5R SET80 ssetup 80 columns
JSR HOME sclear screen

PLY

PLX srestore X

PLA jtestore char

CLC ;output a character

*

BASICENT BCS BINPUT
BPRINT JMP COUTZ

BINPUT JMP KEYIN
*

;=carry me to input
iprint a character
;get a keystroke

JPINIT JMP PINIT ypascal init

JPREAD JMP PASREAD ;pascal read
JPWRITE JMP PWRITE spascal write
JPSTAT JMP PSTATUS :pascal status call

*
* COPYROM is called when the video firmware is

* {nitialized. Tf the language card is switched
* in for reading, it copies the F8 ROM to the

* language card and restores the state of the

* language card.

Appendix I: Firmware Listings

[139




c338:
C338:49
C33A:
C33A:
C33A:
C334A:
C33A:CD
C33D:F0
C33F:20
Cl42:A9
C344:B5
Cl46:64
C348:82
Cl4A:92
C3I4C:Eb
CI4E:DO
C350:E6
€352:00
C354:
C354:
C354:
C354:
C354:
C354:DA
C355:AE
C358:3C
C35B:3C
C35E:FA
C35F:60
C360:
C360:
C360:
C360:
C€360:
C360:
C360:DA
Cibl:A2
C363:2C
C366:30
Ci6B:A2
CI6A:2C
C36D: 10
C36F:E8
C370:E8
C371:2C
C374:2C
C377:8E
C37A:FA
C37B:60
ci7c:
C37¢C:
Cc37C:
c37¢:
C37c:
C37C:AD
CATF:0A
C3B0:AD
C383:08

1401

06

78
8l
81

13

18

FB
C378
c3

C348

C348

04
co
co

co
C3ba

co

€371

co

04

co

co

60

104

106
107
108
109
110
111
112
113
114
115
116
117

*

COPYROM LDA
*

#GOODF8

;2et the ID byte

* Compare ID bytes to whatever is readable. If it
* matches, all is ok. 1f

&

CHMP
BEQ
JSR
LDA
STA
STZ
COPYROM2 LDA
STA
INC
BNE
INC
BNE

* % ¥ * W

RESETLC PHX
LDX
BIT
BIT
PLX

RTS
*

FBVERSLON
ROMOK
SETROM
#5F8
CSWH
CSWL
(CSWL)
(CSWL)
CSWL
COPYROM2
CSWH
COPYROM2

ROMSTATE
ROMIN,X
ROMIN,X

not, need to copy.
;jdoes it match?
;jread ROM, write RAM, save state

; from FBO0-FFFF

;Eet a byte
;and save a byte

;fall into RESETLC

RESETLC resets the language card to the state
determined by SETROM.
write enabled.

It always leaves the card

;save X

sget the state

:set bank & ROM/RAM read
;set write enahle
irestore X

* SETROM switches in the ROM for reading, the RAM
* for writing, and it saves the state of the

* language card.

It does

not save the write

* protect status of the card.

*

SETROM PHX
LDX
BIT
BMI
LDX
NOTI1 BIT
BPL
INX
INX
NOREAD BIT
BIT
STX
PLX

ROMOK RTS
*

#0
RDLCBNK2
NOTI

#58
RDLCRAM
NOREAD

scosl
SCO081
ROMSTATE

isave x

sassume write enable,bank2,ROMRD
;is bank 2 switched in?

s=ryes

sindicate bank 1

»is LC RAM readable?

L =210

sindicate RAM read

yROM read
sRAM write
;8ave state
;restore X

* GETALT reads a byte from aux memory screenholes.
* ¥ i the index to the byte (0-7) indexed off of

* address 5478,

*

GETALT LDA
ASL
LDA
PHP

RDRAMRD
A
RDBOCOL

;save state of aux memory

sand of the BOSTORE switch

Appendix I: Firmware Listings

{ W] W W -

TLTLTL

Tl

'Th

o T { T .

!‘.‘

T



ﬂ C384:8BD 00 CO 118 STA  CLRBOCOL ;no BOSTORE to get page |
C387:8D 03 CO 119 STA RDCARDRAM ;pop in the other half of RAM
C38A:B9 78 04 120 LDA $478,Y ;read the desired byte
Rl C38D: 28 121 PLP ;and restore memory
- C3BE:BO 03 c393 122 BCS GETALTI1
L C390:8Dp 02 coO 123 STA RDMAINRAM
€393:10 03 C398 124 GETALT! BPL  GETALT2
u €395:80 01 cO 125 STA SET80COL
- C398:60 126 GETALT2 RTS
C399: 127 *
€399:09 80 128 UPSHIFTO ORA  #5%80 ;set high bit for execs
u C39R:C9 FB 129 UPSHIFT CHMP #SFR
= C39D:B0 06 C3A5 130 BCS X.UPSHIFT
C39F:C% El 131 CMP fSEL
- C3A1:90 02 C3AS 132 BCC X.UPSHIFT
b C3A3:29 DF 133 AND  #SDF
C3A5:60 134 X.UPSHIFT RTS
C3A6: 135 *
- C3Ab: 136 * GETCOUT performs COUT for GETLN. It disables the
CIAG: 137 * echoing of control characters by clearing the
CIAb: 138 * M.CTL mode bit, prints the char, then restores
C3A6: 139 # M.CTL. NDESC is used by the RDKEY routine to
C3A6: 140 * disable escape sequences.
C3A6: 141 *
C3AR:48 142 GETCOUT  PHA ;save char to prinmt
C3AT:A9 0B 143 LDA  #M.CTL ;jdisable control chars
C3A9:1C FB 04 144 TRB YMODE :by clearing M.CTL
e C3AC:68 145 PLA ;restore character
C3AD:20 ED FD 146 JSR Cout yand print it
C3B0:4C 44 FD 147 JMP NOESCAPE ;enable control chars
C383: 148 *
C3iB3: 149 * STORCH determines loads the current cursor position,
C3B3: 150 * inverts the character, and displays it
C3B3: 151 * STORCHAR inverts the character and displays it at the
C3B3: 152 * position stored in ¥
— C3B3: 153 * STORY determines the current cursor position, and
C3B3: 154 * displays the character without inverting it
C3B3: 155 * STORE displays the char at the position in ¥
B C3B3: 156 *
C3B3: 157 * If mouse characters are enabled (VMODE bit 0 = 0)
C3B3: 158 * then mouse characters (540-55F) are displayed when
C3B3: 159 * the alternate character set is switched in. Normally
l__u C3B3: 160 * values $S40-55F are shifted to $0-51F before display.
= C3B3: 161 *
C3B3: 162 * Calls to GETCUR trash Y
C3R3: 163 =*
| S—_—] C3B3:20 9D cC 164 STORY JSR  GETCUR ;get newest cursor into Y
— C3B6:80 09 C3iCl 165 BRA STORE
C3B8: 166 *
C3B8:20 9D CC 167 STORCH JSR GETCUR :first, get cursor position
.—-T. C3BB:24 32 168 BIT INVFLG jnormal or inverse?
C3BD:30 02 cicl 169 BMI STORE s=’normal, store it
C3BF:29 7F 170 AND #57F :inverse it
C3iCl:5a 171 STORE PHY ;save real Y
H_ €3C2:09 00 172 orRA  #0 :does char have high bit set?
CAC4:30 15 Cips 173 BMI STOREL ;=>yes, don't do mouse check
C3ChH:48 174 PHA ;save char
CIC7:AD FB 04 175 LDA VMODE :i8 mouse bit set?

I

Appendix |: Firmware Listings




C3ICA:HA
C3CB:h8
C3CC:90
C3CE:2C
CiDnl: 10
C3p3:49
C3D5:89
C3D7:F0
C3p9:49
C3DB:2C
C3DE: 10
C3EOQ: 48
C3EL1:8D
C3E4:98
C3IES5:45
C3E7:4A
C3E8:BO
C3EA:AD
C3ED:C8
C3EE:98
C3EF:4A
C3F0:AB
C3IF1:68
C3F2:91
C3iF4:2C
C3F7:7A
C3IFB:60
C3IF9:

C3F9:91
C3FB:7A
C3FC:60
CiFD:

C400:

142

oD
1E
08

60
02
40
IF
19
01
20

04
55

28
54

28

co

co

co

co

co

C3DB

C3DB

C3DB

C3F9

C3EE

0003

176
177
178
179
180
181
182
183
184
185
186
187
188
18%
120
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

21

STOREL

STORE2

STORE3

STORES

*
STORES

ROR
PLA
BCC
BIT
BFPL
EOR
BIT
BEQ
EOR
BIT
BPL
PHA
STA
TYA
EOR
LSR
BCS
LDA
INY
TYA
LSR
TAY
PLA
STA
BIT
PLY
RTS

STA
PLY
RTS
ns

A

STORE1
ALTCHARSET
STORE1
#540

#1560
STORE
#1540
RDBOVID
STORES

SETB0COL
WNDLFT
A

STORE2
TXTPAGE2

{BASL),Y
TXTPAGE L

(BASL),Y

$C400=*,500

INCLUDE MOUSE

;restore char

;=»no, don't do mouse shift
;no shift 1f ][ char set
i=> 1t is!

1 $40-§5F=>0-§1F

;80 columms?

;=»no, store char

;save (shifted) char
;hit BO store

yEet proper ¥

C=1 if char in main ram

;=ryes, main RAM

;else flip in aux RAM

;do this for odd left, aux bytes
sdivide pos'n by 2

;get (shifted) char
:atuff it

;else restore pagel
srestore teal ¥
sund exit

;jdo 40 column store
irestore Y

rand exit

;Equates for the mouse

Appendix |: Firmware Listings

‘T T

TLTL TR TR '

T

Il

B b

Elo Tl




B
C400: 2 MSB ON
I 400 T dededededk sk ko ok ok ok ok ke e ok ok ok sk ek ok ok ok ok
- C400: 4 *
— C400: 5 * Mouse firmware for the Chels
C400: 6 *
I C400: 7 * by Rich Williams
[ ! C400: 8 * July, 1983
C400: 9 =
L C400- 10 #bddkddddddkddddkhbbhbdbhhihhdhdbhhhhhhithihih
-
C400: 12 #kkkkkhkhhhhhhrhhhhhhhhhahhhhrkrxhhthhhd
C400: 13 =
Lﬂ C400: 14 * Equates
C400: 15 *
! C400: L6 ek sk sk sk e ke ek ok ko ok ok e e ok ok ok ok ok ke
C400: 1B * Tnput bounds are in scratch area
C400: 0478 19 moutemp equ 5478 :Temporary storage
: C400: 0478 20 minl equ  $478
C400: D4F8 21 maxl equ S4F8
C400: 0578 22 minh equ 45578
- C400: 05F8 23 maxh equ  55F8
C400: 24 * Mouse bounds in slot 5 screen area
C400: 047D 25 minxl equ 547D
C&00: 04FD 26 minyl equ S4FD
C400: 0570 27 minxh equ 557D
C400: 05FD 28 minyh equ 55FD
C400: 0670 29 maxxl equ 567D
C400: 06FD 30 maxyl equ  56FD
CA400: 077D 31 maxxh equ S77D
- C4003: 07FD 32 maxyh equ $TFD
C&00: 33 * Mouse holes in slot 4 screen area
C4&00: D47C 34 mouxl equ S47C ;X position low byte
Lﬂ C400: 04FC 35 mouyl equ S4FC ;Y position low byte
C400: 0s7¢c 36 mouxh equ §57¢C ;X position high byte
C400: 0O5FC 37 mouvh equ S5FC ;¥ position high byte
C400: 067C 38 mouarm equ  567C ;Arm interrupts from movement or button
] C400: 077c 39 moustat equ $77¢C :Mouse status
— C400: 40 * Moustat provides the following
C400: 41 * D7= Button pressed
I_ C400: 42 * Db= Status of button on last read
Bl C400: 43 * D5= Moved since last read
— C400: 44 * Dh= Reserved
C400: 45 * D3= Interrupt from VEL
, C400: 46 * D2= Interrupt from button
--".: C400: 47 * Dl= Interrupt from movement
C400: 48 * DO= Reserved
C400: 07FC 49 moumode equ STFC ;Mouse mode
C400: 50 * D7-Dbd= Unused
C400: 51 * D3= VBL active
C400: 52 * D2= VEL interrupt on button
C400: 53 * DIl= VBL interrupt on movement
- C500: 54 * D0= Mouse active
C400: 0020 55 movarm equ 520
E Appendix |: Firmware Listings 143




c400:
C400:
C400:

C400:
C400:
C400:
C400:
C400:
C400:
C400:
C400:
C400:
C400:
C400:
C400:
C&00:
C400:
C400:
C400:
C400
C400:
C400:
C400:
C400:

144

0ooc
0004
0002

col5
coL7
co19
co78
co79
co48
cosa
cos58
c059
C063
CD&6
coa7
co70

0200
0214
0215

vblmode
butmode
movmode

equ
equ
equ

50C
504
$02

* Hardware addresses

mouxint
mouyint
vblint
ioudshbl
iouenbl
mouclr
iou
moudsbl
mouenbl
moubut
mouxl
mouyl

vbhlelr
*

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

$C015
SCO17
$c019
sco78
$C079
SC048
$C058
$C058
$C059
SC063
SC066
SCOR7
8070

* Other addresses

*
inbhuf
binl
binh

equ
equ
equ

$200
inbuf+20
inbuf+2l

INCLUDE MCODE

:D2 mask
;D] mask

:D7 = x interrupt

;D7 = y interrupt

;D7 = vbl interrupt
;Disable iou access
;Enable iou access
:Clear mouse interrupt
;I0U interrupt switches
;Disable mouse interrupts
:Enable mouse interrupts
;D7 = Mouse button

D7 = X1

D7 = Y1

sClear VBL interrupt

;Input buffer

;Temp for binary conversion

iMouse @ SC400

Appendix |: Firmware Listings

T T T T

(§

E'Ele PR B ELEL FL T 'ELTL T

k

l



8 ¢

C400:
C400:
C&00:
C400:
C400:
C400:80 05
C402:A2 03
C404:60
C405:38
C406:90
C407:18
C408:4C BO C7
C40B:01
C40C:20
C40D:02
C40E:02
C40F:02
C410:02
C411:00
C412:3D
C4l3:FC
C414:95
C415:84
C4lb:6B
C417:8B0
C418:6D
C419:1cC
C4l1A:02
C41B:CF

cany

p—
LTt =T N = R R S K ]

sl e sl vk ol iy s e ke vl ol ol ol ok ol e e e ol e vl sl ok vl ok ol s e e o e o o ok e e e

*

* Entry points for mouse firmware

*

e v e e o ol ok o o ke o ok ok ke e ok e o ok ok ok ol ok ok ok e e o e ok o ok ok e o o e

mbasic bra
pnull ldx
rcs
inent sec
dfb
outent cle
jmp
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb

outent
#3

$90

xmbasic
501

$20
»pnull
>pnull
>»pnull
»pnull

50
JRsetmou
>xmtstint
>xmread
>xmclear
Jnoerror
>xmclamp
>xmhome
>initmouse
»pnull
>xmint

;Null for pascal entry
iySignature bytes

;Go do basic entry
jMore signature stuff

y SETMOUSE

; SERVEMOUSE
; READMOUSE
s CLEARMOUSE
; POSMOUSE

s CLAMPMOUSE
s HOMEMOUSE

; INITMOUSE

Appendix |: Firmware Listings

[145




C&lcC:
C4lcC:
C4A1C:
c4lcC:
ChlcC:
C4lC:
Cc4lcC:
C4lC:
C41C:9C
C4lF:A2
C421:A0
C423:9E
C426:9E
C429:A9
C42B:9D
C42E: A9
C430:9D
C433:A2
C435:88
C436:10
C438:20
C43B: A9

C43D:
C43D:
C43D:
C43D:
C43D:
C43D:
C43D:AA
C43E:20
Ch4&1:Ba
C442 :BD
Cah5:4A
Chéb:0D
C449:C9
C44B:BO
C44D:29
C44F:FO
C451:58
C452:69

Ch454:
Ch54:
C454:
C454:
C454;
C454:
C454:;
C454:
C454:
C454;
C454:
Ch34:

146 |

ic 07

01
7D 04
D 05
FF
7D 06
03
D 07
0o

EB

6D C4
oo

A2 CH
78 04

78 04

c4lcC

C423

C43D

C46C

Ch52

o ol e ol ok ok ol s e e e e e e ok ok e ok ok o ook o e ok o o o ok ok ok o e ok ke e ok

* % ¥ ¥ ¥

Initmouse = resets the mouse
Also clears all of the mouse holes
note that iou access fires pdlstrb & makes mouse happy

hhkhkhhhhkhkhhkhkhhkhhhhhhhhhkhhkhkhhhhrhhkkhhhkhkk
initmouse equ *

xrloop

stz moustat
1dx  #580
ldy #1

SLZ minxl,x
stz minxh,x
lda #SFF
ata maxxl,x
1da  #03

sta maxxh,x
1dx  #0

dey

bpl xrloop
jsr  xmhome
1da  #0

;Clear status

iMinimum = $0000

;Maximum = $03FF

;Clear the mouse holes
:Fall inte SETMOU

et g e e e e e o ol ol ok e ok e ok ok e ol o e e o ok ol ol o e ok ke ok ok v e ke e ke ok e

*

* ¥SETMOU - Sets the mouse mode to A

*

e vk e e e ook ok ok ok ok ok o o ok ok v e e ol ok o ol e e ok e ok ok o e e e e o

xsetmo

xsoff

u equ *
tax
jsr moveirg
txa
sta moutemp
lsr A
ora moutemp
cmp #510
bes sminvalid
and #5
beq xsof f
cli
ade #5855

;Make sure interrupt vector is right
:0nly x preserved by moveirg

;D0 = 1 if mouse active
;D2 = 1 if whl active
;If »=510 then invalid mode

:Extract VBL & Mouse
:Turning it off?

3If not, ints active
:Make iou byte C=0

e vk i e e e o o ol ok ok e ok e ok o e e e e e ek ke e bk e sk ke sk ok

Inp
D7
D6
D5
D4
D3
D2
D1
Do

* % ¥ * % % F ¥ * ¥ 3%

uts: A = Bits to change
= Y int on falling edge
= Y int on rising edge

= X int on falling edge
= X int on rising edge

= Enable VBL int

= Disable VBL int

= Enable mouse int

= Disable mouse int

SETIOU - Sets the I0U interrupt modes to A

Appendix I: Firmware Listings

TL T T T T

TLTL TL T

T

Tl

A {5 {8813

{ S W



——
I Ch454: 86 *
C454: 87 %
- ChLS4 BB ook e ok ok ok ok ok ke ok ok ok e ke ok ok ok ok ek ke
—| C&54: C454 A9 setiou equ *
C454:08 90 php
C455:78 91 sel iDon't allow ints while iou enabled
[ | ! C456:8E FC 07 92 stx moumode
C459:8D 79 cO 93 sta iouenbl ;Enable iou access
C45C:A2 08 94 ldx 8
C45E:CA 95 siloop dex
C45F:0A 96 asl A ;Get a bit to check
o C460:90 03 c465 97 bee  sinoch ;No change if C=0
C&462:9D 58 CO 98 sta fou,% ;Bet it
C465:D0 F7  C45E 99 sinoch bne siloop iAny bits left in A?
C467:8BD 78 COD 100 sta ioudsbl :Turn off iou access
Ch6A: 28 101 plp
C46B: 18 102 noerror cle
C&6C:60 103 sminvalid rts
C46D: 105 Ahkkdkkhhhhhkhkrhhhhhhhhddhhhhkhkhhhhhhdh
CA46D: 106 *
C4bD: 107 * XMHOME- Clears mouse position & status
C46D: 108 *
C4hD: 100G ok ok ek ok ke ks ot ok ook e ok ok ok e ok ok ok ek e
C46D: C46D 110 xmhome equ %
C46D:A2 BO 111 1dx  #%80 ;Point mouse to upper left
C46F:B0 02 c4731 112 bra xmh2
C471:42 00 113 xmhloop ldx  #0
C473:BD 7D 04 114 =mh2 lda minxl,x
C476:9D 7C D4 115 sta mouxl,x
C479:BD 7D 05 116 lda minxh,x
C47C:9D 7C 05 117 sta  mouxh,x
C4TF:CA 118 dex
I C480:10 EF  C471 119 bpl  xmhloop
C482:80 OC C490 120 bra xmcdone
Red
C4B4: 122 dedeskok ok sk desk stk o ok ok ok ok ok ok ok sk sk ok ks ek
C484: 123 =
=+ C484; 124 * XMCLEAR - Sets the mouse to 0,0
Ch4B4: 125 %
I ChBL: 126 stk ke sk ok ko ok o o ke ok o ke ke ok o ok ek
.—.‘ C4B4: C484 127 xzmclear equ *
— C4B4:9C 7C D4 128 stz  mouxl
C487:9C 7C 05 129 stz  mouxh
C4BA:9C FC 04 130 stz  mouyl
---;. C4BD:9C FC 05 131 stz mouyh
C€490:9C 7C 06 132 xmcdone stz  mouarm
C493:18 133 cle
k C494: 60 134 rts
5
E Appendix |: Firmware Listings [147




C495:
C495:
C495:
C495:
C495:
C495:
C495:A9
C497:2D
C494:1C
C49D: 2C
C4A0:30
ChA2:09
ChAL:2C
C4AT: 10
C4A9:09
C4AB: 8D
C4AE: 18
CA4AF:60

C4BO:
C4BO:
C4BO0:
C4BO:
C4BO:
C4BO:
C4BO:
C4BO:
C&BO:6A
C4Bl:bA
C4B2:29
C4B4: AA
C4B5:AD
C4BB:9D
C4BB:AD
C4BE:9D
C4Cl:AD
C4C4:9D
C4C7:AD
C4CA:9D
C4CD:18
C4CE:60

1481

80

78
7D
78
D
F8
7D
FB
D

C495

06
06

ChAh

07
C4AR

07

C4BO

136
137
138
139
140
141
142
143
I
145
146
147
148
149
150
151
152
153

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

dedededdededededede ek dr ek ko ko k ik ki kkhkk

*

* XMREAD - Updates the screen holes

*

e o e o e e o e e o ke o e e e e ok o o ok e ok ok o sl ok e e e ok e ol e v v e e

xmread equ
lda
and
trb
bit
bmi
ora
xrbut bit
bpl
ora
xrbut2 sta
cle
Tts

*

ffmovarm :Has mouse moved?
mouarm

mouarm ;Clear arm bit
moubut ;Button pressed?
xrbut

#580

moustat ;Pressed last time?
xrbut

#540

moustat

e e v e e e oy oy ol o oy oy ol ol ok e o e ok ol oy ok ol ok ok ke ok ok ok ol ok o ok e ke e ok

> % ¥ ¥ ¥

¥MCLAMP - Store new bounds
Inputs A = 1 for ¥, 0 for X axis
minl, minh, maxl, maxh = new bounds

kkkkhkhkhhhhhhhhhhdhhrhhhhhhhkhhhhhkhhhhhtd

¥xmclamp  equ
Tor
ror
and
tax
1lda
sta
lda
sta
lda
sta
lda
sta
cle
rts

*

A 11 =3 BD
A

#580

minl
minxl,x
minh
minxh,x
maxl
maxxl,x
maxh
maxxh,x
;No error

Appendix I: Firmware Listings

T Pl '"FL T 'RLTFI

Tl

F_TFl. Tl

l

A

Ehaaltl

Tl

EEL



EF £ Er-r—E&r6r- 0 &r£rEr e

CA4CF:
C4CF:
C4CF:
C4LCF:
C4CF:
C4CF:
C4CF:
C4CF:
C4CF:
C4CF:AE
C4D2:AC
C4D5:
C4D5: A9
C4D7:1C

C4DA: 38
C4DB:

C4DB:AD
C4DE:10
C4ED: 8D
C4E3: A9
C4ES5:2C
C4EB: DO
C4EA:BD
C4LED:09
C4EF : B0

C4F1:A9
C4F3:2D
C4F6:D0
C4F8:38
C4F9:68
C4FA: RO
C4FB:

C4FB:D6
C4FC:48
C4FD: 18
C4FE:80
C500:FF
€501:20
C504:A2
C€506:20
C509:10
C50B:60
c50C:

C50C:8D
C50F:2C
€512:D0
C514:A9
C516:2C
C519:10
CS51B:49
C51D:2D
C520:0C

66
67

0E
1C

Fl

4D
FF
24
FB

C4CF
co
CcOo
C4D5

o7

co
c528
co

o7
CL4ED
co

cs50C

07
C4F9

0000

C4F1

cB
C506

c50c
co
06
Cc516

co
c51D

07
07

178
179
180
181
182
183
184
185
186
187
188
189
190
191

193
194
195
196
197
198
199
200
201
202
203

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

ki o ok e e ok e ok ok ok ok s s e e o ok ok e ok e e e el ok o ok o ok ok e ok e e o
*
* Mouse interrupt handler
*
* MOUSEINT — Monitor's interrupt handler
* YMINT - Interrupt handler the user can use
* XMTSTINT - Checks mouse status bits
AEkhAkhEARAARARRAARRA R AR R R A AR R AR R RRhkhh kR
xmint equ *
ldx mouxl ;Get X1 & Y1 asap
ldy mouyl
mouseint equ * ;Entry point if X & ¥ set up
1da  #S0E ;Clear status bits
trb  moustat
sec ;jAssume interrupt not handled
* Check for vertical blanking interrupt
lda vblint ;VBL interrupt?
bpl chkmou
sta iouenbl ;Enable iou access & clear VBL interrupt
lda flvblmode :Should we leave vbl active?
bit  moumode
bne cvnovbl
sta iou+2 ;Disable VBL
cvnovhl ora #movmode
bra xmskip
mistat lda  #$0E

and moustat
bne nostat2
sec
nostat? pla
rts
ds SC4FB-*
dfb  5Dé6 ;Signature byte
xmtstint pha
cle
bra mistat 1Go check status
dfb SFF
jsr zzquit ;jGet out of the hooks
ldx #5FF
qloop isr zznm2
bpl gqloop
rts
xmskip equ o
sta ioudsbl
bit mouarm sVBL bit in arm isn't used
bne cvmoved
lda  #vblmode ;Didn't move
cvmoved bit moubut sButton pressed?
bpl cvbut
eor #hutmode :Clear the button bit
cvbut and moumode ;Which bits were set in the mode
tsh moustat

Appendix |: Firmware Listings [149




C523:1C
C526:69
C528:

C528:

C52B:AD
C52B:0D
C52E: 10
C530:8A
C531:A2
C533:2C
£536:30
£538:98
€539:49
C53B:A2
C53D:2C
C540:10
C542:0A
C543:BD
C546:B0
C548:DD
C54B:D0
C54D:BD
C550:DD
C553:F0
C555:BD
C558:D0
C55A:DE
C55D:DE
C560:80
C562 : DD
C565:D0
C567:BD
C56A:DD
C56D:FO
CS6F:FE
£572:D0
C574:FE
C577:ED
C579:F0
C578:8D
C57E:A9
C580:2D
C583:F0
C585:8D
C588:8D
C58B: BD
CHBE:09
C590:0C
C593:A9
C595:2D
C598:69
C59A:60

150

Cc528
co
co
C394

co
€542

07
C58E

co

co

co

06

07

212
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

;C=]1 1if int passes to user

;Mouse interrupt?

;I1f not return with € from vbl
iGet X1 inm A

;X movement?

;Get Y1 into A
;Complement direction

;A = current low byte
;Which way?
sMove left

;Borrow from high byte?

sAt high bound?

;Move right

:Should we enable VBL?
;Branch if not
;Enable VBL int

;Mark that we moved

;C=1 1ff any bits were 1

trb mouarm
ade  #SFE
* Check & update mouse movement
chkmou equ *
lda mouxint
ora mouyint
bpl xmdone
txa
ldx #o
bit mouxint
bmi cmxXmov
cmloop tya
eor #5580
1dx #580
bit mouyint
bpl cmnoy
cmxmov asl A
lda mouxl,x
bes  cmrghe
cmp minxl,x
bne cmlok
lda mouxh,x
cmp  minxh,x
beq cmnoint
cmlok lda  mouxl,x
bne cmnt0
dec  mouxh,x
cmntd dec mouxl,x
bra cmnoint
cmrght cmp  maxxl,x
bne emrok
lda mouxh,x
cmp  maxxh,x
beq cmnoint
cmrok inc mouxl,x
bne cmnoint
inec mouxh, x
emnoint cpx #0
beq cmloop
cmnoy sta mouclr
lda fmovmode
and moumode
beq cmnovbl
sta iouenbl
sta iou+3
sta ioudsbl
cmnovbl ora fmovarm
tsb mOuarm
lda #50E
and moustat
ade #5FE
xmdone rts

Appendix I: Firmware Listings

TV TI

TL Tl

T 'MTLTL T T

'l

d ) { S

o il W i O



.
C59B: THS Akkkkhdhkdhkkkh Ak hdkhoddk ko ko kkkk kA
C598B: 286 =
] & C59B: 287 * HEXTODEC - Puts +0000, into the input buffer
— C59B: 288 * {pputs: A = Low byte of number
C598B: 289 * X = High byte of number
C59B: 290 =* Y = Position of ones digit
[ ] l C59E: 291 *
— C59R: DD ke ke Ak ok ok ok ko ok ek ek
C59B: C598 293 hextodec equ *
C598:E0 80 294 cpx  #5B0 ;Is it a negative number?
[ - C59D:90 0D CS5AC 295 bee  hexdec2
— C59F:49 FF 296 ear #SFF ;Form two's complement
C5A1:69 00 297 ade #0 +C = 1 from compare
C5A3:48 298 pha ;Save it
C5A4: 84 299 txa
C5A5:49 FF 300 eor #5FF
C5A7:69 00 301 ade #0
C5A9:AM 302 tax
C5AA: 68 303 pla
C5AR:38 304 sec
C5AC:8D 14 02 305 hexdec? sta binl :Store the number to convert
C5AF:BE 15 02 306 stx binh
Bewsdl  C5B2:49 AB 307 lda  #'+' ;Store the sigh in the buffer
C5B4:90 02 C5B8 308 bee hdpos2
C5B6:A9 AD 309 lda #'-!
C5B8:48 310 hdpos2 pha ;Save the sign
C5B9:A9 AC il lda gr.y ;Store a comma after the number
C5BB:99 01 02 312 sta inbuf+l,y
C5BE: C5BRE 313 hdloep equ * sDivide by 10
C5BE: 314 *
C5BE: 315 * Divide BINH,L by 10 and leave remainder inm A
CSBE: 316 *
C5BE:AZ 11 317 1dx #le+1 ;16 bits and first time do nothing
C5C0:A9 00 il8 1lda #0
o C5C2:18 319 cle ;C=0 so first ROL leaves A=0
C5C3:2A 320 dvl0loop rol A
I C5C4:C9 0A 321 cmp  #10 ;A >= 107
[ ] ! C5C6:90 D2 C5CA 1322 bee dvl0lt ;Branch if <
C5CB:E9 DA 323 she #10 :C = 1 from compare and is left set
C5CA:2E 14 02 324 dvlOlt rol binl
C5CD:2E 15 02 325 rol binh
C5D0:CA 326 dex
— C5Dl:D0 FO C3C3 327 bne dvl0loop
I C€5D3:09 BO 328 ora #ror ;Make a ascii char
C5D5:99 00 02 329 sta inbuf,y
H C5D8:B8 330 dey
- C5D9:F0 08  C5E3 331 beq  hddone ;Stop on 0,6,12
C5DB:CO 07 332 cpy 17
C5DD:FO 04 C5E3 1313 beq hddone
B C5DF:CO OE 334 cpy  #14
C5E1:DD DB C5BE 335 bne hdloop
C5E3:68 336 hddone pla ;Get the sign
C5E4:99 00 02 337 sta  inbuf,y
CSET7:60 338 rts
CSE8:DF 67 37 1€ 339 qtbl dfb  $DF,$67,$37,51C,$07,$0C,$45, $62
C5F0:6E 7E 3B 0A 340 dfb S6E,S7E,$3B,504A,50B,548,577,578
C5F8:66 2B 0OC 0B 341 dfb $66,528,50C,508,516,553,568,5C5
C600: 0000 342 ds SC600-*

[

Appendix I Firmware Listings 151




€600: 0356 3 DNIBL EQU  $356

Ce00: 0300 4 NBUF1 EQU 5300

C600; 07DB 5 BOOTSCRN EQU  $7DB

C600: 0028 6 SLOTZ EQU  $2B

c600: 003c 7 BOOTTMP EQU  $3C

Ce00: 004F B BOOTDEV  EQU  S$4F

C600:A2 20 9 LDX #3520

C602:A0 00 10 Loy #5500

Ce04:64 03 11 STZ 503

Ch06:64 3C 12 STZ 53c

Cch0B:A9 60 13 LDA #3560

Co0A:AA 14 TAX

C60R:86 2B 15 DRV2ZENT STX  SLOTZ

C60D:B5 4F 16 STA BOOTDEV

CHOF:54 17 PHY ;¥=1 IF DRIVE 2 BOOT, ELSE Y=0
C610:BD 8E CO 18 LDA  SCOBE,X

C613:BD 8C CO 19 LDA  SCOBC,X

Chl6:74 20 PLY

Ch17:B9 EA CO 21 LDA  SCOEA,Y ;SELECT DRIVE 1 OR 2
C61A:BD 89 CO 22 LDA  5C089,X

C61D:AD 50 23 LDY #3550

C61F:BD B0 CO 24 SEEKZERO LDA  SCOBO,X

Ch22:98 25 TYA

Ch23:29 03 26 AND #503

Ch25:04 27 ASL A

C626:05 2B 28 ORA  SLOTZ

CH2B:AA 29 TAX

C629:BD Bl CO 30 LDA  $C081,X

CH2C:A9 56 31 LDA #5356

C62E:20 A8 FC 32 JSR  WAIT

C631:88 33 DEY

C632:10 EB ChIF 34 BPL  SEEKZERD

CH34:85 26 35 STA 526

C636:85 3D 36 5TA 53D

C638:85 41 37 STA 541

C63A:20 09 C7 38 JSR MAKTBL

Ch3D:64 03 39 EXTENTI STZ 503

C63F:18 40 RDADR CcLC

C640:08 41 PHP

C641:28 42 RETRYL PLP

Ch42:A6 2B 43 RDDHDR LDX  SLOTZ ;RESTORE X TO $60
Coh44:Ch 03 bl DEC  $03 ;UPDATE RETRY COUNT
Ch46:DO0 OE  ChSH 45 BNE  RDHDO {BRANCH IF NOT OUT OF RETRIES
Ch4B:BD B8 CO 46 FUGIT LDA  SCOB8,X ;SHUT OFF DISK AND QUIT!
C64BE:BD CF Ch 47 FUG1 LDA  MS5G=560,X ;(X STARTS AT 5$60)
Ch4E:10 FE CH4E 48 HANGING BPL  HANGING ;HANG, HANG, HANG!
Ch50:9D 7B 07 49 STA  BOOTSCRN-$60,X

C653:EB 50 INX

C654:8B0 F5 Ch4B 51 BRA FUGL

C656:08 52 RDHDO PHP

C657:88 53 RETRY DEY

C658:D0 04  CHS5E 54 BNE  RDHDI

C65A:F0 ES Ch&l 55 BEQ RETRY1

C6SC:80 DF  CK3D 56 EXTENT BRA  EXTENTI

C&5E: 57 % % & &k * &k k &k & k k k k Kk kK k ok k Kk k &
CGSE: 58 * The following code is sacred in it's *

CH5E: 59 * present form. To change it would *

C65E: 60 * cause volcanos to errupt, the ground *

1521 Appendix |: Firmware Listings

{5 o WO (O O 1O WO O O O O WO Y



|
I - C65E: 61 * to shake, and ProD0OS not to hoot! Lol
CH5SE: G2 k k *x k k k & k Kk k k k k kK k k Kk & k Kk k
CASE:BD BC CO 63 RDHDI LDA  $COBC,X
il C661:10 FB C6SE 64 BPL  RDHDI
C663:49 D5 65 TSMRK1 EOR #5D5
C665:D0 FO  C657 66 BNE RETRY
- C667:BD BC GO 67 RDHD2 LDA  $C08C,X
—. | C66A:10 FB  C667 68 BPL  RDHD2
CBBC:CY AA 69 CcMP #SAA
C66E:DD F3 €663 70 BNE  ISMRKI
T C670:EA 71 NOP
— C671:BD BC CO 72 RDHD3 LDA  SCD8C,X
C674:10 FB  C671 73 BPL  RDHD3
C676:C9 96 74 CHMP #5396
H ChHTR:FO 09 C6BI 75 BEQ RDSECT
C67A:28 76 PLP
C67B:90 C2 C63IF 77 BCC  RDADR
L. C67D:49 AD 78 EOR  fSAD
| - C67F:FO 25 CBA6 79 BEQ  RDATA
— C681:D0 BC C63F 80 BNE  RDADR
C683:40 03 81 RDSECT LDY #8503
L C6B5:85 40 82 RDSECI STA  §40
l.é C687:BD BC CO 83 RDSEC2 LDA  $C0BC,X
C6BA:10 FB  C6B7 84 BPL  RDSEC2
I CHBC:2A 85 ROL A
C6BD:B5 3C 86 STA  BOOTTMP
. C68F:BD BC CO 87 RDSEC3 LDA  $CO8C,X
I C692:10 FB  C68F 88 BPL  RDSEC3
C694:25 3C 89 AND  BOOTTMP
y C696:88 30 DEY
Bl c697:00 EC  CHBS 91 BNE  RDSECI
! £699:28 92 PLP
C694:C5 3D 93 cMP  $3D
C69C:D0 Al  CRIF 94 BNE  RDADR
g CEIE:AS 40 g5 LDA  §$40
I C6AD:C5 41 96 CMP  §41
C6A2:D0 9B C63F 97 BADRDI BNE  RDADR
COAL:BO 9C C642Z 98 BCS  RDDHDR
H C6A6:AD 56 99 RDATA LDY  #$56
C6AB:84 3C 100 RDATOD S5TY BOOTTMP
I C6AA:BC 8C CO 101 RDATL LDY  $CO8C,X
R C6AD:10 FB  CAAA 102 BPL  RDATI
= COAF:59 D& 02 103 EOR  DNIBL-$80,Y
I C6B2:A4 3C 104 LDY  BOOTTMP
CEB4:BB 105 DEY
- C6B5:99 00 03 106 STA  NBUFL,Y
= C6BB:D0 EE  C6AB 107 BNE  RDATOD
C6BA: B4 3C 108 RDAT2 STY  BOOTTMP
C6BC:BC BC CO 109 RDAT3 LDY  $CO8C,X
""1 C6BF:10 FB  C6GBC 110 BPL  RDAT3
C6C1:59 D6 02 111 EOR  DNIBL-$80,Y
CoChz AL 3C 112 LDY  BOOTTMP
C6C6:91 26 113 STA  (526),Y
ChCB:CH 114 INY
C6CY:D0 EF  CHABA 115 BNE  RDAT2
C6CB:BC BC CO 116 RDAT4 LDY  $CO8C,X
C6CE:10 FB  C6CB 117 BPL  RDATY
C6D0:59 D6 02 118 EOR  DNIBL-$BO,¥Y

I

Appendix |: Firmware Listings

153




Ce6D3:D0
C6D5: A0
Co6D7: A2
C6D9:CA
CEDA:30
CeDC:Bl
CEDE: 5E
CE6E1:2A
C6E2:5E
CBES:2A
C6E6:91
CHEB:C8
C6E9: DO
CGER:

C6EB:

CBER:

CHER:

CBEB:

CHEB:E6
C6ED:E6
CBEF:AS
C6FLl:CD
CH6F4: AB
Co6F6:90
CEF8:4C
C6FB:4C
CEFE:

C700:FF
C701:A9
C703:A0
C705:A2
C707:80
C709:A2
C70B:AD
C70D: 86
C70F:8A
C710:0A
C711:24
C713:F0
C715:05
C717:49
C719:29
C71B:BO
C71D:4A
C71E:DO
C720:98
C721:9D
C724:C8
C725:E8
C726:10
C728:A9
C72A:B5
C72C:AD
C72E: 60
C72F:

C72F:

C72F:C3
C740:

154]

FB

00

0o

26

EE

27
k)]
D
00
4F
DB
01
0B

3c
10
ic
FF
JE
08

FB

56

ES

27
7F

E8

C6A2

cen7

03

03

coD9

08

CéD3

Cé6
0002

C6FB

c725

c725

C718B

03

c70D

C72F

E5 E3

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

BADREAD

DENIBL
DENIBL

h ok ok ok ok ok ko k ko k k k k k k &
* Code beyond this point is not
It may be perverted

* in any manner by any pervert.
kR Rk kR Ak Kk k k k ko k k k &

* gacred...

DODRVZ

DRVZBOOT

MAKTBL

TBLLOOP

TBLLOOP2Z

NOPATRN

MSG

*

BNE
LDY
LDX
DEX
BMI
LDA
LSR
ROL
LSR
ROL
STA
INY
BNE

INC
INC
LDA
CMP
LDX
BCC
JMP
JMP
DS

DFB
LDA
LDY
LDX
BRA
LDX
LDY
STX
TXA
ASL
BIT
BEQ
ORA
EOR
AND
BCS
LSR
BNE
TYA
STA
INY
INX
BPL
LDA
S5TA
LDY
RTS
EQU
MSB
ASC

BADRDI
#s00
#556

DENIBL
(526),Y
NBUF1,X
A

NBUFI X
A

(526),Y

DENIBI

527

530

53D
50800
BOOTDEV
BADREAD
30801
DRV 2ENT
SCT00-*,0
SFF
#8E0

il

#3560
DODRV2
#503

#0
BOOTTMP

A
BOOTTMP
NOPATRN
BOOTTMP
#SFF
#37E
NOPATRN
A
TBLLOOFP2

DNIBL,X

TBLLOOP
508
527
#57F

*

ON
'Check

% % % % %

3MAKE IT LOOK LIKE NOTHING IN SLOT

;FOR DEVICE #2
;TO SELECT DRIVE 2

Disk Drive.'

Appendix |: Firmware Listings

T 'TL T H

TLOTL T TL

'f)

g S { S [N

l‘!t

L



CT40:

C740:

C740:

C740:

C740:

C740:

CT40:

C740:

C740:08
C743:00
C746:8RB
C749:09
C74C:00
C74F:83
C752:

C752:64
C754:E6R
C756:E6
C758:92
C75A:9D
C75D:6A
C75E:E6
C760:D0
C762:18
C763:98
C764:AD
C766:BE
C769:90
C76B:BE
C76E:9D
C771:2a
C772:88
C773:10
C775:A8
C776:B0
C778B:E6
C77A:D0
c77C:38
c77D:C8
C77E:80
C780:

C780:

¥ ¢ ¥

[rri

Fl
DA

01
Dc

E3

52
04
EB
52

E3

co

C758

c7
C76E

c7

co
Cc766
€752
C758

C763
0000

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

24

*
*
*
*
*
*
*
*

The following code is Teri's memory and
soft switch exercise program. The only
purpose is exercise, not diagnostic
functions. This code is activated on
a system without a keyboard, or when
both open and closed apple keys are
pressed during the reset sequence.

TBLL DFE $08,550,552

DFE  $00,$02,$04
DFE  $8B,SBB,SEB

TBL2 DFB $09,550,552

DFB $00,5%03,505
DFE $83,583,5E8

¥LOOP1 STZ $00

INC  $00
INC  §00
XPAGE STA  ($00)
STA  $C000,X
ROR A
INC 500
BNE  XPAGE
CLC
XMODE TYA
LDY  #508
XRSET LDX  TBLI1,Y
BCC  XRSTI
LDX  TBL2,Y
XRST1 STA  $C000,X
ROL A
DEY
BPL  XRSET
TAY
BCS XLOOPl
INC  $01
BNE EPAGE
BANGER SEC
INY
BRA  XMODE

Ds SCTBO=*
INCLUDE MBASIC

iThese are low order
addresses of SCOXX

that must be re-selacted
after each page write
{especially SC000!)

s ma e

iReset low address to 2
;Hi addr assumed to = 0

;Write entire page with

; shifted data... BUT

;s restore Z-page after

3 write in case 5C008-9

; is current pointer
yIndicates regular pass
;Get settings, each bit
:Specifies mainfalt set
sAssume Main 5C000 setting
;Branch if Main setting
;Else get Alternate index

sAccumulator makes full
s circle

iPreserve settings in Y
sBranch 1if new setting

iLoop til all pages writen
jIndicate new settings,

; reset mem pointer after
; after new settings

sMouse BASIC routines @5CT80

Appendix I: Firmware Listings [185




Cc780:

C780:

C780:

c780:

C780:

C780:

C7BO:5A
C781:B0
C783:A0
c785:C4
C787:D0
C789:A4
C78B:F0D
C7BD:DA
C78E: 48
C7BF:29
c791:c9
C793:B0
C795:20
C798:20
C79B:68
C79C:FA
C79D:7A
C79E:60

C79F:
C79F:
C79F:
C79F:
C79F:
C79F:
C79F:
C79F:
C79F:
C79F:
CT9F:
C79F:
C79F:
C79F:
C79F:
C79F:
C79F:91
C7Al:A9
C7A3:85
CTAS5:AD
CTAB:DA
C749:08
CTAA:78
C7AB:20
CTAE: AD
C7BO:AE
CIB3:AD
C7B6:20
C7B9:A0
C7BB:AE
C7BE:AD

156

c780
1C C79F7
Ch
39
04 C78D
38
12 C79F
iF
02
06 C79B
3D C4
6D C&
C79F
28
05
38
00 co
95 C4
05
70 05
7C 04
9B C5
oc
FC 05
FC 04

hkdkkkkkkkkkhhhk kR hkhkkkhhkdhdhhkhhhk ik
*

* ¥MBASIC — Basic call to the mouse

*

dEkkh kAR kAR AR R kR ke kAt h kit

xmbasic equ *
phy
bes basicin ;Input?
ldy  #<mbasic ;Input from SC4007
cpy  kswh
bne xmbout
ldy  kswl
beq basicin
xmbout phx ;Save X too
pha
and  #57F :We don't care about high bit
cmp #2
bge mbbad :Only 0,1 wvalid
jsr xsetmou
jar xmhome
mhbad pla
plx
ply
rts

hhkhkhkkkhhhhhhhhhhhhhhddehhhhhhhhhddddhnks

BASICIN - Input from basic

Creates +XXXXX,+YYYYY,+55
XXXXX = X position

YYYYY = ¥ position

55 = Status

- = Key pressed

= Button pressed
= Button just pressed
= Button just released
Button not pressed

£ R

% % % % % % d ¥ N ¥ * ¥ N

o e e e o e o ok ok ok e oo ok e ek e o o o o ok e ok o ok e e e e ol ol ok ok
basicin equ *

sta (basl),y ;Fix flashing char

1da #>inent ;Fix input entry

sta kswl

1da kbd ;test the keyboard

asl A

php :Save kbd and int stat for later

sei ;No interrupts while getting position
isr xmread

ldy  #5 :Move X position into the buffer

1dx mouxh
lda mouxl

jsr hextodec sConvert it
1dy  #12

1dx  mouvyh

1da mouyl

Appendix |: Firmware Listings

{ T O O

LT TR T

{9 5

el

L hee’E



——
I C7C1:20 9B C5 59 jsr hextodec
C7C4:AD 7C OF 60 lda moustat
C7C7:24 61 rol A
.'-'£ C7C8:2A 62 rol A
C7C9:2A 63 rol A
C7CA:29 03 64 and #3
P c7cc:49 03 65 eor i#3
."‘.'ﬂ C7CE: 1A 66 ine A
C7CF:28 67 plp sRestore int & kbd status
I C7D0:AD 10 68 ldy #16
C7D2:20 AC C5 69 jsr hexdec2 ;¥=0 from last divlD
l.-.—" C7D5:7A 70 ply
C7D6:A2 11 71 ldx #17 +X = EOL
C7D8:A% 8D 72 lda  #58D ;Carriage return
Lﬂ C7DA:9D 00 02 73 putinbuf sta inbuf,x
I C7DD: 60 74 rts
|-
I — C7DE: T ek ool s e ok s e sk ek ok ek ok ok ok ek ok ok e
C7DE: 77 *
C7DE: 78 * PADDLE patch
Beidd  c7oE: 79 *
C7DE: B oo s e sk e o ok sk gt o o ook ok ok ok ok ok o ol ok ol ek e
L C7DE: CJDE Bl mpaddle equ *
CIDE:AD FC 07 82 lda  moumade ;Is the mouse active?
.l—_! C7E1:C% 01 83 cmp  #01 ;0nly transparent mode
I C7E3:F0O 06 C7EB B4 baq pdon
C7E5:AD 70 cO 85 lda vblelr ;Fire the strobe
o C7E8:4C 21 FB B6& jmp SFB21
Lﬁ C7EB: C7ER 87 pdon equ *
C7EB:ED 01 88 epx 1 ;C=1 if X=]
CTED:6A 89 ror A ;A=80 or 0
C7TEE:AB 90 tay
— 1 C7EF:B9 7C 05 91 lda mouxh,y ;Get high byte
I C7F2:F0 02 CIF6 92 beq pdok
C7F4:A9 FF 93 1da #SFF
- C7F6:19 7C D4 94 pdok ora mouxl,y
._':'ﬂ C7F9:A8 95 tay
C7FA:60 96 rts
C7FB:5D EB C5 97 zznml eor qtbl,x
o C7FE:80 DA C7DA 98 bra  putinbuf
—— CB00: 0000 99 ds $CBO0-*,0
C800: 25 INCLUDE IRQBUF sInterrupt stuff RSCA00
T
H
N
'“-il-
E Appendix I: Firmware Listings [157




C800:

C800:

c800:

C800:4C
C803:48
CBD4:68
C805:68
C806:48
C807:D8
C808:29
CBO0A:69
Ca0Cc:8A
CBOD:BA
CBOE:CA
CBOF:9A
CB10:48
CBl1:5A
CB12:AE
CB15:AC
CB1B:AD
CB1E:2D
CB1E:29
CB20:FO
C822:8BD
CB25:A9
c827:2C
CB2A:10
CB2C:8D
CB2F:09
CB3l:2C
CB34:10
C836:8D
cB839:09
CB3B:BO
CA3D:48
CB3E: 20
CB41:90
C843:20
C846:90
CR4B:68
CB49:18
CBA4A:BO
CB4C:

CBA4D:4C
CB50:

CAs50:2C
C853:10
CA55:09
C857:2C
CB5A:10
CBSC:49
CBSE:8D
c86l:2C
C864:10
CRE6:BA
CB67:8E
CBHA:AE
CB6D: 94

1581

E4

10
FO

cl

co
co
co
co

caz7
co

co
a3l
co

co
Ca3B
co

Cas50

cé
CBB2

co
CBB2

C850
0001
Cl
C850
co
cénl

co
C85E

co
co
CB73

01
01

.
* this i{s the main (only) IRQ
*

NEWIRQ

IRQ2

IRQ3

IRQ&

passkipl

IRQS

IRQ6
IRQ7

jmp
PHA
PLA
PLA
PHA
CLD
AND
ADC
THA
TS5X
DEX
TXS
PHA
PHY
LDX
LDY
LDA
AND
AND
BEQ
STA
LDA
BIT
BPL
STA
ORA
BIT
BPL
STA
ORA
BCS
PHA
J5R
BCC
J5R
BCC
PLA
CLC
bra
ds

jmp
equ
BIT
BPL
ORA
BIT
BPL
EOR
S5TA
BIT
BPL
TS5X
5TX
LDX
TXS

plinit

#510
#5F0

MOUX1
MOUY1
RDBOCOL
RDPAGE2
#580

IRQZ
TXTPAGE1
#540
RDRAMRD
IR(O3
RDMATINRAM
#s20
RDRAMWRT
IRQ4
WRMATNRAM
#510

IROS

MOUSEINT
IRQDONE
ACTAINT
IRODONE

passkipl
§CBAD-*, 500
plread

*

RDLCRAM
IRQ7

#sC
RDLCBNK2
TROA

#56
ROMIN
RDALTZP
IRQH

5101
$100

handling routines

;Pascal 1.0 Initialization

;SAVE ACC ON STACK, NOT $45

:LEGAL BECAUSE IF IRQ, IRQ DISABLED.
;GET STATUS REGISTER

;CLEAR DEC MODE, ELSE THINGS GET SCREWED.
;SET CARRY TO INDICATE BRK

+SAVE X IN A WHILE
; FUTZING WITH THE STACK
; RECOVER A-REG AT TOP...

;SAVE X ON STACK (ON TOF OF A)
; AND Y ALSO
;Get mouse info

;TEST FOR BO-STORE WITH
; PAGE 2 TEXT.
; MAKE IT ZERO OR $BO

;SET PAGE 2 RESET BIT.

; BRANCH IF MAIN RAM READ
;ELSE, SWITCH IT IN

; AND RECORD THE EVENT!

;D0 THE SAME FOR RAM WRITE.

;BRANCH IF BREAK, NOT INTERRUPT

;SAVE MACHINE STATES 50 FAR...

G0 TEST THE MOUSE

;BRANCH IF IT WAS THE MOUSE

;G0 TEST ACIA AND KEYBOARD INTERRUPTS
;BRANCH IF INTERRUPT SERVICED
+RESTORE STATES RECORDED S0 FAR
;RESET BREAK/INTERRUPT INDICATOR
:5kip around pascal 1.0 stuff

;DETERMINE IF LANGUAGE CARD ACTIVE

;SET TWO BITS SO RESTORED

; LANGUAGE CARD IS WRITE ENABLED
;BRANCH IF NOT PAGE 2 OF $D0O0O
;ENABLE READ FOR PAGE 2 ON EXIT

;LAST...AND VERY IMPORTANT!
; UNLESS IT IS NOT ENABLED
; SAVE CURRENT STACK POINTER
+AT BOTTOM OF STACK

;GET MAIN STACK POINTER

Appendix |: Firmware Listings

m N T TLTE T T T

o i W ] e O O W ¢



A ¢ ¢

Al

[rr

CBBE: 8D
CB71:09
CB73:B0
CB75:48
CB76:A9
Ca878:48
CB79:A9
CA7B:48
CBTC:A9
CB7E:48
C87F:6C

CBB2:68
CB83: 10
CBBS: 8D
CBBA:AE
CBBB:9A
CBBC:04
CBBD: AD
CBBF:BE
CB92:88
CB93:0A
C894:90
C896:9D
CB99:D0
CBIB:7A
CBI9C:FA
CBID:HE
CBIE:40
CBIF:4C

CBAZ:
CBA2:
CBAZ:
CBA2:
CBA2:
CBAZ:
CBAZ:
CBAZ:20
CBAS:AD
CBA8: DA
CBA9: AD
CBAB:BY9
CBAE: 8D
CBBl1:99
CBB4:8D
CBB7:99
C8BA:88
CBBB: 10
C8BD:90
CBBF:8D
CBC2:4C

08
80
2A
ca
82
04

FE

07
09
01

05
89

03
0o
Fi4

47

60
16

01

09

[11.]
FE

EE
03

54

co

CB9F

03

caBC
co
0l

c9

cBa99
co
CBAF

FA

C8A2
c3
co

FF
co
FF

FF

CBAB
CBC2
co
c3

103
104
105
106
107
108
109
110
111
112

IROA

IRQDONE

IRQDNEI

I[RQDNE2

IRQDNE3

GOBREAK

STA
ORA
BCS
PHA
LDA
PHA
LDA
PHA
LDA
PHA
JHMP

PLA
BPL
STA
LDX
TXS
ASL
LDY
LDX
DEY
ASL
BCC
STA
BNE
PLY
PLX
PLA
RTL
JHP

SETSTDZP
#580
GOBREAK

#<IRODONE
#>IRQDONE
#4

($3FE)

IROQDNE]L
SETALTZP
5101

A
#505
IRQTBLE,Y

A

IRQDNE3
$C000,X
IRQDNE2

NEWBRE

;SAVE RETURN IRQ ADDR
S0 WHEN INTERRUPT DOES RTI

; IT RETURNS TO IRQDONE.
;PROCESS EXTERNAL INTERRUPT

;RECOVER MACHINE STATE
;BRANCH IF MAIN ZP WAS ACTIVE

;RESTORE ALTERNATE STACK POINTER

:BRANCH IF SWITCH IS OK.
s BRANCH IF MORE SWITCHES
sRESTORE ALL REGISTERS

;D0 THE REAL RTIL!
;PASS THE BREAKER THROUGH

ey iy iy ol ol ok ok ok ok ok ol o oy oy ok ok ol e ol ol ol o ke o o ol ol o o ke ok ok

*

* MOVEIRQ — This routine transfers the roms Interrupt vector into

* bhoth language cards

*

e e vl ol ol e g vk v ok ol o v ek ol o sk ok o ok ok sl e e e e e ok ok e o ok o o e e

moveirq

MIRQLP

MIRQSTD

equ
JSR
LDA
ASL
LDY
LDA
STA
S5TA
STA
STA
DEY
BPL
BCC
5TA
JMP

*
SETROM
RDALTZP

A

1
IRQVECT,Y
SETALTZP
IRQVECT, Y
SETSTDZP
IRQVECT, Y

MIRQLP
MIRQSTD
SETALTZP
RESETLC

;Read ROM and Write to RAM
;Which language card?

;C=]1 if alternate card
;Move two bytes

;Get byte from ROM

;5et alternate card

;Store it in the RAM card
;S5et main card

;Go do the second byte
:Is the card set right?
;No, it wasn't

;Clean up & go home

Appendix |: Firmware Listings

[159




cacs:

CAC5:

C8C5:

CA8CS:

Ca8C5:

CBCS5:

CAC5:EC
CAC8: D0
CACA: AD
c8cc:

CBCC: B9
C8CF:D9
C8D2:F0
CBD4: 48
CEDS5: 1A
C8D6: B9
C8Dpa:D0
CBDA:98
C8DB:99
CBDE:7A
C8DF : AD
CBE2:0A
CBE3:8D
C8E6:B9
CBE9:B0
CBER: 8D
CBEE: 38
CBEF: 60
CAFO:

CBFO:BC
CBF3:B9
CBF6:29
CBFB:18
CBFI9:FO0
CBFB: B9
CBFE:38
C8FF:

CBFF:60

1601

FF
26
00

¥
TF
24

Tr
01

IF

13

03
00
14
0z

85
F9
08

04
FB

04
C8F0

CAcC
06

05
C8F8

CBDB

06

co

co

C8FF
o

ca
BF

CBFF
BF

CBFF

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
L44
145
146
147
148
149
150
151

* This is the serial input routine. Carry
*# flag set indicates that returned data is

* yalid.

*

* GETBUF- Gets a byte from the buffer & updates pointers
* 0On entry Y=0 for Serial buffer Y=580 for Keyboard buffer

XRDSER

GETBUF

GBNOOVR

*
XNOSBUF

GBEMPTY

notacia
acdone
XRDSNO

CPX
BNE
LDY
EQU
LDA
CMP
BED
PHA
INC
BIT
BNE
TYA
STA
PLY
LDA
ASL
STA
LDA
BCS
STA
SEC
RTS

LDY
LDA
AND
CLC
BEQ
LDA
SEC
equ
RTS

ACTIABUF
XNOSBUF
#0

&

TRSER, ¥
TWSER, Y
GBEMPTY

A
#STF
GBNOOVR

TRSER, Y

RDRAMRD

A
RDCARDRAM
THBUF, ¥
XRDSNO
RDMAINRAM

DEVNO, X
SSTAT,Y
#58

XRDSNO
SDATA, Y

&*

;is serial input buffered?
;(in english "NO SERIAL BUFFER")
;¥=0 for serial buffer

:Test for data in buffer
;If = then no data

;Save current value
:Update the pointer
;0verflow

:5tore the updated pointer

;Get the old value of the pointer
;Are we in main ram

:C=1 for Aux ram

sForce Aux ram

;Get byte from buffer

;Branch if we were in aux bank
;Set back to main

:Note C=1

;Get index to ACIA
;Test ACIA directly for data

;indicate no data

;Branch if no data!

;get serial input

iindicate valid data returned.

Appendix |: Firmware Listings

T T T

TLTL T TL T

Tl

l

{9 { W |

At T




O I

L/

C900:
C900:
C900:
C900:
C900:
C900:
€900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
c900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
Co00:
c900:
C900:
C900:
C900:
C900:
c900:
co00:
c900:
C900:
C900: A2
Cc902:20
C%05:90
€907 :cA
C908:BC
CI90B:A9
C90D: 59
C910:29
C912:F0
C914:B9
C917:9D
C91A:10
CY1C:ED
C91E:BO
C920:49
€922:3C
€925:70
C927:10
£929:90
C9%2B:89

08
F8

85

FA
oc
EA
F9

E2
c2
02
40
38
26
22
20
40

C900

C9
CEBFF

ca

BF

CBFE
BF
04
CBFE

€922

05
C94D
C9478
C94R8

153
154
155
156
157
158
159
160
161
162
163
164
165
166
1&7
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

*
*
*
*
&
&
*
*
*
*®
*
&
*
#
*
*
*
*
*®
*
*
*
*
*
*
*
*
*®
*
*
&
*
&
&
*
&
*

This routine will determine if the source of
is either of the built in ACIAs. If neither port
generated the interrupt, or the interrupt was due
to a transmit buffer empty, protocol converter, or
'unbuffered' receiver full, the carry is set indi-
cating an externally serviced interrupt.

If the interrupt source was keyboard, 'buffered’
serial input, or the DCD, the interrupt is serviced
and the carry is cleared indicating interrupt was
serviced. (DCD handshake replaces CTS.)

Location "ACIABUF" specifies which (if either) re-
celver data is buffered. For port 1 it must contain
$Cl, for port 2 a $C2. Any other values are cause
interrupts to pass to external (RAM based) routines.

Location "TYPHED" specifies whether Keyhoard in-
put should be buffered, ignored, or processed by
RAM based routines. If bit 7=1 and bit 6=0, key—
board data is placed in the type—ahead buffer. If
bit 6 is set the interrupt is cleared, but must
be recognized and serviced by a RAM routine. If
both bits = 0, the interrupt is serviced, but the
keyboard data is ignored.

While using type-ahead, Open-Apple CTRL-X will
flush the buffer. No other code is recognized.

If the source was an ACTA that has the transmit
interrupt enabled, the original value of the ACIAs
status registers is preserved. Automatic serial input
buffering is not serviced from a port so configured.
Interrupts originating from the protocol converter or
keyboard (RAM serviced) do not inhibit serial buffering
and are passed thru. The RAM service routine can rec—
ognize the interrupt source by a | state in bit 6 of
the ACIAs status register. The RAM service routine must
cause the clearing of DSR (bit 6) AND make a second ac—
cess o the status register before returning.

aciaint equ b

ldx #<comslot
isr aciatst
bee acdone

;Test port 2 first
iCheck for interrupt
sReturn if interrupt done

dex ;Try port 1
aciatst ldy devno,x 1Get index for acla
lda 54 ;If xmit ints enabled pass to user
eor scomd,y iCheck if D<3>, D<2> = 01
and #50C H
beq notacia ;User better take it!
lda sstat,y ;Get status

sta astat,x
bpl notacia

;Save it away
iNo interrupt

altst2 CpX #<{comslot ;C=1 if com port
bcs alport2 sInvert DSR if portl
eor #540
aiport2 bit extint,x ;Is DSR enabled?
bvs aipass ;Yes, user wants it
bpl afeatit sNo, eat it
bee  aieatit ;Yes but I don't want it for port

bit #8540 :Is DSR 17

Appendix I: Firmware Listings




C92D:F0
C92F:

C92F: AD
C932:A0
C934:20
c937:C9
€939:D0
C93B:AD
C93E: 10
C940:20
C943:AD
C946:

; C946:

[ C946:

C946: AD
C94B8:B9
C94B:29
C94D:0A
CO94E: DA
CO94F:29
C951:F0
C953:B9
£956:49
C958:29
C95A:D0
C95C:8A
C95D:4D
C960:D0
C962:B9
C965: A0
C967:

C967:DA
C968:48
C969:E9
C96C; AA
C96D: 1A
C96E: 89
C970:D0
€972:98
Cc973:08
Cc974:D9
C977:F0
£979:99
| C97C:28
C97D:68
C97E:BD
C981:9D
C984 : 8D
C987:FA
C988:60

C989:83
C98C:05

162

BO
F3
BF

IF

1F
01

7F
03
1F
05

04

8B
03

C94D
co
c9
C943
co
C943
co

nocl
ca85

BF

c9ss
BF

C9BE
04

CBFE
BF

C967

05

€973

06
c97c
05

co
08
co

8B
55

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

262
263

+If not, skip it
i1Get the key

;Put it in the buffer
;Is it a “x?

;And the closed apple?

s+Flush the buffer
;Clear the keyboard

needed by serial firmware

iRestore y

:iRead status to clear int
;Clear the DSR bit

;Shife DSR inte C

;Is the receiver full?

:If not, we're done

;Are receive interrupts enabled?
;Check for D<1>,D<0> = 01

;If not, were done
+1s this acia buffered?

;:The user better handle it!
;It's mine

;Get buffer pointer

;Save 1t for later
;Bump it to next free byte
;Overflow?

iWrap pointer
;Save DSR status
;Buffer full?

;Save the new pointer

;Get the data
;1t goes to aux ram

SLCBANK2 , >LCBANK1, >LCBANK1

beqg aipass
* It's a keyboard interrupt
lda kbd
1dy #580
jsr putbuf
cmp #598
bne ainoflsh
lda butnl
bpl ainoflsh
jsr flush
ainoflsh lda khdstrb
* 5A0 $BO table
sltdmy equ ¢serslot
devno equ  *-sltdmy
ldy #3580
lda sstat,y
aieatit and  #SBF
aipass asl A
asl A
and #3520
beq acladone
lda scomd,y
eor il
and #3
bne aciadone
txa
eor aciabuf
bne notacla
lda sdata,y
1dy #0
putbuf equ *
phx
pha
lda tWwsar,y
tax
ine A
bit #57F
bne pbok
tva
pbok php
cmp trser,y
beq  phfull
sta Lwser,y
pbfull plp
pla
sta wrcardram
sta thbuf ,x
sta wrmainram
plx
aciadone rts
IROQTBLE DFB
DFB

>WRCARDRAM, >RDCARDRAM, TKTPAGE2

Appendix I: Firmware Listings

Tl

EL

'Fl

Ml IFlectFL

Fl

Fi

{3 S S| J O 3 IFL

b L



C98F:
C98F:
C9BF:
C9BF:
C98F:
C98F:
C9BF:
C98F:
CY98F:

C98F:20
£992:10
€994:90
C996:5A
C997:A0
C999:20
C99C:7A
c99D:09
CY99F:60

C9A0:AD
C9A3:10
C9A5:8D
C9A8:60

C9A9:
CO9AA:&C

C9AD:2C
C9B0: 10
C9e2:38
C9B3:08
C9B4:48
C9B5: AD
C9BB:CD
C9BB:FO
C9BD:68
C9BE:28
C9BF:60
c9co:

CoC0:68
€C9cl1:28
c£9c2:2C
C9Cc5:18
C9C6:60
C9C7:

8 ¢ (¥ ¥ ¢

AD
14
DA

80
Ccc

00

00
EA
10

F6

FA
10

FF

03

0o

c9
C9A8
C9a0

Cca

co
C98F
co

0001
Cl

05
c9c2

06

c9co

co

266
267
268
269
270
271
272
273
274

276
277
278
279
280
281
282
283
284

286
287
288
289

291
292

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

* o o ¥ N ¥ * ¥

XRDEBD JSR
BPL
BCC
PHY
LDY
JSR
PLY
ORA
RTS

XRKBDI LDA
BPL
STA
KNOKEY RTS

The following two routines are for reading key-
board and serial input from buffers or directly.

Type—ahead buffering only occurs for non auto-
repeat keypresses. When a key is pressed for
auto-repeat the buffer is first emptied, then the
repeated characters are returned.

The minus flag is used to indicate if a keystroke
is being returned.

XBITEBD ;is keyboard input ready?

XNOKEY ;Branch if not.

XRKBDI ;Branch 1f direct KBD input.
iSave Y

#580 :¥Y=580 for keyboard buffer

GETBUF ;Get data from buffer

#0 ;Set minus flag

KBD ;jtest keyboard directly

XRDKBD :loop if buffered since test.

KBDSTRB ;Clear keyboard strobe.

+Minus flag indicates walid character

ds 5C9AA-*, 500
jmp plwrite ;Pascal 1.0 entry point
ABITKBD BIT TYPHED :This routine replaces "BIT KBD" instrucs
BPL XBKB2 ; 50 as to function with type—ahead.
SEC santicipate data in buffer is ready
PHP ;save carry and minus flags
PHA ;preserve accumulator
LDA TREEY
CMP TWEEY ;is there data to be read?
BEQ XBKB1 sbranch if type-ahead buffer empty
PLA
PLF
RTS ;Carry and minus flag already set.
*
XBEBIL PLA
PLP srestore ACC and Status
XBKB2 BIT EBD stest KBD Directly
CLC sindicate direct test
RTS
INCLUDE COMMAND :Serial firmware command processor

Appendix I: Firmware Listings [163




R~

c9cy:

C9C7:

C9C7:66
CICB:66
C9C9:66
C9CA: 5C
C9CRB:5C
c9cec:7c
Cc9cD:78
C9CE:77
CICF:C3
CoDp0: B4
Co9Dpl:98
c9D2:C5
C9D3:54
CID4:7F
C9D9:80
C9DE:

C9DE:49
C9E2:0D
C9E3: 42
C9ER: 48
CY9EC:3C
C9EF:30
C9F1:BC
CIF4L:FO
C9F6:5D
CY9F9:0A
C9FA:DO
CO9FC: AC
C9FF:BC
CAD2:AD
CAD4: BC
CAD7:80
CAD9:38
CADA: 68
CADB:60
CADC:

CADC:BC
CAOF:29
CAll:DA
CAlZ:A2
CAl4:DD
CA17:FD
CAl9:CA
CAlA:10
CALC:FA
CAlD:68
CALE: 48
CAlF:29
CA21:C9
CA23:B0
CA25:9D
CAZB: 49
CA2A:C9
CA2C:BO
CAZE:AD
CA30:6D

1641

85
SF

0c
DE
34

Fa

TF

03
38
30
0A
0E
DA
¥

cocy

BF 7F
40 00

C9DE
4C 4E

50 51
03
CAOC
06
CAD9
06
CAQ9
o7

o7
CA36

CADC
ca

cs
CA4D

CAl4

CA28
06

CA3C

04

cmdtable

18 maskl
19 maskl
20 emdlist

24 command

17 nocmd

40 incmd

45 emdloop

55 cmdz2
56 ckdig

59
60 digloop

M5B
equ
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb
dfb
equ
asc
df b
asc
pha
bit
bmi
ldy
beq
eor
asl
bne
ldy
sty
ldy
sLy
bra
s5ec
pla
res
equ
ldy
and
phx
ldx
cmp
beq
dex
bpl
plx
pla
pha
and
cmp
bes
sta
eor
cmp
bcs
1dy
ade

OFF

*
>emdi-1
>emdk-1
>emdl=1
>cmdn=1
»emder—1
>emdb—-1
»emdd=-1
>emdp-=1
>cmdqg~1
»emdr-1
>emds=1
>emdt~-1
>emdz-1

$7F,$BF ,$BF ,$7F, $FF
$80,500,540,500, 500
*

"IRLN"
50D
"BDPQRSTZ"

sermode , x
inemd
eschar,x
nocmd
egschar,x
A

nocmd
cursor
oldecur
femdeur
cursor
cominit

*
devno,x

#55F

#12
cmdlist,x
cmfound

emdloap

#S7F
#520
ckdig
eschar,x
#530
#5004
cdone
#10
number

sCarriage return

:Check for command to firmware
sAlready in command?

;If so,g0 do it

;If eschar = 0 ignore commands

;Is it the command char?
;Ignore high bit

;S5ave the cursor

;S5et command cursor

jMark char not handled
sRestore char

;Command mode

;Get index for ACIA

;Ignore hi bit: just upshift lowercase
;S5ave slot

;Check 13 commands

;Right char?
iWe didn't find it

+1f char is cntl char

;it can be the new comd char

:sbranch if not entl character

;Save comd char, drop thru ckdig to cdone
;Is it a number?

1f so, branch
A=A+ 10 * current number
C=0 on first entry

W oww we

Appendix |: Firmware Listings

el WVl FL_FL_FLFLLPL_FL_TFL_FL_FL_TF_ A

D

1

| of



Y {rV

[r

CA33:88
CA34:D0
CA36:8D
CA39:38
CA3A:BO
CA3C: 18
CA3D:AD
CA40: 8D
CAa43:08
CAL4L:1E
CA47:28
CALB:TE
CA4B:68
CALC:60

CALD: A9
CA4F:48
CAS50:BD
CAS53:48
CAS4:60

CAS55:FA
CAS6:9E
CAS9:A9
CASEB:B0

CA5SD:

CASD:

CASD:7A
CASE:AD
CABL:FO
CAB3:99
CABA:FO
CABT :

CABT7:

CAb7:

CA67:7A
CABB:B9
CABB: 3D
CABE: 1D
CA71:99
CA74:98
CA75:AA
CAT6:80

CA78:88
CAT9:49
CA7B:38
CATC:90
CATD: A9
CAJF:18
CABD:39

FA
iF

07

79
FB

B3

B8

CA

c?

B8
0o
CcB

iF
05
BB

B8
D4
D9
B8

C4

1F

FD

FB

CA30
04

CA43

06
07

03

03

c9

04

CA25

CASD
CASD

04
CAGBE

D4
CAGB7
CAB7
CABT

06
c9
06

CA3C

BF

82
83

85

106
107
108
109
110
111
112

cominit

cdone

cmset

emfound

cmdz

cmder
cmdn

cmdi
emdk
emdl

emdi?

cdonel

cmdp

cmdd

cmdb

dey
bne
sta
sec
bra
cle
lda
sta
php
asl
plp
ror
pla
Its

lda
pha
lda
pha
rts

plx
stz
lda
bra

equ
equ
ply
lda
beq
sta
dfb
equ
equ
equ
ply
lda
and
ora
sta
tya
tax
bra

dey
lda
sec
dfb
lda
cle
and

digloop
number
iMark in command mode
cmset
;0ut of command mode
oldcur ;Restore the cursor
cursor
sermode , x ;set command mode according to carry
sermode , x :leaves carry clear
scharacter handled
;hecause carry clear...
#<emder
sydo JMP via RTS
cmdtable ,x
:Go to it
1Zero escape character
pwdth,x ;And the width
L]
emdz2
*
*
number ;1Get number inputted
emdi2 ;Don't change printer width 1if O
pwdth,y ;Update printer width
SFO ;BEQ opcode to skip next byte
*
*
*
flags,y
maskl,x :Mask off bit we'll change
mask?,x ;Change it
flags,y ;Back it goes
;Put slot back in x
cdone ;Good bye
;Make y point to command reg
#51F :Mask off high three bits
;C=1 means high 3 bits
590 ;BCC opcode to skip next byte
#5F0 :Mask off lower &4 bits FO = BNE
;FO will skip this if cmdp or cmdd
scntl,y :Mask off bits being changed

Appendix |: Firmware Listings

[165




CAB3:8D
CABG:FA
CAB7:AD
CABA:29
CABC:90
CABE:DA
CABF:0A
CA90:0A
CAS1:0A
CA92:04
CA93:0D
CA%6:C8
CAS7:80

CA99:B9
CA9C:48
CA9D:D9
CA9F:99
CAA2:A9
CAAL :AZ
CAAG: 48
CAAT:H8
CAAB:CA
CAA9:DO
CAAB: 3A
CAAC: DO
CAAF : 68
CAAF :FA
CABO:99
CAaB3: B0

CAB5:99
CABB:AD
CABB:0A
CABC:20
CABF:90
CACL:20
CAC4:18
CACS5:BO
CACH:38
CACT:FA
CAC8:20
CACE: B0
CACD:BD
CADD: 89
CAD2:90
CAD4: DO
CADG:E4
CADB:DO
CADA:D9
CADC: AC
CADF:8C
CARZ2:AD
CAE4 :80

1661

F8

7F
OF

F8

17

FA
0c

FA
E9

FB

F6

FA
cl

F9
7B

23
03
4D

06
04

CA93

06

CABO

BF

BF

CAAR

BF
CAT6H

BF
06

CACH
CE

CA
CATG
03

CAE®
CAF6

CB21

06

CAED

113
114
115
116
117
118
119
120
121
122
123
124
125

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

144
145
L46
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

noshift

cmds

meswait
msloop

cmdp2

cmdr

cmdqg

cmdt

setterm

sta
plx
lda
and
bee
asl
asl
asl
asl
asl
ora
iny
bra

1da
pha
ora
sta
lda
1dx
pha
pla
dex
bne
dec
bne
pla
plx
sta
bra

sta
lda
asl
jsr
bee
jsr
cle
dfhb
sec
plx
jsr
bra
lda
bit
bee
bne
cpx
bne
ora
1dy
sCy
ldy
bhra

scomd , ¥

#50C
scomd,y
#2313
#83

msloop
a
mswait

scomd,y
cdone?

sstat,y
viactwv

A
sethooks
cmdg
zzquit

§BO

setterm
cdone2
sermode %
fS40
stclr
stwasok
kswh
SLrts
#540
oldecur
oldcur2
ffrermcur
stset

sSave it

;Get inputed number
:0nly lower nibble wvalid
;I1f C=1 shift to upper 3 bits

;Get the rest of the bits
s:Put them in the ACIA
sincrement puts em away where they go.

;Transmit a break
:Save current ACIA state
;Do the braek

;For 233 ms
sWait 1 ms
s((12%82)+11)+2+3=1000us

sReset the ACIA

:Check if video firmware actiwve
:3ave it in C

:assume video firmware active
sbranch if good guesser...
sReset the hooks

:Quit terminal mode

;BCS to skip next byte

;Into terminal mode

:Recover X

:Get terminal mode status

3Z=1 if not in terminal mode
sBranch if clearing terminal mode
;Was already set

;Are we in the input hooks
sLeaves C=1 if =

;Ser term mode bit

;5ave what was in oldcur

;Get new cursor value

Appendix |: Firmware Listings

'EA RN TR BR

T T T T TR

Tl

d () { .

T FR



4 ¢ ¢ VU

CAE6:F0
CAE8:29
CAEA:AC
CAED:9D
CAFO:8C
CAF3:8C
CAF6:BC
CAF9:58
CAFA:08
CAFR:78
CAFC:B9
CAFF:09
CBO1:90
CB0O3:29
CB05:99
CBOB:A9
CBOA:BA
CBOB:BD
CBOE: 10
CBL10:9C
CB13:9C
CRl6:BA
CB17:8D
CBlA:28
CB1B:BE
CB1E:BE
CB21:60
CB22:

CR24:ER
CB25:4C
CR2B:9E
CB30:

0OE
BF
TA

79
FB
85

FF
FF

FB
OB

CAF6
06
06

07
ca

BF

CBO5

BF

05

CBl17

05

04

05
06

0002

c?
40 50

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
27

stelr

stset

stwasok

cmdt2

cmdte3

flush

SCrts

zznm?2

comtbl

beq
and
ldy
sta
sSCy
sty
ldy
eli
php
gei
lda
ora
bee
and
sta
lda
ror
sta
bpl
stz
stz
txa
sta
plp
stx
-1
rts
ds

inx
jmp
dfb

stwasok ;Branch if already clear

#5BF ;Clear the bit

oldeur? ;jRestore the cursor

sermode ,x

oldcur ;Save cursor to be restored after command
CUrsor

devno,x

iwant te leave with interrupts active

rbut off while we twittle bits

scomd ,y
#52 ;jdisable receiver interrupts if
cmdt? ; not in terminal mode
#5FD ;enable when In terminal mode
scomd,y
]
a ;set kbhd interrupts according to t-mode
typhed
cmdt? :branch if leaving terminal mode
twser ; and ser buf...
trser

;use x to enable serial buffering
aciabuf

srestore carry, enable interrupts.
twkey +Flush the type ahead buffer
trkey

$CB24-* 500

zznml
$9E, $0B,540,550,%16,508,501, 500

INCLUDE SCROLLING :More Video stuff @5CB30

Appendix |: Firmware Listings [167




CB30:

CRB30:

CB30:

CB30:

CB30:

CB30:

CB30:DA
CB31:A2
CR33:80
CB35:

CB35:DA
CB36:A2
CR38: A4
CB3A:2C
CB3D: 10
CR3IF: 8D
CRB&4&2:98
CB&3:4A
CR&L: AR
CRB45:AS
CB&4T:4A
CB48:B8
CB49:90
CB4B:2C
CB4E:2A
CR4F:45
CBS1:4A
CB52:70
CB54:B0
CB56:88
CB57:8C
CRSA: AD
CB5D:08
CB5SE:AS
CB60O:ED
CB62:D0
CBA4 : AS
CB66:3A
CB67:

CBA7:8D
CB6A:20
CR6D:

CBBD:AS
CB6F:B5
CB71:A5
CB73:85
CB75:

CB75:AD
CB7B:ED
CRB7A:DOD
CB7C:C5
CB7E:F0D
CB80:3A
CBB1:80
CR83:1A
CBB4:CH
CBB6:BO
CR88:

1681

20

03
cl

21

03
01

78
24

28
24

28
78
0o
o7
22
39
05

23

CB38

co
CB57
co

CBAE
CB

CBS7
CB57

05
co

CB&67

05
FC

05

CB83

CBEY

CB88

CBRY

*
* SCROLLIT scrolls the screen either up or down, depending
* on the value of X. Tt scrolls within windows with even
* or odd edges for both 40 and BD columns. It can scroll
* windows down to 1 characters wide.
E 3
SCROLLDN PHX ;save X
LDX f0 ;direction = down
BRA  SCROLLIT ;do scroll
*
SCROLLUP PHX ysave X
LDX #1 sdirection = up
SCROLLIT LDY  WNDWDTH ;get width of screen window
BIT RDABOVID :in 40 or BO columns?
BPL  GETST ;=»40, determine starting line
STA  SETBOCOL :make sure this is enabled
TYA ;get WNDWDTH for test
LSR A :divide by 2 fer 80 column index
TAY ;and save
LDA WNDLFT :test oddity of right edge
LSE A ;by rotating low bit into carry
CLV V=) if left edge even
BCC CHERT ;=>check right edge
BIT SEV1 ;V=1 if left edge odd
CHERT ROL A srestore WNDLFT
EOR  WNDWDTH ;get oddity of right edge
LSR A ;C=1 if right edge even
BVS  GETST :if odd left, don't DEY
BCS  GETST ;if even right, don't DEY
DEY :if right edge odd, need one less
GETST STY TEMPY ;save window width
LDA  RDBOVID ;N=1 if B0 columns
PHP ;save N,Z.V
LDA  WNDTOP jassume scroll from top
CPX L] ;up or down?
BNE  SETDBAS ;=>up
LDA WNDBTM ;down, start scrolling at bottom
DEC A ;really need one less
o
SETDBAS STA  TEMPA ;save current line

JSR  VTABZ ;ealculate base with window width
*

SCRLIN LDA BASL jeurrent line is destination

STA BASZL

LDA BASH

STA BAS2H
*

LDA TEMPA ;get current line

CPY #0 ;going up?

BNE SETUP2 =>up, inc current line

CMP  WNDTOP ;down., Reached top yet?

BEQ  SCRL3 ;ves! clear top line, exit

DEC A ;no, go up a line

BRA SETSRC ;set source for scroll
SETUP2 INC A ;up, inc current line

CMP  WNDBTM ;at bottom yet?

BCS  SCRL3 ;yes! clear bottom line, exit
*

Appendix |: Firmware Listings

Tl 'R T T T TE TG T T T

ELoT

1



|_S_——]

I = CE8B:8D 78 05 61 SETSRC STA  TEMPA ;save new current line
CB8B:20 24 FC 62 JSR VTARZ ;get base for new current line
CBBE:AC FB 05 63 LDY TEMPY ;get width for scroll

l—ll_ CB91:28 b4 PLF iget status for scroll
CB92:08 65 PHP sN=1 if BO columns
CB93:10 1F CBB4 66 BPL SKPRT ;=ronly do 40 columns

: CB95:AD 55 CD 67 LDA  TXTPAGE2 ;scroll aux page first (even bytes)

l'_".__ CB98:98 68 TYA stest ¥
CB99:F0 07 CBA2 69 BEQ SCRLFT ;if ¥=0, only scroll one byte
CB98:B1 28 70 SCRLEVEN LDA (BASL),Y
CB9D:91 2A 71 S5TA (BAS2L),Y
CBIF: 88 72 DEY
CBAO:DO F9 CB9B 73 BNE SCRLEVEN ;do all but last even byte
CBA2:70 04 CEAB 74 SCRLFT BVS SKPLFT ;odd left edge, skip this byte
CBA4:Bl 28 75 LDA  (BASL),Y
CBAG:91 2A 716 STA (BAS2ZL),Y
CBAB:AD 54 CO 77 SKPLFT LDA TXTPAGE1 jnow do main page (odd bytes)
CBAB:AC FB 05 718 LDY  TEMPY ;jrestore width
CBAE:BO 04 CEB4 79 BCS SKPRT ;even right edge, skip this byte
CBBO:Bl 28 80 SCRLODD  LDA (BASL),Y
CBB2:91 24 81 STA  (BASZL),Y
CBB4: 88 B2 SKPRT DEY
CBB5:10 F9 CBEO 83 BPL SCRLODD
CBB7:80 B4 CB6D 84 BRA SCRLIN ;scroll next line
CBB9: 85 #*
CBB9:20 AD FC 86 SCRL3 JSR  CLRLIN ;jclear current line
CBBC:20 22 FC 87 JSR VTARB sjrestore original cursor line
CBBF:28 aa PLP spull status off stack
CBCO:FA a9 PLX ;restore X
CBC1:60 90 SEVI RTS ;donell!

9 ¥ ¥ Y

Appendix I: Firmware Listings 169




CBC2:

CBC2:

CBC2:

CBC2:

CBC2:2C
CBC5:30
CRCT:91
CBCY9:C8
CBCA:C4
CBCC:90
CBCE:60
CBCF:

CBCF:DA
CBDO:A2
CBD2 : AO
CBD4: AS
CBDG:29
CBDA: B0
CBDA:

CHEDA:DA
CBDB:48
CEDC:98
CBDD:48
CBDE: 38
CBDF:ES
CBE] :AA
CBE2:98
CBE3:4A
CRE4: A8
CBES: 68
CBEG:45
CRE8:6A
CBE9:BD
CBEB: 10
CBED:CB
CBEE: 68
CBEF:B0O
CBFl:2C
CBF4:91
CBF6:2C
CBF9:E8
CBFA:FO
CBFC:91
CBFE:C8
CBFF:E8
ccog: Do
CCO2:FA
ccO3: 60
CCO4 :

CC04:9C
cCco7:9¢C
CCOA:60

1701

1F CO
13

21
F9

D8
14
32
AD
17

21

20

03
01

0B
55 €O
28
54 CO

06
28

EF

FA 05
F3 05

CEDA

CBC7

CBFl

CBEE
CBEE

CBFC

ccoz

CBF1

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

* ¥ ¥ *

DOCLR

CLR&40D

*
CLRHALF

CLRBO

CLRO

CLR2

CLRI1

CLR3

*
CLRPORT

BIT
BMI
STA
INY
CPY
BCC
RTS

PHX
LDX
LDY
LDA
AND
BRA

PHX
PHA
TYA
PHA
SEC
SBC
TAX
TYA
L5R
TAY
PLA
EOR
ROR
BCS
BPL
INY
PLA
BCS
BIT
STA
BIT
INX
BEQ
STA
INY
INX
BNE
PLX
RTS

STZ

STZ
RTS

DOCLR is called by CLREOQL.
to do a (quick) 40 or BO column clear to end of line.

RDBOVID
CLRBOD
(BASL),Y

WNDWDTH
CLRA&D

#$D8
#20
INVFLG
#5A0
CLR2

WNDWDTH

WNDLFT
A
CLRO
CLRO

CLRI

TXTPAGE2
(BASL),Y
TXTPAGEL

CLR3
(BASL),Y

CLRZ

TYPHED
EXTINT2

It decides whether

;40 or 80 column clear?
i=»clear 80 columns

sclear right half of screen
;for SCEN4B

;=>jump into middle

spreserve X

;and blank

;Eet count for CH

;save for left edge check
scount=WNDWDTH=-Y=1

;gave CH counter
;div CH by 2 for half pages

;restore original CH
;get starting page

;iff WNDLFT odd, starting byte odd
;get blankity blank

;starting page is 1 (default)
;else do page 2

;now do page 1
;all done

;forward 2 columns
snext CH

;not done yet
;jrestore X

;jand exit

;disable typeahead
;and external interrupts

Appendix |: Firmware Listings

TL B KL

T T TL TETH

Tl

| { W

T ELTL



al kL E L L

[

CCOB:
CCOB:
CCORB:
CCOB:
CCOB:
CCOB:
CCOB:
CCOB:
CCOB:
CCOB:
CCOB:AD
CCOE:29
CC10:DO
CCl2:
CCcl12:20
CCl5:48
CCl6:49
CC18:20
CC1B:68
cCclc:60
CC1D:
CCl1D:
CC1D:
CClD:
CClD:
CC1D:
CC1D:
CCID:5A
CClE:20
CC21:AD
CC24:10
CC26:8D
CC29:98
CC24:45
CC2C:bA
CC2D:BO
CC2F:AD
CC32:CH
CC33:98
CC34: 4A
CC35: A8
CC36:81
CC38:8D
CC3B:BO
CCc3p:Bl
CC3F:2C
CC&42:10
CCh44:C9
CC46:BD
CC48:09
CCapm:TA
CC4B:60
CCacC:
CC4C:
CC4C:
CC4C:
CCA4C:
CC4C:

FB
10
oA

1D

8O
B3

28
54
02
28
1E
06

02
40

04

CClcC
cCcl2
cC

Cc3

cC

co
cc3p

co

cc33
co

co
CC2IF

co
CCA4A

CC4A

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

*
* PASINVERT is used by Pascal to display the cursor. Pascal
* normally leaves the cursor on the screen at all times. It
* is fleetingly removed while a character is displayed, then
* promptly redisplayed. CTL-F and CTL-E, respectively,
* disable and enable display of the cursor when printed using
* the Pascal 1.l entry point (PWRITE). Screen I/0 is
* gignificantly faster when the cursor is disabled. This
* feature is supported by Pascal 1.2 and later.
*
PASINVERT LDA  VMODE ;Called by pascal to
AND  #M.CURSOR ;display cursor
BNE LNVX ;=rcursor off, don't invert
INVERT EQU *
JSR PICKY 1load Y and get char
PHA
EOR #580 ;FLIP INVERSE/NORMAL
JSR STORY ;stuff onto screen
PLA ; for RDCHAR
INVX RTS
*
* PICK lifts a character from the screen in either
* 40 or 80 columns from the current cursor position.
* If the alternate character set is switched in,
* character codes $0-51F are returned as $40-35F (which
* is what must have been originally printed to the location).
*
PLCKY PHY ysave Y
JSR GETCUR ;get newest cursor into Y
LDA  RDBOVID ;80 columns?
BPL PICK1 s=>no
STA SET80COL ;force BOSTORE if 80 columns
TYA
EOR WNDLFT 1C=]l if char in main RAM
ROR A ;get low bit into carry
BCS PICK2 s=>store in main memory
LDA  TXTPAGE2 ;else switch in page 2
INY ;for odd left, aux bytes
PICK2 TYA ;divide pos'n by 2
LSR A
TAY ;and use as offset into line
LDA (BASL),Y ;pick character
STA  TXTPAGEL :B0 columns, switch in
BRA  PICK3 ;skip 40 column pick
PICK1 LDA (BASL),Y ;pick 40 column char
PICK3 BIT ALTCHARSET ;only allow if alt set
BPL PICKA
CMP #520
BCS PICK4
ORA #5540
PICK4 PLY :restore real Y
RTS
*
* SHOWCUR displays either a checkerboard cursor, a solid
* rectangle, or the current cursor character, depending
* on the value of the CURSOR location. O=inverse cursor,
* SFF=checkerboard cursor, anything else is displayed
*

after being anded with inverse mask.

Appendix I: Firmware Listings

171




—

E;;ux..

CC4C: 203 *

CC4C:AC FB 07 204 SHOWCUR  LDY  CURSOR iwhat's my type?

CC4F:DO 02  CC53 205 BNE  NOTINV ;=>not inverse

CC51:80 BF  €Cl2 206 BERA  INVERT ;else invert the char (exit)
cc53: 207 *

CC53: 208 * Exit with char in accumulator

CC53: 209 *

CC53:20 1D cC 210 NOTINV JSR PICKY ;get char on screen

CC56:48 211 PHA ;preserve it

CC57:8D 7B 07 212 STA NXTCUR ;save for update

CC5A:98 213 TYA ;test for checkerboard
CC5B:CH 214 INY

CCS5C:;F0 0D CC6B 215 BEQ  NOTINVZ ;=>checkerboard, display it
CCSE:7A 216 PLY jtest char

CC5F:5A 217 PHY

CC60:30 09 CceB 218 BMI NOTINV2 ;sdon't need inverse

CC62:AD 1E CO 219 LDA ALTCHARSET ;mask = $7F if alternate
CC65:09 7F 220 ORA  #S7F ; character sert,

CCRT 1 bA 221 LSR A ;53F if normal char set
CC68:2D FB D7 222 NOTINV1 AND CURSOR ;jform char to display
CC6B:20 B3 C3 223 NOTINV2 JSR STORY ;and display it

CCHE: 68 224 PLA jrestore real char

CC6F: 60 225 RTS

€C70: 226 *

CC70: 227 * The UPDATE routine increments the random seed.

CC70: 228 * If a certain value is reached and we are in Apple II
CCJ0: 229 * mode, the blinking check cursor is updated. 1If a

CCT0: 230 * key has been pressed, the old char is replaced on the
CC70: 231 * screen, and we return with BMI.

CCc70: 232 %

CCT0: 233 * NOTE: this routine used by COMM firmware!!

CCc70: 234 *

CCT70:48 235 UPDATE PHA ;save char

CC71:E6 4E 236 INC RNDL supdate seed

CC73:p0 1Cc  cc9l 237 BNE  UD2 jcheck for key

CC75:A5 4F 238 LDA  RNDH

CCT7:E6 4F 239 INC RNDH

CC79:45 4F 240 EOR  RNDH

CC7B:29 10 241 AND #510 ;need to update cursor?
CC7D:F0 12 CCI91 242 BEQ UD2 ;=»no, check for key
CCTF:AD FB 07 243 LDA CURSOR ;what cursor are we using?
CCB2:F0 OD CCY91 244 BEQ UD2 ;=>»//e cursor, leave alomne
CC84:20 1D cC 245 JSR  PICKY ijget the character into A
cc87:aCc 7B 07 246 LDY NXTCUR ;get next character

CC8A:8D 7B 07 247 STA  NXTCUR ;save next next character
CCc8Dn:98 248 TYA

CCBE:20 B3 C3 249 JSR  STORY sand print it

CCY91:68 250 up2 PLA ;get teal char

CC9%92:20 AD C9 251 JSR XBITKED :was a key pressed?

CC9%5:10 28  CCBF 252 BPL GETCURX ;=»no key pressed

CC97:20 B3 C3 253 CLREBD JSR STORY jrestore old key

CCY9A:4C BF C9 254 JMP  XRDKBD ;look for keystroke and exit
CCoD: 255 *

CCoD: 256 * ON CURSORS. Whenever the horizontal cursor position is
CCYD: 257 * needed, a call to GETCUR is dome. This is the equivalent
CC9D: 258 * of a LDY CH. This returns the current cursor for II and
CCIn: 259 * //e mode, which may have been poked as either CH or OURCH.
CCID: 260 *

172

Appendix I: Firmware Listings

'EL__TEl

'EL_fEL

Pl Pl P TR

FlF e o Fle Pl [FLUFL!

'Fi



4 2 /| ¢ Y Y ¢

CCcon:
CC9D:
CC9D:
CC9D:
CCop:
CC9D:
CC9D:
CCYD:
CCaD:
CC9D:
CCI9D: AL
CCO9F:CC
CCA2:D0
CCAL: AC
CCAT:C4
CCA9:90
CCAB: AD
CCAD:
CCAD:
CCAD:
CCAD:
CCAD:BC
CCBO:2C
CCR3: 10
CCB5:A0
CCB7:B4
CCB9?:BC
CCBC:AC
CCBF: 60
CCCo:

24

7B 04

03

CCAT

78 05

21
0z
00

B
1F
02

24
7B
7B

05
co

04

CCAD

ccae7

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

> % & F % ¥ ¥ ¥ X ¥

It also forces CH and OLDCH

to 0 if B0 column mode active.

This prevents LDY CH, STA (BASL),Y from trashing non screen
memory. It works just like the //e.

A1l routines that update the cursor's horizontal position

are here.

This ensures that the newest value of the cursor

is always used, and that 80 column CH is always 0.

GETCUR only affects the ¥ register

GETCUR LDY

CPY
BNE
LDY

GETCURL CPY

&
*
£
*

BCC
LDY

GETCUR2 is commonly used to
position when Y can be used.

GETCUR2 5TY

BIT
BPL
LDY

GETCUR3 STY

STY
LDY

GETCURX RTS
INCLUDE ESCAPE

CH
OLDCH
GETCURI
OURCH
WNDWDTH
GETCUR2Z
#0

OURCH
RDBOVID
GETCUR3
#0

CH
OLDCH
OURCH

;if CH=0LDCH, then

+OURCH is walid

y=>else CH must have been changed
;use OURCH

;is the value too big

s=>no, fits just fine

;else force CH to O

set the current cursor

;jupdate real cursor
;80 columns?

;=>no, set all cursors
syes, peg CH to O

;EBL Cursor
jand fly...

Appendix |: Firmware Listings

[173




CCCco:
ccco:
cceo:
CCCOo:
CcCeco:
CCCo:
CCcO:
CCCOo:
CCCO:
CCCo:
CCco:
CCCOo:
ccco:
ccco:
CCcco:
ccco:
CcCCco:
CCCO:
CCcco:
CCCO:B9
CCC3:54A
CCCA4:20
CCC7:7A
CCCAa:co
CCCA:BO
CCCC:
CcCcC:
CCCC:
Ccce:
CCCC:
CCCC:
cCccC:
CCCC:
CCCC:20
CCCF: 48
cCD0:29
CCD2:49
CCD4: 20
CCD7:20
CCDA: 10
CCDC: 68
CCDD:20
CCEQ:20
CCE3:AD
CCE5:D9
CCE8:FD
CCEA: 88
CCEB: 10D
CCED:
CCED:
CCED:
CCED:
CCED:
CCED:A9
CCEF:1C
CCF2:20
CCF5:4C
CCFB:

1741

oc
58

08
21

80
AB
B3

FB

97
9B

F&
D6

FE

o8
FB
oc
44

cD

cD

CCED

cC

c3
c9
ccon?

cC
c3

cc
cceco

CCES5

04
FD
FD

* START AN ESCAPE SEQUENCE:
* WE HANDLE THE FOLLOWING ONES:
* @ - HOME & CLEAR
* A - Cursor right
* B = Cursor left
* C = Cursor downm
* D = Cursor up
* E — CLR TO EOL
b F - CLR TO EQS
* I, Up Arrow - CURSOR UP (stay escape)
ol J, Lft Arrow - CURSOR LEFT (stay escape)
* K, Rt Arrow — CURSOR RIGHT (stay escape)
* M, Dn Arrow - CURSOR DOWN (stay escape)
* 4 - GOTO 40 COLUMN MODE
* 8 - GOTO BO COLUMN MODE
* CTL-D— Disable the printing of control chars
* CTL-E— Enable the printing of control chars
* CTL-0- QUIT (PRAD/INHO)
w
ESC3 LDA ESCCHAR,Y ;GET CHAR TO "PRINT"
PHY ;save index
JSR CTLCHAR :execute character
PLY jrestore index
cpY #YHI 3s1f Y<YHI, stay escape
BCS ESCRDKEY ;=»exit escape mode
*
* This is the entry point called by RDKEY iff escapes
* are enabled and an escape is encountered.
* keypress is read and processed.
* terminates escape mode, a new key is read by ESCRDKEY.
* If escape mode should not be terminated, NEWESC is
* called again.
*
NEWESC JSR  PICRY ;jget current character
PHA ;and save it
AND  #$80 ;save invert bit
EOR  #5AB imake it inverted "+"
JSR STORY ;and pop it on the screen
ESCO JSR XBITKBD ;check for keystroke
BPL ESCO
PLA ;get old char
JSR CLREBD ;restore char, get key
JSR UPSHLFT ;jupshift esc char
ESCl LDY #ESCNUM ; COUNT/INDEX
ESC2 CMP ESCTAB,Y ;IS IT A VALID ESCAPE?
BED ESC3 =>yes
DEY
BPL ESC2 ;TRY "EM ALL...
*
* End of escape sequence, read next character.
* This is initially called by RDCHAR which is usually called
* by GETLN to read characters with escapes enabled.
*
ESCRDKEY LDA  #M.CTL ;jenable escape sequences
TRB VMODE
JSR RDKEY

JMP  NOESCAPE

The next
If it is a key that

;read char with escapes

;got the key, disable escapes

Appendix |: Firmware Listings

T Tl

| | B B - R .

| [ .

o o]

T\ Fl T



U

CCFa8:
CCF8:
CCF8:
CCF8:
CCF8:
CCF8:
CCFB:
CCFB:
CCF8:
CCF8:
CCF8:
CCFB:
CCF8:
CCF8:
CCF8:
CCF8:CcA
CCF9:88
CCFA:CD
CCFB: 8B
CCFC:95
CCFD:8A
CCFE:C9
CCFF:CB
CDO0:
CDo0:Cc2
CDol:C3
CDD2:C4
CD0O3:C1
CDO4 :C0
CDO5:C5
CDD6:Ch
CDOT: B4
CDOB: B8
CD09:91
CDOA: 84
CDOB: 85
CDOC:
CDOC:
Cnoc:
choC:
CDOC: 88
CDOD: 88
CDOE:8A
CDOF:9F
CD10:9C
CDIl:84A
CD12:9F
CD13:9¢C
CDl4:88
CD15:
CD15:84A
CDl6:9F
CD17:9C
CD1B:8C
CD19:9D
CDLA:BR
CD1B:91
ChlC:92

CCF8

ooos

0013

Cchac

cpl5

109
110
111
112
113
114
115
116
117

* When in escape mode, the characters in ESCTAB (high)
* bits set), are mapped into the characters in ESCCHAR.
* These characters are then executed by a call to CTLCHAR.
*
* CTLCHAR looks up a character in the table starting at
* CTLTAB. It uses the current index as an index into the
* table of routine addresses, CTLADR. If the character is
* not in the table, a call to VIDOUTl is done in case the
* character is BS, LF, CR, or BEL.
*
* NOTE: CTLON and CTLOFF are nat accessible except through
* and escape sequence
*
MSBE ON ;high bit on
ESCTAB EQU -l
ASC L A ;left (stay esc)
DFB 588 ;left arrow (stay esc)
ASC ™' ;jdown (stay esc)
DFB SEB ;up arrow (stay esc)
DFBE 595 ;right arrow {(stay esc)
DFB 584 ;down arrow (stay esc)
ASC b G jup (stay esc)
ASC 'K sright (stay esc)
YHI EQU  *-ESCTAB
ASC B! ileft
ASC i oy ;down
ASC o sup
ASC "A' ;right
ASC g! sformfeed
ASC 'E! jclear EOL
ASC 'F' ;clear EOS
ASC Th! ;40 column mode
ASC - i ;80 ecolumn mode
DFB 591 ;CTL-Q = QUIT
DFB 584 +CTL-D ;ctl char disable
DFB S85 ;CTL~E ;ctl char enable
*
ESCNUM EQU  *-ESCTAB-1

*

ESCCHAR EQU *

ylist of escape chars

DFB S88 ;J: BS (stay esc)

DFB 588 ;<—:BS (stay esc)

DFB  §8A iM: LF (stay esc)

DFB S9F ;UP:US (stay esc)

DFB so0C i=>:F5 (stay esc)

DFE 58A ;DN: LF (stay esc)

DFB S9F ;1: UP (stay esc)

DFB s9¢ ;K: RT (stay esc)

DFB 588 ;ESC-B = BS
CTLTAB EQU n ;1list of control characters

DFE  $8A ;ESC-C = DN

DFB S9F ;ESC-D = UP

DFB 59C yESC=A = RT

DFB S8C 1@: Formfeed

DFB 59D +E: CLREOL

DFB 588 31 F: CLREOP

DFB 591 :SET40

DFB 592 ; SET80

Appendix I: Firmware Listings

175



r

CDID:95
CDIE: 04
CD1F:05
CD20:
CD20:85
CD21:86
CD22:8E
CD23:8F
CD24:96
CD25:97
CD26:98
CD27:99
CD28:9A
CD29:98
CD2A:
CD2A:
CD2A:
CD2A:
CD2A:66
CD2C: 1A
CD2E: AD
CD30:58
CD32:9C
CD34:42
CD36:C0
CD38:BE
CD3A:45
cn3c:91
CD3E: 95
CD40: 89
CD42:8D
CD44:BOD
CD46:B7
CD4B:30
CD&4A:35
CD4C:9F
CD4E:AS
CD530:A0
CD52:99
CD54:
CD54:
CD54:
CD54:
CD54:
CD54:
CD54:
CD54:
CD54:
CD54:
CD54:
CD54:
CD54:
CD54:2C
CD57:50
Ch58:
CD58:B8
CD59:DA
CD5A:8D

176

0014

CD2A
FC
FC
FB
FC
FC
FC
co
coD
CE

cD
ch
CcD
cD
cD
CB
CB
ch
CcD
FC
cD

Cl CB

FB 04

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

; QUIT

:Disable controls (escape only)
:Enable controls (escape only)

;X,CUR.ON
;X.CUR.OFF
;Normal

i Inverse

:Scroll down
:Scroll up
;mouse chars off
:home cursor
sclear line
;jmouse chars on

;jmove cursor down

jmove Cursor up

;forward a space

shome cursor, clear screen
jclear to end of line
jclear to end of page
;set 40 column mode

;set B0 column mode

;0uit video firmware
:disable //e control chars
;enable //e control chars
;turn on cursor (pascal)
;turn off cursor (pascal)
;normal video

sinverse video

;scroll down a line
sscrell up & line
;disable mouse characters
;move cursor home

;jclear current line
;enable mouse characters

CTLCHAR executes the control character in the

If it is called by Pascal, the character

is always executed. If it is called by the video
firmware, the character is executed if M.CTL is set

Note: This routine is only called if the video firmware

DFB $95
DFB 504
DFB 505
* ggcape chars end here
DFB 585
DFB 586
DFB  $SBE
DFB $8F
DFB 596
DFB 597
DFB 598
DFB 5§99
DFB S59A
DFB 598
*
CTLNUM EQU *=CTLTAB-1
*
CTLADR EQU ®
DW LF
DW Up
DW NEWADV
DW HOME
oW CLREOL
W CLREOP
DW SET40
oW SET80
Dw QUIT
oW CTLOFF
DW CTLON
DW X.CUR.ON
oW X.CUR.OFF
DW X.50
DW X.51
DW SCROLLDN
DW SCROLLUP
DW MOUSOFF
DW HOMECUR
DW CLRLIN
DW MOUSON
=
MSBE ON
*
*
* accumulator.
*
*
* and M.CTL2 is clear.
*
*
* ig active. The Monitor ROM
* firmware is inactive.
*
CTLCHARO BIT SEV1
DFB 5§50
-
CTLCHAR cLV
PHX
STA TEMP1

calls VIDOUTL if the wvideo

sget V (use M.CTL)
;BVC opcode (never taken)

;Always do control character

;save X
;cemp save of A

Appendix |: Firmware Listings

Flo FlooFle Pl B TFLTEL. I

Fl..IFL _IF]

Er MWLM IE

1

o 8




|4 ¥

CD5D:20
CD60:CD
CD63:D0
CD65:A2
CD67 :DD
CD6A:FO
CDEC:CA
CD&D: 10
CDEF:FA
CD70: 60
Ch71:
CD71:48
CD72:50
CD74:AD
CD77:29
CD79:49
CD7B:FO
CD7D:68
CD7E:FA
CD7F:60
CD80:
CDB0:BA
CD81:04
CDB2:AA
CDB3:68
CDB4:20
CDB7 :FA
CDB&: 60
CD8%:
CDB9:
CcDag:
CD89:
CD&9:
CD89:
CDB9:
CD89:
CDB9:A9
CD8B: 80
CDaD:
CDED: A9
CDBF:80
CD91:
CD91:
CD91:
CD91:
CDh91:
CD91:
CD91:A9
CD93:80
CD95:
CD95:A9
CD97:80
CD99:
CD99:
CD99:
CD99:4A9
CD9B:1C
CDY9E:60

04 FC

F8 04
0A

CD6F

15 CD

oc
FB 04
28

03

Ad FC

10
OE

10
10

20
oc

20
02

01
FB 04

cD71

che7

CDBO0

CD&0

CD9B

CDALl

Chal

CD9B

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

JSR  VIDOUT1 ;try to execute CR, LF, BS, or BEL
CMP TEMP1 ;if acc has changed
BNE CTLDONE ;then function done
LDX  #CTLNUM ;number of CTL chars
FNDCTL CHMP CTLTAB,X ;is it in table
BEQ CTLGD ;j=>yes, should we execute?
DEX ;else check next
BPL FNDCTL y=2Lry next one
CTLDONE PLX ;jrestore X
RTS ;and return
7
CTLGO PHA isave A
BVC  CTLGOL iV clear, always do (pascal,escape)
LDA VMODE scontrols are enabled iff
AND #M.CTL+M.CTLZ ; M.CTL = 1 and
EOR #M.CTL 3 MoCTL2 = ()
BEQ CTLGOL ;=>they're enabled!!
CGO PLA ;jTestore A
PLX jrestore X
RTS ;and return
&
CTLGO1 TXA jdouble X as index
ASL A ;jinto address table
TAX
PLA irestore A
JSR CTLDD ;execute the char
PLX ijrestore X
RTS ;and return

*

* X.CUR.ON = Allow Pascal cursor display

* X.CUR.OFF = Disable Pascal cursor display

* Cursor is not displayed during call, so it will

* be right when "redisplayed".

* Note: Though these commands are executed from BASIC,

* they have no effect on firmware operation.
*

X.CUR.ON LDA #M.CURSOR jclear cursor bit
ERA CLRIT

*

X.CUR.OFF LDA  #M.CURSOR iset cursor bit
BRA  SETIT

*

* The control characters other than CR,LF,BEL,BS

* are normally enabled when video firmware is active.
* They can be disabled and enabled using the ESC-D

* and ESC-E escape sequences.
-

CTLOFF LDA  f#M.CTL2 jdisable control characters
BRA SETIT ;by setting M.CTL2

&

CTLON LDA  #M.CTL2 ;enable control characters
BRA  CLRIT ;by clearing M.CTL2

* Enable mouse text by clearing M.MOUSE
*
MOUSON LDA  #M.MOUSE
CLRIT TRE  VMODE
RTS

Appendix |: Firmware Listings 157




CD9F:
CD9F:
CD9F:
CDI9F:A9
CDAL:0C
CDAL: 6O
CDA5:
CDAS:
CDAS:
CDA5:20
CDAB: A8
CDA9:AS
CDAB:B5
CDAD: 4C
CDBO:
CDBO:
CDBO:
CDBO:20
CDB3:A9
CDB5:80
CDB7:
CDB7 :
CDB7 =
CDB7:20
CDBA:A9
CDBC:BO
CDRE:
CDBE:
CDBE:
CDBE:38
CDBF:90
cDpCo:18
CDCl:2C
CDC4: 10
cDhC6:08
CDC7:20
CDCA:28
CDCRB: B0
CDCD:
CDCD:
CDCD:
CDCD:
CDCD: 2C
cbp0: 10
CDD2:
CDD2: 18
CDD3:BO
CDD4: 38
CDOD5: 64
CDD7:2C
CDDA: 30
CDDC: A9
CDDE:85
CDED:2C
CDE3:08
CDE4: B0
CDE6&: 10
CDEB:20

1781

01
FB

84

E4

80
04
E3

FB
54

08

IF
48

22
1A
04
14
22
IF

07
DA
53

CD9B

FE

CDAL

04
CElA

CDD5

co
CElA

co
CDEO

co

CDED

CDF2
CE

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

*

* Disable
*

MOUSOFF
SETIT

*

* EXECUTE
*

HOMECUR

*

* EXECUTE
*

X.50

&*

* EXECUTE
*

X.5I

*

* EXECUTE
&
SETBO

SET40

CHKBO 1

* ¥ ¥ %

CHEKB0

*
WINLOD

WINSO
WINOD

WINL

mouse text by setting M.MOUSE

LDA #M. MOUSE

TSB VMODE

RTS

HOME :

JSR  CLRCH jmove cursors to far left
TAY ; (probably not needed)}
LDA  WNDTOP ;and to top of window
STA CV

JMP  MEWVTABZ ;then set base address, OURCV
"NORMAL VIDEO"

JSR SETNORM
LDA #M.VMODE

;set INVFLG to 5FF
;then clear inverse mode bit

BRA CLRIT

"INVERSE VIDEO"

JSR SETINV ;set INVFLG to $3F

LDA  #M.VMODE ;then set inverse mode bit
BRA SETIT

'40COL MODE' or 'BOCOL MODE':

SEC :flag an B0 column window
DFB 590 :BCC opcode (never taken)
CLC ;flag a 40 column window
BIT VMODE sbut...1s it pascal?

BPL  SETX ;=»yes, don't execute

PHP ;save window size

JSR  HOOKITUP ;COPYROM if needed, set I/0 hooks
PLP ;and get 40/B0

BRA  WINO ;=>set window

s called by PR#O to convert to 40 if it was

80, Otherwise the window is left ajar.

BIT RDBOVID ;don't set 40 if

BPL SETX ;already 40

CLC ;flag 40 column window
DFE  $BO ;BCS opcode (never taken)
SEC ;flag 80 column window
STZ  WNDTOP ;set window top now

BIT RDTEXT ;for text or mixed

BMI  WINl j=rtext

LDA #20

STA  WNDTOP ;used by 80<->40 conversion
BIT RDBOVID ;80 columns now?

PHP ;save B0 or 40

BCS WINZ +=>80: convert if 40

BPL  WIN3 s=340: no convert

JSR  SCEN84 :80: convert to 40

Appendix |: Firmware Listings

T T T

1 ] G o 9 {1 { W o W e Y O O O



4 ¢ ¥

CDEB: B0
CDED: 30
CDEF: 20
CDF2:20
CDF5:98
CDF6:18
CDF7:65
CDF9:28
CDFA:BO
CDFC:C9
CDFE:90
CEOO:A9
CEO02:20
CE05:A5
CED7:20
CEOA:

CEOA: 64
CEOC: A9
CEQOE:85
CELD:A9
CE12:2C
CE15:10
CE17:04
CE18:85
CE1A:60
CE1B:

CE1B:

CElB:

CElB:

CE1B:

CE1B:

CELlB:

CElB:

CElB:2C
CELE:10
CE20:20
CE23:A9
CE25:85
CE27:A9
CE29:85
CE2B:A9
CE2D:B5
CE2ZF:85
CE3l:

CE3l:

CE31:

CE31:9C
CE34:A9
CE36:2D
CE39:09
CE3B:

CE3B:

CE3B:

CE3B:8D
CE3E:9C
CE41:8D
CE&4:60
CE&45:

05 CDF2
03 CDF2
80 CE
9p ccC

20

06 CEO2

02 CED2

EC FE

Cl ¥8B

1F CO
01 CE18

7B 06
11 CE3l
38 C3

FB 07
o8
FB 04

FB 04
78 06
OF CO

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
132
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

BRA  WIN3 ;done converting

WIN2 BMI WIN3 ;=>80: no convert
JSR SCRN4E ;40: convert to B0

WIN3 JSR  GETCUR ;determine absolute CH
TYA 3in case the window setting
CLC ;was different
ADC WNDLFT
PLP ;pin to right edge 1if
BCS  WINA ;80 to 40 leaves cursor
CMP  #40 ;0ff the screen
BCC WIN4
LDA #39

WING JSR SETCUR ;BEL New cursor
LDA Ccv ;s8et new base address
JSR BASCALC ;for left = 0 (always)

*

WNDREST STZ  WNDLFT ;jCalled by INIT and Pascal
LDA #5518 ;and bottom
STA WNDBTH
LDA  #528 ;jset left,width,bottom
BIT RDBOVID ;jset width to BO if 80 columns
BPL WINS
ASL A

WINS 5TA WNDWDTH sset width

SETX RTS ;exit used by SETA40/80

*

* Turn on video firmware:

*

* This routine is used by BASIC init, ESC-4, ESC-B

* It copies the Monitor ROM to the language card

* if necessary; it sets the input and output hooks to

* $C30x; it sets all switches for video firmware operation
*

HOOKITUP BIT  VFACTV ;don't touch hooks

BPL VIDMODE ;1f video firmware already active
HOOKUP  JSR  COPYROM :Copy ROM to LC?
SETHOOKS LDA  #>C3KEYIN ;set up $C300 hooks

STA KSWL

LDA #>C3COUT1

STA CSWL

LDA #<C3couTl

STA KSWH

STA CS5WH

*

* Now set the video firmware active

*

VIDMODE STZ  CURSOR ;jset a solid inverse cursor
LDA  #M.CTL spreserve M.CTL bit
AND VMODE
ORA  #M.PASCAL+M.MOUSE ;no pascal,mouse

-

* Pascal calls here to set its mode

©

PVMODE STA VMODE ;jset mode bite
STZ  VFACTV ;say video firmware active
STA  SETALTCHAR ;and set alternate char set

Qx RTS
#

Appendix |: Firmware Listings

179




CE&45:

CE45:

CE45:

CE45:

CE45:2C FB 04
CE48:10 FA  CE&4
CE4A:20 D2 CD
CE4D:20 89 FE
CE50:4C 93 FE

1801

350
351
152
353
354
355
356
357
358

QUIT converts the screen from 80 to 40 if necessary,

hooks (COUT1 and KEYIN).

*
* gets a 40 column window, and restores the normal I/0
*
*

ZZQUIT

BIT
BFL
JSR
JSR
JHP

VMODE
Qx
WINAD
SETKBD
SETVID

;no quitting from pascal

:first, do an escape 4

:do a IN#D
sand a PRFD

Appendix I: Firmware Listings

(used by COMM)

T TTOTNTTT TN

_
|
=
v
~
-
n




¢

[

CE53:

CE53:

CE53:

CE53:

CE53:

CE53:4A2
CE55:8D
CES8:8A
CE59:20
CE5C:AD
CESE:54A
CES5F:98
CE60:4A
CE61:B0D
CE63:2C
CEG6: A8
CE67:Bl1
CE69:2C
CE6C:7A
CE6D:91
CEGF:88
CE70:10
CE72:CA
CE73:30
CE75:E&4
CE77:B0
CE79:8D
CE7C:8D
CE7F:60
CEB0:

CEBD:A2
CEB2:84
CEB3:20
CEBG6: AD
CEBB:8D
CEBB:Bl
CE8D:5A
CEBE: 48
CEBF:98
CE90:4A
CE91:B0
CE93:8D
CE96:A8
CE97:68
CE98:91
CE9A: 8D
CE9D:7A
CE9E:C8
CE9F:C0
CEALl:90
CEA3:20
CEAG:CA
CEA7:30
CEA9:E4
CEAB:BO
CEAD:8D
CEBO:60
CEBI1:

17
01

cl
27

03
28
54
28
EC
04
DF

00
oc

17

03
55

28
54

2B
EB
CF

04
22
D5

co

FB

CE66
co

co

CESE
CE79
CE58

co
co

FB

co

CE%6
co

co

CESB
CB

CEAD

CE82
co

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
Ll6
29

w
*
*
* be done. All registers are
k.3
SCRNB4 LDX #23
STA SETBOCOL
SCR1 TXA
JSR  BASCALC
LDY #39
SCR2Z PHY
TYA
LSR A
BCS SCR3
BIT TXTPAGEZ
SCR3 TAY
LDA  (BASL),Y
BIT TXTPAGEIL
PLY
STA (BASL),Y
DEY
BPL  SCR2
DEX
BMI SCR%
CPX WNDTOP
BCS SCR1
SCRA4 STA CLRBOCOL
STA  CLRBOVID
RTS
i
SCRN4E LDX  #23
SCRS TXA
JSR  BASCALC
LDY #0
STA SETBOCOL
SCR6 LDA  (BASL),Y
SCRS8 PHY
PHA
TYA
LSE A
BCS  SCR7
STA TXTPAGEZ
SCR7 TAY
PLA
STA  (BASL),Y
S5TA TXTPAGE]L
PLY
INY
CPY  #40
BCC  SCR6
JSR CLRHALF
DEX
BMI  SCR9
CPX  WNDTOP
BCS SCR5
SCRY9 STA SET80OVID

RTS
INCLUDE PASCAL

SCRNB4 and SCRN4B convert screens between 40 & BO cols.
WNDTOP must be set up to indicate the last line to

trashed.

;etart at bottom of screen
;jallow page 2 access
;jcale base for line

;start at right of screen
:gave 40 index
;jdiv by 2 for 80 column index

;even column, do page 2
sget B0 index

:get 80 char

;restore pagel

;get 40 index

;do next &40 byte
;do next line
;y=>done with setup
;at top yet?

sclear BOSTORE for 40 columns
;elear BOVID for 40 columns

;start at bottom of screen
;set base for current line

;jstart at left of screen
;enable pagel store

;jget 40 column char

;save 40 column index
:save char

sdiv 2 for BO column index

;save on pagel

;get 80 column index
;jnow save character

;£lip pagel
;restore 40 column index

;jmove to the right

;at right yet?

;=>no, do next column

;elear half of screen

selse do next line of screen
;=>done with top line

;at top yet?

;convert to 80 columns

;jPascal support stuff

Appendix I: Firmware Listings

181




CEBl:AA
CEB2:FO
CEB4:CA
CEB5:D0
CEB7:20
CEBA: 10
CEBC:38
CEBD:60
CEBE:A2
CECO:18
CECL:60
CEC2:

CEC2:

CEC2:

CEC2:

CEC2:09
CEC4 : AA
CEC5:20
CEC8:A9
CECA:2C
CECD:DO
CECF:8A
CEDO:89
CED2:F0
CED4 : AC
CED7:24
CED9:30
CEDB:29
CEDD:20
CEE(Q:C8

182

08

07
AD
04

03

8o

54

FB
2B

&0
45
1B
32
0z
IF
cl1

CERC

CEBE

c9

CECOD

CF

04

05

c3

CEC2

CEFA

CF19

CEDD

3 PSTATUS  TAX

4 BEQ  PIORDY
5 DEX

6 BNE  PSTERR
7 JSR  XBITKED

8 BPL  PNOTRDY
9 PIORDY SEC
10 RTS

11 PSTERR LDX #3
12 PNOTRDY CLC

13 RTS

14 *

15 * PASCAL OUTPUT:

16 *

17 PWRITE EQU Ll

18 ORA #3580

19 TAX

20 JSR  PSETUPZ
21 LDA #M.GOXY
22 BIT  VMODE
23 BNE GETX

24 TXA

25 BIT #560

26 BEQ PCTL

27 LDY OURCH
28 BIT INVFLG
29 BMI PWRI

30 AND #57F

31 PWRL JSR STORE
32 INY

;is request code = 07
;=>yes, ready for output
;check for any input

;=’bad request, return error
;test keyboard

;=bno keystroked

:good return

;else flag error

sturn on high bit

;save character

;SETUP ZP STUFF, don't set ROM
:ARE WE DOING GOTOXY?

:=>Doing X or Y?

;jnow check for control char
;is it control?

;=>yes, do control

;get horizontal position
;check for inverse

snormal, go store it

inow store it (erasing cursor)
;INC CH

Appendix |: Firmware Listings

TV Ti

L Ti T

T T T T T

Tl

The TL. T

|



8 ¢ ¢ ¢

CEEl:BC
CEE4:C4
CEE6:90
CEEB:20
CEEB:20
CEEE:20
CEF1:20
CEF4:20
CEF7:A2
CEF9:60
CEFA:

CEFA:

CEFA:

CEFA:

CEFA:20
CEFD:BA
CEFE:138
CEFF:E9
CFOl:2C
CF04:30
CF06:

CF06:

CF06:

CFQ6:

CF06:8D
CF09:20
CFOC:AC
CFOF:20

1]:)

AD

24

FB
71
FB

05

CEF4
Cc3
FE
FC
c3
cc

CEFA
cc

06
CF30

CFO06

33
34
i5
36
37
38
39
40
41
52
43

STY
CPY
BCC
JSR
JSR
JSR

PWRITERET JSR

PWRET
PRET

*

* HANDLE

-
GETX

*

JSR
LDX
RTS

EQU
JSR
TXA
SEC
SBC
BIT
BMI

OURCH
WNDWDTH
PWRET
SETROM
CLRCH

LF
RESETLC
PASINVERT
#50

GOTOXY STUFF:

*
PASINVERT

#160
XCOORD
PSETX

* Set Y and do the GOTOXY

*
GETY

EQU
STA
JSR
LDY
JSR

&
OURCV
PASCALC
XCOORD
GETCUR2

;jset cursor position to 0

;display new cursor
sreturn with no error

sturn off cursor
;Eet character

yMAKE BINARY

idoing X7
;=>yes, set it

scalc base addr

;jBBt PTOpEr Cursors

Appendix |: Firmware Listings

183




CF12:A9
CFl4:1C
CF17:80
CF19:
CF19:20
CFlC:BA
CF1D:C9
CFI1F:FO
CF21:20
CF24:20
CF27:80
CF29:
CF29:
CF29:
CF29:
CF29:A9
CF2B:0C
CF2E: A9
CF30:8D
CF33:80
CF35:
CF35:
CF35:
CF35:20
CF38:20
CF3B:10
CF3D:29
CF3F:B0
CF&4l:
CF4l:
CF4l:
CF4l:
CF4l:A9
CF43:20
CF46:20
CF49:20
CF4C:20
CF4F:80
CF51:
CF51:
CF51:20
CF54:64
CF56:20
CF59:A9
CF5B:85
CF5D: A9
CF5F:2C
CF62:F0
CF6h4: 46
CFh6: AC
CF69:20
CFAC:AD
CFG6F:85
CF71:
CF71:
CF71:
CF71:
CF71:0A

1841

D8
FB
DB

0B

9E
08
60
58
c8

o8
FB
FF
FB
BF

54
8F
FB
TF
B&

01
3B

D4
58
AD

60

0A
FF

04
FB
02
32
7B
AD
FB
25

04
CEF4

cc

CF29

CEF1

CF29

04

06
CEF4

CF
c9
CF38

CEF7

CF4l
CE
CF
cD
CEF1

CF51
c3

CE

04
CF66

05
cc

108
109
110
111
112
113
114
115
L116
117
118

LDA  #M.GOXY
TRB  VMODE
BRA  PWRET
*
PCTL JSR PASINVERT
TXA
CMP #59E
BEQ  STARTXY
JSR SETROM
JSR CTLCHAR
BRA  PWRITERET
*
* START THE GOTOXY SEQUENCE:
*
STARTXY EQU L
LDA  #M.GOXY
TSB VMODE
LDA #5FF
PSETX STA XCDORD
BRA  PWRET
*
* PASCAL INPUT:
*
PASREAD JSR  PSETUP2
GKEY JSR XRDKBD
BPL GEEY
AND #57F
BRA  PRET
13
* PASCAL INITIALIZATION:

*

PINIT EQU
LDA
JSR
JBR
JSR
JSR
BRA

*

PSETUP EQU
JSR

PSETUP2 STZ
JSE
LDA
STA
LDA
BIT
BEQ
LSR

PS1 LDY
J5R
LDA
STA

Put BASCALC
in the ROMs

* % ¥ W

PASCALC ASL

*
#M.MOUSE
PVMODE
PSETUP
WINBOD
HOME
PWRITERET

*
SETROM
WNDTOP
WNDREST
#SFF
INVFLG
#M.VMODE
VMODE
Psl
INVFLG
OURCH
GETCUR2
OURCVY
cv

jturn off gotoxy
s=>DONE (ALWAYS TAKEN)

sturn off cursor

;get char

;is it gotoXY?

s=>yes, start it up

;must switeh in ROM for controls
;EXECUTE IT IF POSSIBLE
;=>display new cursor, exit

jturn on gotoxy

;set XCOORD to -1

yset X

;=>display cursor and exit

;SETUP ZP STUFF
;key pressed?
;=>not yet
+DROP HI BIT
;Eood exit

;Set mode to pascal

swithout mouse characters

:setup zero page for pascal

;do 40->8B0 convert

:home and clear screen

;jdisplay cursor, set OURCH,0URCV...

:save LC state, set ROM read
;set top to 0

;init either 40 or 80 window
;assume normal text

15 it

y=ryes
;no, make flag inverse

;set all cursors

here so we don't have to switch
for each character output.

A

Appendix I: Firmware Listings

TLTLTL T I T

EilleTt ToTL T Tl T TLILT




CF72:A8 119 TAY ;jcale base addr in BASL,H
CF73:4A 120 LSR A ;for given line no.
CF74:4A 121 LSR A

CF75:29 03 122 AND #503 : 0<{=1ine no.<=%17
CF77:09 04 123 ORA  #54 ; arg=000ABCDE, generate
CF79:85 29 124 STA BASH 3 BASH=000001CD

CF7B:98 125 TYA sand

CF7C:hA 126 ROR A 3 BASL=EABABOOO

CF7D:29 98 127 AND 598

CF7F:85 28 128 PASCLC2 STA BASL

CF81:04A 129 ASL A

CFB2:04 130 ASL A

CF83:04 28 131 TSB BASL

CF85:60 132 RTS

CF86: 30 INCLUDE AUXSTUFF ;Aux RAM routines

{4 ¢ ¢

e

[

Appendix I: Firmware Listings 185




o

[ -

CF86:
CF86:
CF86:
CF86:
CF86:
CF86:
CF86:
CF86:
CFB86:
CFB6:
CF86:
CFB6:
CFB86:
CF86:48
CFB7:AD
CF8A:48
CF8B: AD
CFBE:4B
CF8F:
CF8F:
CF8F:
CF8F:90
CF91:8D
CF%94: 8D
CF97:B0
CF99:
CF99:
CF99:8D
CF9C: 8D
CF9F:
CF9F:
CF9F:B2
CFAl:92
CFA3:ER
CFA5:D0
CFAT:E6
CFA9:AS
CFAB:C5
CFAD:AS
CFAF:ES
CFB1:E6
CFB3:DO
CFBS:E6
CFB7:90
CFB9:
CFB9:8D
CFBC:68
CFBD: 10
CFRF:8D
CFC2:
CFC2:8D
CFC5:68
CFCH: 10
CFC8:8D
CFCB:
CFCRB:08
CFCC: 60

186

13

14

08
02
05
06

04
03

03
05

02

03

CFB6

co

co

CF99
co

CF9F
CF99
co
co

CF9F

CFA9

CFB7

CF9F

co

CFC2
co

CFC2
co

CFCB
co
CFCB

AkkkkhAAAARAEERA Rk kk kb hhk kR hhhd
NAME : MOVEAUX
FUNCTION: PERFORM CROSSBANK MEMORY MOVE
INPUT : Al=S0URCE ADDRESS

: A2=S0URCE END
A4=DESTINATION START
CARRY SET=MAIN-->CARD

CLR=CARD—>MATIN

OUTPUT : NONE
VOLATILE: NOTHING

CALLS : NOTHING
hhkhhhkhhkkkkhkhhhhhhhhhkhhhhhhhhhahrthhht

* F ¥ * ¥ ¥ OF ¥ ¥ W
=

MOVEAUX EQU
PHA
LDA
PHA
LDA
PHA
*

* SET FLAGS FOR

%*
BCC
STA
STA
BCS

*

MOVEC2M  EQU
STA
STA

*

MOVESTRT EQU

MOVELOOP LDA
STA
INC
BNE
INC

NEKTAL LDA
cMP
LDA
SBC
INC
BNE
INC

col BCC

STA
PLA
BPL
STA
co3 EQU
STA
PLA
BPL
STA
MOVERET EQU
PLA
RTS

&

RDRAMRD

RDRAMWRT

CROSSBANK MOVE

MOVEC2ZM
ROMATNRAM
WRCARDRAM
MOVESTRT

*

WRMATINRAM
RDCARDRAM

*

(ALL)
(A4L)
A4L
NEXTAL
A4H
AlL
AZL
AlH
AZH
AlL
col
AlH
MOVELOOP

WRMATNRAM

co3
WRCARDRAM
*

RDMATINRAM

MOVERET

RDCARDRAM
*

iSAVE AC
:SAVE STATE OF
; MEMORY FLAGS

;=>CARD——>MAIN
;SET FOR MAIN

; TO CARD
1=>(ALWAYS TAKEN)

;SET FOR CARD
; TO MAIN

:get a byte
;move it

;=’more to move

;CLEAR FLAG2
;GET ORIGINAL STATE
+=>IT WAS OFF

;CLEAR FLAGL
:GET ORIGINAL STATE
;=>IT WAS OFF

;Restore AC

Appendix I: Firmware Listings

TH T T

T T T TLTL T

'Fl

T\

| (|

L BT




e

CFCD:
CFCD:
CFCD:
CFCD:
CFCD:
CFCD:
CFCD:
CFCD:
CFCD:
CFCD:
CFCD:
CFCD:
CFCD:
CFCD:
CFCD:
CFCD: 48
CFCE:
CFCE:
CFCE:
CFCE:
CFCE:
CFCE:AD
CFD1:48
CFD2: AD
CFD5:48
CFDb:
CFD6:
CFD6:
CFD6:90
CFDB:ED
CFDB: 8D
CFDE:BO
CFED:
CFE0:8D
CFE3:8D
CFEB:
CFEG:
CFE6: 68
CFE7:8D
CFEA: 68
CFEB: 8D
CFEE: 68
CFEF:70
CFF1:8D
CFF&:50
CFF6:8D
CFF9:6C
CFFC:
CFFC:

ED

EE

08
03
05
06

02
04

EE

ED

05
08
03
09
ED

——— NEXT

F800:
Fa00:

CFCD

03

03

CFEO
co
co
CFE6
CFED
co
co

CFE6
03
03

CFF6
co
CFF9
co
03

0004
OBJECT
FBOO

109
110
FILE

32

kkkkkkhkhhkhkhhkhkh bk hthhhhdhhhri kb hkhhh
* NAME : XFER

* FUNCTION: TRANSFER CONTROL CROSSBANK
* INPUT SO3ED=TRANSFER ADDR

* : CARRY SET=XFER TO CARD

* CLE=XFER TO MAIN

* : VFLAG CLR=USE STD ZP/STK

& : SET=USE ALT ZP/STK

* QUTPUT NONE

* VOLATILE: SO3ED/03EE IN DEST BANK

* CALLS
* NOTE

: NOTHING
ENTERED VIA JMP, NOT JSR

RkkkhhhhhkhhkkhhhhhAhhh ke hkhhhhhhhd
®
XFER EQU *
PHA ;SAVE AC ON CURRENT STACK
*
* COPY DESTINATION ADDRESS TO THE
* OTHER BANK SO THAT WE HAVE IT
* [N CASE WE DD A SWAP:
*
LDA $03ED ;GET XFERADDR LO
PHA ;SAVE ON CURRENT STACK
LDA S03EE ;GET XFERADDR HI
PHA ;SAVE IT TOO
=
#* SWITCH TO APPROPRIATE BANK:

BCC  XFERCIM ;=2CARD==>MAIN

STA  RDCARDRAM ;SET FOR RUNNING

STA  WRCARDRAM ; IN CARD RAM

BCS XFERZP ;=> always taken
XFERCZM  EQU X

STA  RDMAINRAM ;SET FOR RUNNING
STA  WRMAINRAM ; IN MAIN RAM
£
XFERZP EQU  * ;SWITCH TO ALT ZP/STK
PLA s STUFF XFERADDR
STA  S03EE ; HI AND
PLA
STA  S03ED ; Lo
PLA s RESTORE AC
BVS XFERAZP ;=>switch in alternate zp
STA SETSTDZF ielse force standard zp
BVC  JMPDEST ;=ralways perform transfer
XFERAZP STA SETALTZP ;ewitch in alternate zp
JMPDEST  JMP {S$03ED) ;=roff we go

e e vk ke ke vk ke o o v e s o o ol ok o o ke e e e ok ok e e e e ok ek ke bk Rk ek
DS $D000-*,500

NAME 1S FIRM.1
ORG FBORG

INCLUDE AUTOSTL ;F8 monitor rom

Appendix I: Firmware Listings

187



FB00: 44
FB01:08
FBO2:20
F805:28
F806:A9
F80B:90
FBOA:69
F80C:85
FA0E:B1
F810:45
FB12:25
FB14:51
F816:91
F818:60
F819:

F819:20
FAIC:C4
FBLlE:BO
F820:C8
F821:20
F824:90
F826:69
F828:48
F829:20
FB2C:68
F82D:C5
F82F:90
FB831:60
F832:

FB832:40
F834:D0
F836:A0
F838:84
FB3A:

FB3A:AD
F83C:A9
FBIE:B5
FB840:20
F843:88
F844:10
F846:60
FBA4T:

FB47:48
FB4B:4A
FB49:29
FB84B:09
FB4D:85
FB4F:68
F850:29
FB852:90
F854:69
FB56:85
Fa58:04
FB59:0A
FA5A:05
F85C:85
FA5E: 60
F85F:

188l

47

OF
02
EO
2E
26
30
2E

26

0o
2c
11

0E
Fb
01

00

2D
F5

03
04
27

18
02
IF
26

26
26

F8

F8

F8

F8

F8

FB0C

FB3l

F8IC

F826

F838

F83C

FB56

PLOT LSR A s Y=COORD/ 2
PHP ;SAVE LSB IN CARRY
JSR  GBASCALC ; CALC BASE ADR IN GBASL,H
PLP ;RESTORE LSB FROM CARRY
LDA  #SOF sMASK $0F IF EVEN
BCC  RTMASK
ADC  #SEO ;MASK SFO IF ODD
RTMASK STA  MASK
PLOTL LDA  (GBASL),Y s DATA
EOR  COLOR ; XOR COLOR
AND  MASK ; AND MASK
EOR  (GBASL),Y ; XOR DATA
STA  (GBASL),Y : TO DATA
RTS
*
HLINE JSR  PLOT ;PLOT SQUARE
HLINEL CPY H2 ;DONE?
BCS  RTSI ; YES, RETURN
INY ; NO, INCR INDEX (X-COORD)
J5R  PLOTL :PLOT NEXT SQUARE
BCC  HLINEL ;ALWAYS TAKEN
VLINEZ ADC #3501 ;NEXT Y-COORD
VLINE PHA ; SAVE ON STACK
JSR  PLOT ; PLOT SQUARE
PLA
cMP 2 ;DONE?
BCC  VLINEZ ; No, LOOP.
RTS1 RTS

*

CLRSCR LDY #52F
BNE CLRSC2

CLRTOP LDY #527

CLRSC2 STY V2

;MAX Y, FULL SCEN CLR
; ALWAYS TAKEN

;MAX Y, TOP SCRN CLR

; STORE AS BOTTOM COORD

: FOR VLINE CALLS
LDY  #527 ;RIGHTMOST X—COORD (COLUMN)
CLRSC3 LDA #3500 ;TOP COORD FOR VLINE CALLS
STA  COLOR ;CLEAR COLOR (BLACK)
JSR  VLINE :DRAW VLINE
DEY ;NEXT LEFTMOST X-COORD
BPL  CLRSC3 :LOOP UNTIL DONE.
RTS

*

GBASCALC PHA ;FOR INPUT OODEFGH

LSRE A
AND  #503
ORA #3504 ; GENERATE GBASH=000001FG
STA  GBASH
PLA ;AND GBASL=HDEDEOOO
AND #3518
BCC  GBCALC
ADC  #57F
GBCALC STA  GBASL
ASL A
ASL A
ORA  GBASL
STA  GBASL
RTS
*

Appendix I: Firmware Listings

T T T M T

T T T T

ElaTt TR 'ROH




N RN

FB5F:AS
FB61:18
F862:69
FB64:29
F866:85
FB6B:0A
F869:0A
FB6A:0DA
FB6B:0A
FB6C:05
FB6E:85
F870:60
FB71:

FB71:4A
F872:08
F873:20
FB76:B1
F878:28
FB79:90
FB7B:4A
FB7C:4A
FB7D:4A
FBTE: 4A
F87F:29
FBB1:60
F8B82:

FBB2:AbB
FBB4: Ab
FEBBG6:20
FB889:20
FBBC: Al
FBBE: A8
FB8F:4A
F890:90
F892:64
F893:B0
FA95:29
FB9T7:4A
F898:AA
F899:8D
F89C:20
FB9F:DO0
FBAL:AD
FBA3:A9
FBAS: AA
FBAG:BD
FBA9:85
F8BAB: 29
FBAD:

FBAD: 85
FBAF:20
F8B2:FO
F8B4:29
FBBG6:AA
F8B7:98
FBRA:AD
F8BA:ED
FBBC:FO

30
03

30

30
30

47
26

04

OF

3A

96
48
3a

05

oc
87

62
79
04
FC
00

Ab
2E
03

2F
35
18
8F

03
BA
0B

F8

FD
F9

F9
F8

F9

FC

FBTF

FB97

FBAL

FBAS

FB8CC

FBCY

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

NXTCOL LDA  COLOR
cLC
ADC #3503
SETCOL AND  #50F
STA  COLOR
ASL A
ASL A
ASL A
ASL A
ORA  COLOR
STA  COLOR
RTS
w
SCRN LSR A
PHP
JSR  GBASCALC
LDA ({GBASL),Y
PLP
SCRN2 BCC  RTMSKZ
LSE A
LSR A
LSRE A
LSR A
RTMSKZ AND  #S0OF
RTS
*
INSDS1 LDX PCL
LDY PCH
JSR  PRYX2
JSR  PRBELNK
INSDS2 LDA  (PCL,X)
TAY
LSE A
BCC  TIEVEN
ROR A
BCS ERR
AND #3587
IEVEN LSR A
TAX
LDA  FMTI,X
JSR  SCRN2
BNE  GETFMT
ERR LDY  #SFC
LDA  #300
GETFMT TAX
LDA  FMT2,X
STA  FORMAT
AND #8303
; (0=1 BYTE, 1=2 BYTE,
STA  LENGTH
JSR  NEWOPS
BEQ  GOTONE
AND  {#S8F
TAX
TYA
LDY  #503
CPX  #58A
BEQ  MNNDX3

; INCREMENT COLOR BY 3

+SETS COLOR=17%A MOD 16

; BOTH HALF BYTES OF COLOR EQUAL

;READ SCREEN Y-COORD/2
;SAVE LSE (CARRY)

:CALC BASE ADDRESS

;s GET BYTE

;RESTORE LSB FROM CARRY
;IF EVEN, USE LO H

3 SHIFT HIGH HALF BYTE DOWN

;MASK 4-BITS

;PRINT PCL,H

; FOLLOWED BY A BLANK
:GET OPCODE

sEVEN/ODD TEST

;BIT 1 TEST

;XXXXXX1]1 INVALID OP

yMASK BITS

;LSB INTO CARRY FOR L/R TEST

;GET FORMAT INDEX BYTE
;R/L H-BYTE ON CARRY

; SUBSTITUTE $FC FOR INVALID OFS
;SET PRINT FORMAT INDEX TO 0O

; INDEX INTO PRINT FORMAT TABLE
; SAVE FOR ADR FIELD FORMATTING
;MASK FOR 2-BIT LENGTH

2=3 BYTE)

;get index for new opcodes
;found a new op (or no op)
;MASK FOR 1XXX1010 TEST

i SAVE IT
;OPCODE TO A AGAIN

Appendix I: Firmware Listings

[189



FBEE:4A
FBBF:90
FBCL:4A
FAC2:4A
FBC3:09
F8C5:88
FBCA:D0
F8CB:CB
F8C9:88
FBCA:DO
F8CC:60
FACD:

FBCD:FF
F8D0o:

FBDO:20
FBD3: 48
FBD4:B1
F8D6:20
FBD9: A2
FADB:20
FADE:C4
FBED:CB
FBE1:90
FBE3:A2
FBES:CO
FBET7:90
FBE9:68
FREA: A8
FBEE:B9
FBEE:85
F8F0:B9
F8F3:85
F8F5:A9
FBF7:AD
F8F9:06
FBFB:26
FBFD:2A
FBFE: 88
FBFF:DO
F901:69
F903:20
FO06:CA
F907:D0
F909:20
FO0C: AL
FI0E: A2
F910:EQ
F912:F0
F914:06
F916:90
F918:BD
F91B:20
F91E:BD
F921:F0
F923:20
FI26:CA
F927:D0
F929:60

1901

08

20

FA

F2

FF

82

3A
DA
01
44
2F

Fl
03
04
F2

FBCY

Fac2

F8BE

FF

F8

FD

F9

FBD4

FBDB

F9

FA

FBF9

FD

FBFS
F9

F930

F926
F9
FD
F9
F926
FD

F910

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

MNNDX1

MNNDX2

MNNDX3

GOTONE
*

*
INSTDSP

PRNTOP

PRNTBL

PREMN1

PRMN2

PRADRI

PRADRZ

PRADRI

LSR
BCC
LSR
LSR
ORA
DEY
BNE
INY
DEY
BNE
RTS

DFB

ISR
PHA
LDA
JSR
LDX
JSRE
CPY
INY
BCC
LDX
CPY
BCC
PLA
TAY
LDA
STA
LDA
STA
LDA
LDY
ASL
ROL
ROL
DEY
BNE
ADC
JSR
DEX
BNE
JSR
LDY
LDX
CPX
BEQ
ASL
BCC
LDA
JSR
LDA
BEQ
JSR
DEX
BNE
RTS

A
MNNDX3
A

A
#520

MNNDX2

MNNDX1

$FF,$FF,SFF
INSDS1

(PCL),Y
PRBYTE
#501
PREL2
LENGTH

PRNTOP
#503
#504
PRNTBL

MNEML, Y
LMNEM
MNEMR, ¥
RMNEM
#500
#3505
RMNEM
LMNEM
A

PRMNZ
#5BF
couT

PRMN1
PRBLNK
LENGTH
#506

#503
PRADRS
FORMAT
PRADR3
CHARI-1,X
cout
CHAR2-1,X
PRADR3
coutT

PRADRI1

;:FORM INDEX INTO MNEMONIC TABLE

1) 1XXX1010 => QO0101XXX
2) XXXYYYOl => DO111XXX
3) XXXYYY10 => O0110XXX
4) XXXYYLODO => 00100XXX
5) XXXXX000 => 000XXXXX

e W me we W

;GEN FMT, LEN BYTES
; SAVE MNEMONLIC TABLE INDEX
sPRINT 2 BLANKS

;PRINT INST (1-3 BYTES)
:IN A 12 CHR FIELD

; CHAR COUNT FOR MNEMONIC INDEX

;RECOVER MNEMONIC INDEX

;:FETCH 3-CHAR MNEMONIC
; (PACKED INTO 2-BYTES)

;SHIFT 5 BITS OF CHARACTER INTO A
s (CLEARS CARRY)

;ADD "7 OFFSET
;OUTPUT A CHAR OF MNEM

;OUTPUT 3 BLANKS
;CNT FOR 6 FORMAT BITS

; IF ¥=3 THEN ADDR.

Appendix I: Firmware Listings

L_'ELTLLTI BB ITTET TT 'R 'HO'ROTROH



N

F92A: 177 *

F92A:88 178 PRADR& DEY

F92B:30 E7  F9l4 179 BMI  PRADR2Z

F92D:20 DA FD 180 JSR  PRBYTE

F930:45 2E 181 PRADRS LDA  FORMAT

F932:C9 EB 182 CMP  #SEB ;HANDLE REL ADR MODE
F934:81 3A 183 LDA  (PCL),Y ; SPECIAL (PRINT TARGET,
F936:90 F2 F924 184 BCC  PRADR4 : NOT OFFSET)

F938:20 56 F9 185 RELADR JSR  PCADJ3

F93B:AA 186 TAX s PCL ,PCH+OFFSET+1 TO A,Y
F93C:EB 187 INX

F93D:D0 01  F940 188 ENE  PRNTYX ;41 TO ¥Y,X

F93F:CH 189 INY

F940:98 190 PRNTYX TYA

F941:20 DA FD 191 PRNTAX JSR  PRBYTE ;OUTPUT TARGET ADR

F944 :BA 192 PRNTX TXA ; OF BRANCH AND RETURN
F945:4C DA FD 193 JMP  PRBYTE

FO48: 194 *

F948:A2 03 195 PRELNK LDX  #503 ;BLANK COUNT

F94A:A9 AD 196 PRBL2 LDA  #3A0 ;LOAD A SPACE

F94C:20 ED FD 197 PREL3 JSR  COUT ;OUTPUT A BLANK

FO94F:CA 198 DEX

F950:D0 F&  F94A 199 BNE  PRBLZ ;LOOP UNTIL COUNT=0
F952:60 200 RTS

F953: 201 *

F953:38 202 PCADJ SEC :0=1 BYTE, 1=2 BYTE,
F954:A5 2F 203 PCADJ2 LDA  LENGTH :  2=3 BYTE

F956:A4 3B 204 PCADJ3 LDY PCH

F958: AA 205 TAX +TEST DISPLACEMENT SIGN
F959:10 01  F95C 206 BPL  PCADJ4 ; (FOR REL BRANCH)
F958: 88 207 DEY ;EXTEND NEG BY DECR PCH
FI5C:65 3A 208 PCADJA ADC  PCL

F95E:90 01  F961 209 BCC  RTS2 ; PCL+LENGTH(OR DISPL)+1 TO A
F960:C8 210 INY : CARRY INTO Y (PCH)
F961:60 211 RTS2 RTS

F962: 212 *

F962: 213 ; FMT1 BYTES: XXXXXXYD INSTRS

F962: 214 3 IF Y=0 THEN RIGHT HALF BYTE

F962: 215 ; IF Y=1 THEN LEFT HALF BYTE

F962: 216 ; { X=TNDEX)

F962: 217 *

F962:0F 218 FMTI DFE  S50F

F963:22 219 DFB  §22

FO964 :FF 220 DFB  §$FF

F965:33 221 DFE  §33

F966:CB 222 DFB  SCB

F967:62 223 DFB  $62

F968:FF 224 DFB  S$FF

F969:73 225 DFR  $73

F964:03 226 DFB  $03

F96B:22 227 DFB  $22

F96C:FF 228 DFB  &FF

F96D:133 229 DFB  $33

F96E:CB 230 DFB  5CB

FI96F: 66 231 DFB 566

F970:FF 232 DFB  SFF

F971:77 233 DFB 5§77

F972:0F 234 DFB  $0F

Appendix |: Firmware Listings




F973:20
F974:FF
F975:33
F976:CB
F977:60
F978:FF
F979:70
FI7A:0F
F97B:22
F97C:FF
F97D:39
F97E:CB
F97F:66
F980:FF
F981:7D
F982:08B
F983:22
F984:FF
F985:33
F986:CB
FIB7: A6
F98B:FF
F989:73
F984A:11
F98B:22
F9BC:FF
F98D:33
F98E:CB
F98F: A6
F990:FF
F991:87
F992:01
F993:22
F994:FF
F995:33
F996:CB
F397:60
F998:FF
F999:70
F99A:01
F99B:22
F99C: FF
F99D:33
F99E:CB
F99F:60
F9AQ:FF
F9A1:70
FO9A2:24
F9A3:31
FOAL4:65
FI9A5:78
F9AG:

F946:00
FIAaT:21
F9AB:81
F949:82
F9AA:59
FI9AB: 4D

1921

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

: ZZXXXYOl INSTR'S

FMT2

DFB  $20
DFB  §FF
DFB  $33
DFE  S5CB
DFB 560
DFB  SFF
DFB 570
DFE  S$OF
DFB  §$22
DFE  SFF
DFB  $39
DFB  SCB
DFB  $66
DFB  S$FF
DFE  $7D
DFE  $0B
DFB 522
DFB  SFF
DFE 533
DFE  $CB
DFB  5$A6
DFE  SFF
DFB  §73
DFB  §11
DFB  §22
DFB  SFF
DFB  $33
DFB  $CB
DFB  5A6
DFB  SFF
DFE  $B7
DFB 501
DFB  $22
DFE  SFF
DFBE  $33
DFB  $CB
DFE  $60
DFB  SFF
DFB  §70
DFB  §01
DFB 522
DFE  SFF
DFB 533
DFE  SCB
DFE  $60
DFBE  SFF
DFB  $70
DFE 524
DFB  §31
DFB  $65
DFE 578
DFE  $00
DFB  $§21
DFE 81
DFB 582
DFB  $59
DFE  $4D

:(ZPAG),Y

Appendix I: Firmware Listings

'L'FLOFL'RLO'FLO'FLOTLOTTLO'ELO'EYOTL RO

| NN

Fl



B

FIAC:91
FIAD:92
FIAE: 86
FOAF : 4A
F9BD:85
F9B1:9D
F9B2:49
F9E3:5A
F9B4:

F9B4:D9
F9B5:00
F9B6:D8
FO9B7: A4
FOBRB: AL
F9B9:00
FOBA:

FO9BA:AC
F9BE: A9
F9BC: AC
FI9BD: A3
FIBE:AB
FIBF: A4
FocO:1¢C
FOC1:8A
F9C2:1cC
F9C3:23
FIC4: 5D
F9C5:8B
F9C6: 1B
FICT: AL
F9CB:9D
FIC9: 84
FICA: 1D
F9CB:23
F9CC:9D
F9CD: 8B
F9CE: 1D
F9CF:Al
Fop0: 1C
FoD1:29
F9D2:19
FOD3:AE
FO9D4 : 69
FOD5: A8
FID6:19
F9D7:23
FIDB8: 24
F9D9:53
FO9DA: 1B
F9DB: 23
F9DC: 24
F9DD: 53
FI9DE:19
FODF: Al
F9ED: AD
F9ELl: 1A
F9E2: 58
F9E3:5B

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
ill
312
313
314
315
316
317
EJE:)
319
320
321
322
223
324
325
326
327
328
329
330
33l
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

CHAR2Z

*
CHAR1

MNEML

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

DFB
DFB
DFB
DFB
DFB
DFB

DFE
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFRB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFB
DFB

591
§92
586
$4A
$85
$9D
549
$5A

$D9
500
$pa
SAL
SA4
500

SAC
SA9
SAC
SA3
SAB
SAL
51C
SBA
51cC
$23
$5D
588
518
SAl

59D
SBA
$1D
$23
$9D
58B
$1D
SAl

siC
529
$19
SAE
569
$A8
519
$23
824
$53
S1B
$23
524
853
519
SAL
SAD
S1A
§58
558

ZPAG, X

:ABS X

;ABS,Y

; (ABS)

s ZPAG,Y
sRELATIVE
(ZPAG) (new)
(ABS,X) (new)

:'YI
(byte F of FMT2)
;lll'l
;'Sl
:Isl

{A) FORMAT ABOVE
TSB

Appendix I: Firmware Listings

[193



FIEL: AS 351 DFB  $AS
F9E5:69 352 DFB 569
FOER: 24 353 DFB 524
F9ET:24 354 DFE 524 ; (B) FORMAT
FIES: AE 355 DFB  SAE
F9E9: AE 356 DFB SAE
FOEA: AB 357 DFE  S$A8
F9EB: AD 358 DFB  SAD
F9EC:29 159 DFB  $29
F9ED: BA 360 DFB  $BA
F9EE: 7C 361 DFB  §7C
FIEF:8B 162 DFB  $8B 3 (C) FORMAT
FIF0:15 363 DFB §15
F9F1:9C 164 DFB  $9C
F9F2:6D 165 DFB  $6D
F9F3:9C 166 DFB $9cC
F9F4: A5 167 DFB  $A5
F9F5:69 368 DFB 569
F9F6:29 369 DFB 529
F9F7:53 370 DFE  $53 ; (D) FORMAT
F9F8:84 371 DFB S84
FOF9:13 372 DFB 513
FOFA: 34 373 DFB 534
F9FB: 11 374 DFB  §11
F9FC:AS 375 DFB  $AS
FI9FD: 69 376 DFB 569
F9FE:23 377 DFB 523 ; (E) FORMAT
F9FF:AD 378 DFE  SAD
FADO: 379 *
FADD:D8 380 MNEMR DFE  $D8
FADL:62 381 DFB 5§62
FADZ2:54 382 DFE  $5A
FAD3: 48 383 DFB 548
FAQL: 26 384 DFB 526
FADS:62 385 DFE  $62
FADG:94 386 DFB 594
FAO7:88 87 DFB  $B8B
FADS : 54 388 DFB 554
FAD9: 44 389 DFB  S4b
FADA:C8 390 DFE  SC8
FAOB: 54 191 DFB  §54
FADC:68 392 DFB $68
FAOD: 44 193 DFB  §44
FADE:E8 394 DFB SEB
FAOF:94 395 DFB 594
FALO:C4 396 DFB  $C4 ;BRA
FALl:B4 197 DFB  $B4
FA12:08 398 DFB 508
FAL3:B4 399 DFB 584
FAl4:74 400 DFB 5§74
FALS:B4 401 DFE  $B4
FALG:28 402 DFB 528
FAL7:6E 403 DFB  $6E
FAL8:74 404 DFE  §74
FAL9:F4 405 DFE  §F4
FAlA:CC 406 DFRE  $CC
FALB:4A 407 DFB  54A
FAlC:72 408 DFB §72
1941 Appendix |: Firmware Listings

S | W WO O Y O W O O (W




L e

F

FAID:F2
FALE: A4
FAIF:BA
FA20:06
FAZ1l:AA
FA22:A2
FA23:A2
FA24:74
FA25:74
FA26:74
FA27:72
FA2B: 44
FAZ9:68
FA2A:B2
FAZB:32
FA2C:B2
FA2D:72
FA2E:22
FA2F:72
FA30: 1A
FA31:14
FA32:26
FA33:26
FA34:72
FA35:72
FA36:88
FA37:CB
FA3B:C4
FA39:CA
FA3A:26
FA3B: 48
FA3C: 44
FA3D: 44
FA3JE: A2
FA3F:C8
FALD:
FA4D: 48
FAL4L:68
FA42:68
FA43:4C D6 C8
FAL4B:
FALG:EA
FALT :
FA4LT :
FA4T:
FA4T :
FAL4T :
FA4T :
FALT :
FA4T7:85 44
FA4D:TA
FALA:FA
FALB: 68
FALC:
FALC: 28
FA4D:20 LA FF
FAS0:68
FA51:85 3A

409
410
411
412
413
s14
415
416
417
418
419
420
421
422
4213
424
425
426
427
428
429
430
431
432
433
34
435
436
437
438
439
440
441
442
443
bl
445
hh6
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
LT
465
466

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

IRQ PHA
PLA
PLA
JMP

NOP

* % ¥ ¥ ¥ ¥ ¥

NEWBRK STA
PLY
PLX
PLA

BREAK PLP
JSR
PLA
STA

5F2
SAL
$BA
506
SAA
SA2
SA2
574
574
§74
572
544
568
$B2
532
$R2
§72
§22
572
S1A
S1A
526
526
572
572
588
5C8
SCh4
SCA
§26
S48
S44
544
§A2
sc8

IRQL

MACSTAT

SAVE

PCL

; (A) FORMAT
; TSB

; (B) FORMAT

7 (C) FORMAT

; (D) FORMAT

; (E) FORMAT

ssave accumulator
srescued by stack trick later

;do rest of IRQ handler

NEWBRK is called by the interrupt handler which has
set the hardware to its default state and encoded
the state In the accumulator. Software that wants
to do break processing using full system resources
can restore the machine state from this walue,.

;5ave state of machine
srestore registers for save

iNote: same as old BREAK routine!!
;save reg's on BRK
;including PC

Appendix I: Firmware Listings

195



FAS3:68
FAS54:85
FA56:6C
FA59:

FA59:20
FAS5C: 20
FASF:4C
FAB2:

FAG2:D8
FA63:20
FAG66:20
FA69:20
FAGC:20
FABF:20
FA72:20
FAT75:9C
FAT8:AD
FATR:20
FATE:2C
FAB1:D8
FAB2:20
FAB5:AD
FABB:49
FABA:CD
FABD:DO
FABF:AD
FA92:DO
FA94: A9
FA96:CD
FA99:DO
FA9B: AD
FA9D: BC
FAAD:4C
FAA3:

FAA3: 20
FAAG:

FAAG: 20
FAAD:

FAA9:A2
FAAB:BD
FAAE:9D
FABL:CA
FAB2:DO
FAB4: A9
FABG: B0
FABRS:

FABS:

FABS:

FABS:8A
FAB9:8B
FABA:AS
FABB: AC
FABC:00
FABD:

FABD:

FABD:

FABD:

FABD:

1961

38
FO

a2
DA
65

84
2F

89
1c
04
FF
5F
BD

3A
F3
A5
Fé4
17
F2
3B
ED
F3
34
03
F2
00

A
CA
05
FC
EF
F7

54

03

F&
FA
FF

FB
FE
FE
c4
cc

co
FA

FF

03

03
FAAG

03
FACF

03
FACF

03
ED

FF

FC
FAA9

FA
03

FAAB

FB12

467
468
469
470
471
472
473
474
475
476
477
4748
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
320
521
522
523
524

PLA
STA

OLDBRE JSR

JSR

RESET CLD

JSR
JSR
JSR
JSR
JSR
JSR
STZ
LDA
JSR
BIT

NEWMON CLD

J5R
LDA
EOR

BNE
LDA
BNE
LDA

BNE

FIXSEV LDY

*

STY
JMP

BEEPFIX JSR

*

PWRUP JSR
SETPG3 EQU

LDX

SETPLP LDA

* % * ¥ %

STA
DEX
BNE
LDA
BRA

PCH
{BRKV)

INSDS1
RGDSPL
MON

SETNORM
INIT
SETVID
SETKBD
INITMOUSE
CLRPORT
ACIABUF
SETAN3
RESET.X
KBDSTRB

BELL
SOFTEV+1
#5A5
PWREDUP
PWRUP
SOFTEV
NOFIX
#5E0
SOFTEV+]
NOFIX
#3
SOFTEV
BASIC

BELL

COLDSTART
*

#5
PWRCON-1,X
BRKV=1,X

SETPLP
#5ch
PWRUP 2

PUECTET

-
»

call BRK HANDLER

;PRINT USER PC
; AND REGS

GO TO MONITOR (NO PASS GO, NO $200!)

;D0 THIS FIRST THIS TIME

initialize the mouse
clear port setup bytes
and the commahead buffer
: AN3 = TTL HI

initialize other devices
; CLEAR KEYBOARD

; CAUSES DELAY IF KEY BOUNCES

;1S RESET HI
;A FUNNY COMPLEMENT OF THE
; PWR UP BYTE 777

; NO S0 PWRUP

; YES SEE IF COLD START

; HAS BEEN DOME YET?

; DOES SEV POINT AT BASIC?

; YES S0 REENTER SYSTEM

; NO SO POINT AT WARM START
; FOR NEXT RESET

; AND DO THE COLD START

Beep on powerup

Trash memory, init ports
;: SET PAGE 3 VECTORS

; WITH CNTREL B ADRS
; OF CURRENT BASIC

; LOAD HI SLOT +1
branch around mnemonics

Extension to MNEML (left mnemonics)

DFB
DFB
DFB
DFB
DFB

SBA
$8B
SAS
SAC
$00

PHY
PLY
STZ
TRB
217

This extension to the monitor reset routine ($FA62)
checks for apple keys.

into an exerciser mode.
pressed, memory is selectively trashed and a cold start

1f both are pressed, it goes
If the open apple key only is

Appendix |: Firmware Listings

T T

o o O O O O O O



e

FIt

R

FABD:

FAED:

FABD: A9
FABF: 8D
FAC2:0E
FACS5:2C
FACB:10
FACA:90
FACC:4C
FACF:

FACF:6C
FAD2:

FAD2:Cl
FAD7Y:

FAD7:20
FADA: A9
FADC:B5
FADE: A9
FAEQ: 85
FAE2:A2
FAE4:A9
FAE6:20
FAE9:BD
FAEC: 20
FAEF: A9
FAF1:20
FAF4:B5
FAFG6:80
FAFS8:

FAF8:

FAF8:

FAFB:74
FAF9:74
FAFA:76
FAFB:CH
FAFC:00
FAFD:

FAFD:59
FAFF:00
FBO2:

FB02:20
FBO5:E8
FBOA: 30
FBOB: 60
FBO9:

FBO9:Cl
FBll:C4
FB12:

FB12:86
FBl4:85
FBl6:20
FE19:6C
FB1C:00
FBID:00
FRIE:

FB1E: 4C
FB21:AD
FBR23:EA

FF
FB
62
61
64
D7

F2
D8
8E
40
0o
&l
FB
ED
D7
ED
BD
ED

LA
DA

FA
EO

DA

M

FO

0o

60
00

DE
00

04

co

co
FB2E
FAA3

c?

03

D9 DO

FD

FD

FD

FD

FRO2

45

FD

FAE4

FO EC

FB
00

c7

525 * {5 done.

526
527
528
529
530
531
532
533
534
5315
536
537
538
539
540
541

542
543
544
545
546
547
548
549
550
551

552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

572
573
574
575
576
577

578
579
580
581
582

*
RESET.X

e

NOFIX
*

RTBL
*

REGDSP
RGDSP1

RDSPL

&

* Right half of
&

*
PWRCON

*
RGDSP2

TITLE

PWRUPZ

PREAD

LDA
STA
ASL
BIT
BPL
BCC
JMP

JMP

ASC

JSR
LDA
STA
LDA
STA
LDX
LDA
JSR
LDA
JSR
LDA
JSR
LDA
BRA

DFB
DFB
DFB
DFBE
DFB

DW
DFB

JSR
INX
BMI
RTS

ASC
DFB

STX
STA
JSR
JMP
BRE
BRE

JMP
LDY
NOP

#SFF
VMODE
BUTN1
BUTNO
RTS2ZD
BEEPFLX
BANGER

{ SOFTEV)
TAXYPS'

CROUT
#545
A3L
#500
A3H
#5FB
#5AD
CouT
RTBL-251,%
CouT
#5BD
couT
ACC+5, X
RGDSP2

new mnemonics,

§74
§74
5§76
$Chb
500

OLDBRK
$00,5E0, 545

PRBYTE
RDSPI
'Apple
504
LOCO
LOCI

APPLEII
{Loco)

MPADDLE
#3500

iinitialize mode

;open apple only, reboot

;both apples, exercise 'er

sDISPLAY USER REG CONTENTS
;WITH LABELS

;make room for mnemonics
indexed from MNEMR

;s PHY
1PLY
1STZ
;TRB

=799
R

I
;joptional filler

s SETPG3 MUST RETURN X=0
: SET PTR H

;Display our banner...

y JUMP $C600

sread mouse paddle
s INIT COUNT
s COMPENSATE FOR 1ST COUNT

Appendix |: Firmware Listings

67



FB24:EA

FB25:BD 64 CO
FB28:10 04 FB2E
FBZA:C8

FB2B:DO F8 FB25
FB2D:B8

FB2E:60

FB2F:

1981

583
584
585
586
587
588
589

PREAD2Z

RTS2D

NOP

LDA  PADDLO,X
BPL  RTS2D
INY

BNE  PREAD2 JEXIT AT 255 MAX
DEY

RTS

INCLUDE AUTOST2

sCOUNT Y-REG EVERY 12 USEC.

Appendix I: Firmware Listings

SV N O ( {W W  { W { WO  O {  ( { { {




O

FB2F:

FB2F: A9
FR31:85
FB33:AD
FB36: AD
FB39:AD
FB3C: A9
FB3E:FO
FB40: AD
FB43:AD
FB4H:20
FRA4D: AT
FR4B:85
FR4D:EA
FB4E:EA
FB4F:20
FB52:80
FBS54:

FBS4:09
FB36:4C
FB59:

FB59:A9
FB5B:85
FBSD:4C
FB6O:

FB60: 20
FBA3:AD
FB65:B9
FB6B:99
FB6E: B8
FB6C: DO
FBGE: 60
FB6F:

FB6F:AD
FB72:49
FBR74:8D
FR77:60
FB78:

FR78:

FB78:C9
FB7A:DO
FB7C:AC
FB7F: 10
FB81:C0
FBB3 : DO
FBB5:2C
FRBB:AC
FRBB: 10
FBBD:CO
FBBF:FO
FB91:2C
FB94:2C
FB97:30
FB99:89
FB9B:FO
FB9D: 20
FBAD:EE
FBAJ: AD

0A
05

80
54

17
23

58
09
02
(]

F7

F3
AS
F&

8D
18
]
13
93
OoF
10
00
FB
83
03
10
7B
b4
60
B7
BE
B
7B

co

co

co
FB4B

co

co
Fa

CE
FB59

CD

FC

FC

FD
04

FBAS

03

03

FBFD

FB54
c3
05
05

INIT

SETTXT

SETGR

SETWND

DOCTL

*

VTAR23
TABV

*
APPLETI

STITLE

*
SETPWRC

*
VIDWAILT

KBDWALT

NOWALT

NEWADV

LDA
STA
LDA
LDA
LDA
LDA
BEQ
LDA
LDA
JSR
LDA
STA
NOP
NOP
JSR
BRA

ORA
JMP

LDA
STA
JMP

JSR
LDY
LDA
S5TA
DEY
BNE
RTS

LDA
EOR
STA
RTS

EQU
CMP
BNE
LDY
BPL
CcPY
BNE
BIT
LDY
BPL
CPY
BEQ
BIT
BIT
BMI
BIT
BEQ
JSR
ING
LDA

#1500
STATUS
LORES
TXTPAGE]
TXTSET
#3500
SETWND
TXTCLR
MIXSET
CLRTOP
#514
WNDTOP

WNDREST
VTAB23

#580
CTLCHARO

817
Ccv
VTAB

HOME

#9
APPLE2C-1,Y
LINE1+13,Y

STITLE

SOFTEV+1
#5A5
PWREDUP

*

#58D
NOWATT
KBD
NOWALT
#593
NOWAIT
KBEDSTRE
KRD
KBDWAILT
#3583
KOWATIT
KBDSTRB
VFACTV
VIDOUT
#560
DOCTL
STORCH
OURCH
OURCH

;CLR STATUS FOR DEBUG SOFTWARE

; INIT VIDEC MODE
;SET FOR TEXT MODE
sFULL SCREEN WINDOW

s SET FOR GRAPHICS MODE
;LOWER 4 LINES AS TEXT WINDOW

3 SET WINDOW

;40/80 column width

scontrols need high bit
jexecute control char

+VTAB TO ROW 23
sVTABS TO ROW IN A-REG
;don't set OURCV!!

; CLEAR THE SCREN

sGET A CHAR
;PUT IT AT TOP CENTER OF SCREEN

;ROUTINE TO CALCULATE THE 'FUNNY
; COMPLEMENT' FOR THE RESET VECTOR

;CHECK FOR A PAUSE (CONTROL-S).
sONLY WHEN 1 HAVE A CR
sNOT S50, DO REGULAR
3 I5 KEY PRESSED?
s NO.
+YES == IS IT CTRL-S?
:NOPE - TGNORE
sCLEAR STROBE
sWAIT TILL NEXT KEY TO RESUME
sWAIT FOR KEYPRESS
+I5 IT CONTROL-C?
+YES, S50 LEAVE IT
; CLR STROBE
1is video firmware active?
i=2no, do normal 40 column
;is it a control?
y=>vyes, do it
;print w/inverse mask
sadvance cursor
;and update others

Appendix I: Firmware Listings



FBAG:2C
FBA9:30
FBAB:8D
FBAE:B5
FBBO: 80
FBB2:

FBB2:EA
FBB3:

FBB3:06
FBB4:

FEB4:10
FBB6:C9
FBBB:90
FBBA:25
FBBC:4C
FBBF:00
FBCO:

FBCO:00
FBCL:

FBCl:48
FEC2:4A
FBC3:29
FBC5:09
FBC7:85
FBCY9:68
FBCA:29
FBCC:90
FBCE: 69
FBDO: 85
FBDZ:0A
FBD3:0A
FBD4:05
FBDA: 85
FBDA:60
FBD9:

FBED9:C9
FBDB:DO
FBDD:A9
FBDF:20
FREZ:AD
FBE4: A9
FBE6:20
FBE9: AD
FBEC:88
FBED:DO
FBEF:60
FBFO:

FBFO: A4
FBF2:91
FBF4:E6
FBFA:AS
FBFB:C5
FBFA: BO
FBFC:60
FBFD:

FBFD:C9
FBFF: B0
FCO1:A8

200

1F
05
7B
24
46

06
A0
0z
32
Fb

03
04
29

18
02
7F

28
28

87
12
40
A8
co
oc
AB
30

F3
24
28
24
21
66

A0
EF

co

04

FD

FC

FC
co

FBBRO

FBFS

FBBC

FBEC

FBDO

FBEF

FBE4

FC62

FBFO

109
110
111
112
113
114
115
116
117

NEWADV1

*

BIT
BMI
STA
STA
BRA

NOP

FAVERSION DFB

*
DOCOUTL

DCX

*
BASCALC

BASCLC2

*
CHEBELL

BELL1

BELL2

RTSZB
*

STORADV
ADVANCE
ADV2
RTS3

*
VIDOUT

BPL
CMP
BCC
AND

BRE

DFB

PHA
LSR

ORA
5TA
PLA

BCC
ADC
STA
ASL
ASL
ORA
STA
RTS

CMP

LDA
JSR
LDY
LDA
JSE
LDA
DEY
BNE
RTS

LDY
STA
INC
LDA
CMP
BCS
RTS

CMP
BCS
TAY

RDBOVID
NEWADV1
OLDCH
CH

ADV2

GOODF8

DCX
540
DCX
INVFLG
COUTZ

S00

A

#5013
#504
BASH

#518
BASCLC2
#57F
BASL

A

A

BASL
BASL

#sa7
RTS2B
#540
WAIT
#5C0
#s0C
WAIT
SPKR

BELL2

CH
(BASL),Y
CH

CH
WNDWDTH
CR

#3A0
STORADV

;but only if not B0 columns

;=>80 columns, leav'em

®
»

s=dyideo firmware active, no mask

check for CR

//e, chels ID byte

is it control char?

;i=>yes, no mask
selse apply inverse mask

and print character

chels ID byte

CALC BASE ADDR IN BASL,H
FOR GIVEN LINE NO.

; 0<=LINE NO.<{=§17

; ARG=D00ABCDE, GENERATE
; BASH=000001CD
; AND

; BASL=EABABOOO

+BELL CHAR? (CONTROL-G}
; NO, RETURN.

t YES.as

+DELAY .01 SECONDS

;TOGGLE SPEAKER AT 1 KHZ
; FOR .1 SEC.

get 40 column position
and store
increment cursor

;BEYOND WINDOW WIDTH?
3 YES, CR TO NEXT LINE.
; NO, RETURN.

: CONTROL CHAR?
; NO, OUTPUT IT.
;INVERSE VIDEO?

Appendix I: Firmware Listings

V) M W W N W W

I
——




4 ¢

FCO2:10
FCO4:C9
FCO6:FO
FCO8:C9
FCOA:FO
FCOC:C9
FCOE:DO
FC10:20
FC13:10
FCL15:A5
FC17:20
FClA:AS
FClC:C5
FCLE:BO
FC20:C6
FC22:

FC22:80
FC24:20
FC27:A5
FC29:2C
FC2C: 10
FC2E:4A
FC2F:18
FC30:65
FC32:85
FC34:60
FC35:

FC35:

FC35:

FC35:

FC25:

FC35:98
FC36:42
FC38:DD
FC3B:FO
FC3D:CA
FC3E: 10
FC40: 60
FC41:

FC41:00
FC42:

FC&42:80
FC44:AS
FC4b: 48
FC4T:20
FCan:20
FC4D: AD
FC4F:68
FC50:1A
FC51:C5
FC53:90
FC55:80
FC57:00
FC38:

FC58:20
FC5B: 80
FC5D:

FC5D: 20

EC FBFO
6B FC73
54 FCB6
c9 FBDY
E7 FBFC

EE FE

Dc FBFC

62 FCB6
Cl FB

IF CO
02 FC30

28
28

16
FE FE
43 FCE0

F8 FC38

19 FC5D
25

24 FC
9E FC
0o

23
Fl FC46
CB FC22

A5 CD
E7 FC4h

9D CC

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

160
16l
162
163
164
165
l6h
167
168
169
170
171
172
173
174
175

VIDOUT1

BS

up

VTAB
VTABZ

VTAB4D

TS4

BPL
CMP
EEQ
CMP
BEQ
CMP
BNE
JSR
BPL
LDA
JSR
LDA
CMP
BCS
DEC

BRA
JSR
LDA
BIT
BPL
LSR
CLC
ADC
STA
RTS

STORADV
#58D
NEWCR
#58A

LF

#588
CHKBELL
DECCH
RTS3
WNDWDTH
WIDTHCH
WNDTOP
cv

RTS3

cv

NEWVTAR
BASCALC
WNDLFT
RDBOVID
VTAB4D
A

BASL
BASL

3 YES, OUTPUT IT.

s CR?
;Yes, use new routine
: LINE FEED?

y IF 50, DO IT.
;BACK SPACE? (CONTROL-H)
3 NO, CHECK FOR BELL.
sdecrement all cursor H indices
+IF POSITIVE, OK; ELSE MOVE UP.
;1get window width,
;and ser CH's to WNDWDTH-1
; CURSOR V INDEX

ytop line, exit
jnot top, g0 up one

;0 update OURCV

rcalculate the base address
;get the left window edge
;B0 columms?

j=>no, lefr edge ok

;divide width by 2

sprepare to add

yadd width to base

to a mnemonic table index and returns with Z=1.
If Y is not a new opcode, Z=0.

NEWOFS

NEWOP1

*

CLREOP
CLREOP2
CLEOP1

*
HOME

*
CLREOPL

TYA
LDX
CMP
BEQ
DEX
BPL
RTS

BRK

BRA
LDA
PHA
JSR
JSR
LDY
PLA
INC
CMP
BCC
BCS
BRK

JSR
BRA

J5R

#NUMOPS
OPTBL,X
GETINDX

NEWOPI

CLREOP]
cv

VTABZ
CLEOLZ
#s00

A
WNDBTM
CLEOP1
VTAB

HOMECUR
CLREOP2

GETCUR

R
*
* NEWOPS translates the opcode in the Y register
*
*
*

;Eet the opcode

;check through new opcodes
;does it match?

y=2yes, get new index

;else check next one
;not found, exit with BNE

;ESC F IS CLR TO END OF PAGE

:SAVE CURRENT LINE NO. ON STACK
;CALC BASE ADDRESS
:CLEAR TO EOL. (SETS CARRY)
;CLEAR FROM H INDEX=0 FOR REST
s INCREMENT CURRENT LINE NO.

+DONE TO BOTTOM OF WINDOW?

3 NO, KEEP CLEARING LINES.
7 YES, TAB TO CURRENT LINE

ymove cursor home
sthen clear to end of page

sload Y with proper CH

Appendix I: Firmware Listings

201



FCRO:80
FC62:

FC62:80
FCo4:00
FC65:00
FCH6:

FC66:E6
FCHA:AS
FCobA:CS
FCo6C:90
FCGE:CH
FCT0:

FC70:4C
FC13:

FC73:20
FC76:2C
FC79:10
FCT7B:20
FC7E:80
FCBO:

FCBO:BD
FC83: A0
FCB5: 60
FCBh:

FCBA:AS
FC88:8D
FCBB:80
FCBD:

FCBD:20
FC90: A9
FC92:2C
FC95:30
FC97:25
FC99:4C
FCI9C:

FCIC: 80
FC9E: BO
FCAD:

FCAD:AD
FCA2:80
FCAL:

FCA4:7C
FCAT:

FCAT:EA
FCAB:

FCAB:138
FCA9:48
FCAA:E9
FCAC:DO
FCAE:68
FCAF:E9
FCBL:DO
FCB3:60
FCB4:

FCB4:E6
FCB6:DO
TCBB:E6
FCBA:AS

202

E2

oF

00
EC

ZA

0l
FC

01
F&

FC4k

FC73

FC88

CB

FE

04
FCA5

FD
FCbH

FF

05
FC24

cc

06
FC99

CB
FCBD
FC90

FC90

CD

FCAA

FCA9

FCBA

176
177
178
179
180
161
182
183

189
190
191

192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

BRA

3

CR BRA
BRK
ERK

*

LF INC
LDA
CMP
BCC
DEC

o

SCROLL JMP

&*

NEWCR J5R
BIT
BPL
JSR
BRA

*

GETINDX LDA
LDY

CRRTS RTS

*

NEWVTAB LDA

NEWVTABZ STA
BRA

*

NEWCLREOL JSR

NEWCLEOLZ LDA
BIT
BMI
AND

NEWCI JHP

*

CLREOL BRA

CLEOLZ BRA

*

CLRLIN LDY
BRA

*

CTLDO JHMP

*
NOP

*

WALT SEC

WAIT2 PHA

WAIT3 SBC
BNE
PLA
SBC
BNE

RTS6 RTS

*

NXTAS INC
BNE
INC

NXTAL LDA

CLREOP2

NEWCR

cv

cv
WNDBTM
NEWVTABZ
cv

SCROLLUP

CLRCH
VMODE
CRRTS
NOESCAPE
LF

INDX, X
#0

cv
OURCV
VTABZ

GETCUR
#5A0
VFACTV
NEWC1
INVFLG
DOCLR

NEWCLREOL
NEWCLEOLZ

#0
NEWCLEOLZ

(CTLADR, X)

#3501
WAIT3

#s01
WATT2

ALL
NXTAL
A4H
AlL

;before clearing page

;only LF if not Pascal

s INCR CURSOR V. (DOWN 1 LINE)
+OFF SCREEN?
»set bhasetWNDLFT
;DECR CURSOR V. (BACK TO BOTTOM)
:scroll the screen
;set CH's to D
;jis it Pascal?
;pascal, no LF
;else clear escape mode
;then do LF
;lookup index for mnemonic
;exit with BEQ
jupdate //e CV
;and calec base+WNDLFT
;Eet current cursor
;get a blank
;1f video firmware active,
;=>don't use inverse mask

;g0 do clear

;get cursor and clear
sjelear from Y

;clear entire line

;jump to proper routine

; 1.0204 USEC
1 (1342712%A4+512%A%A)

;INCR 2-BYTE Aé
; AND Al

;INCR 2-BYTE Al.

Appendix |: Firmware Listings

[V S WL O { W { W L W o, W o W W



U

FCBC:C5
FCBE: AS
FCCO:E5
FCC2:EbB
FCC4 : DO
FCCH:ER
FCC8:60
FCC9:

FCC9: 60
FCCA:

FCCA: AD
FCCC: b4
FCCE: A2
FCDOD:86
FCD2:A9
FCD4:91
FCD6: B8
FCD7:91
FCD9:CA
FCDA:ED
FCDC: DO
FCDE:

FCDE: 8D
FCEl :AD
FCE4:138
FCE5:A2
FCE7:BD
FCEA:90
FCEC:DD
FCEF:18
FCFD:DO
FCF2:EQ
FCF4:90
FCF6:9D
FCF9:CA
FCFA:DO
FCFC:AD
FCFF:8D
FDOZ: 60
FDO3:

FDO3:

FDO3:Cl
FDOC :

FDOC: AL
FDOE:Bl
FDIO:EA
FD11:EA
FD12:EA
FDL13:EA
FD14:EA
FD15:EA
FDl16:EA
FD17:EA
FD18:

3E

iF
k[ H
02
3D

BO
3c
BF
iD
AD
3cC

ic

01
F2

01
55

B8
27
0A
77

04
B2
06
7

EB
54
00

FO

24
28

FCC8

FCDO
co
co

CB
FCF6

04
FCF6

FCFC
04

FCE/
co

FO EC

FDL8:6C 38 00

FD1B:
FD1B:91

28

FD1D:20 4C CC

234
235
236
237
238
233
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

RTS4B
*

HEADR
*

COLDSTART

BLAST

CoM1

coM2

CoM3

APPLEZC
&

RDKEY

*
KEYINO
*
KEYIN

CMP
LDA
SBC
INC
BNE
INC
RTS

RTS

LDY
STZ
LDX
STX
LDA
5TA
DEY
STA
DEX
CPX
BNE

STA
LDA
SEC
LDX
LDA
BCC
CMP
CLC
BNE
CPX
BCC
5TA
DEX
BNE
LDA
STA
RTS

MSB
ASC

LDY
LDA
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP

JHP

STA
JSR

A2L
AlH
AZH
AlL
RTS4B
AlH

#5B0
AlL
#SBF
ALH
#5A0
(AIL),Y

(AlL),Y

#1
BLAST

SETB0COL
TXTPAGE2

588
COMTBL-1,X
comM2
S477,%

coMZ
#582
CcoM3
$477,X

COoM1
TXTPAGEL
CLRBOCOL

OoN
"Apple

CH
(BASL),Y

(KSWL)

(BASL),Y
SHOWCUR

: AND COMPARE TO A2
; (CARRY SET IF »>=)

sdon't do it
;let it precess down
;start from BFXX down

;store blanks

iback down to next page
;stay away from stack
;fall into COMINIT

iinit ALT screen holes
; for serial and comm ports

;XFER from rom

sbranch if defaults ok

;test for prior setup
;branch 1if not wvalid

;If 54F8 & S54FF = TBL walues

;move all B...

:Testore switches
sto default states

ffe"

;Eet char at current position

;for those who restore it

;if a program controls input
;hooks, no cursor may be displayed

+GD TO USER KEY-IN

;erase false images
ydisplay true cursor

Appendix |: Firmware Listings

203



FD20:20
FD23:10
FD25:48
FD26:A9
FD2B:2C
FD2B:DO
FD2D: 68
FD2E:C9
FD30: DO
FD32:4C
FD35:

FD35:4C
FD3B:

FD3B:2C
FD3B:30
FD3D:C9
FD3F:DO
FD41:20
FD&4:

FD&d

FD&4:

FD44 : 48
FD45: A9
FD47:0C
FD4A: 6B
FD4B: 60
FD4C:

FD4C:EA
FD4D:

FD4D: 20
FD50:C9
FD52:F0
FD54:C9
FD56:FO0
FD58:E0
FD5A:90
FD5C:20
FD5F:E8
FD60: DO
FD62:A9
FD64: 20
FD67:20
FDBA:AS
FD6C:20
FD6F: A2
FD71:8A
FD72:FO
FD74:CA
FD75:20
FD78:C9
FD7A:DO
FD7C:20
FD7F:EA
FDBO:EA
FDB1:EA
FDB2:EA
FDB3:EA
FDB4:9D

204

70
FB

08
FB
1D

98
cc
ED
B
o7
95

03
1D

08
FB

F3

ED
95
08
1D

00

cc
FD20

04
FD4A

FD38

cc

cc

06
FD44

FD&4
cc

04

c3

FD71

FD62

FD5F
FF

FD75

c3
FD

FD

FD&7

cc

FDa4
cc

02

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
ERE:]
319
320
izl
322
323
324
325
326
7
328
329
330
331
33z
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

DONXTCUR JSR
BPL
GOTKEY FHA
LDA
BIT
BNE
PLA

*

RDCHAR JMP

*

LOOKPICKE BIT
BMI
CMP
BNE
JSR

&

* NOESCAPE is

*

NOESCAPE PHA

NOESCL LDA
TS5B

NOESC2 PLA
RTS

*

NOP

NOTCR JSR
CMP
BEQ
CMP
BEQ
CPX
BCC
JER
NOTCR1 INX
BNE
CANCEL LDA
JSR
GETLNZ JSR
GETLN LDA
JSR
GETLNL LDX
BCKSPC TXA
BEQ
DEX
NXTCHAR JSR

BNE
JSR
NOP
NOP
NOP
NOP
NOP
ADDINP STA

UPDATE
DONXTCUR

#M.CTL
VHMODE
NOESC2

#ESC
LOOKPICK
NEWESC

ESCRDKEY

VFACTV
NOESCAPE
#PICK
NOESCAPE
PICKY

used by GETCOUT

#M.CTL
VMODE

GETCOUT
4588
BCKSPC
#598
CANCEL
#5F8
NOTCR1
BELL

NXTCHAR
#sDC
GETCOUT
CROUT
PROMPT
couT
#5501

GETLNZ
ESCRDKEY
#PICK

ADDINP
PICKY

IN,X

1look for key, blink IT cursor
;loop until keypress

:ssave character

jwere escapes enabled?

;=»no, there is no escape
;ves, there may be a way out!!
;sescape?

i=»’no escape

:=»go do escape sequence

;:do RDKEY with escapes

;only process f.,arrow

;if video firmware is active
:swas it PICK? (=>,CTL-U)
;no, just return

;ves, plck the character

too.

;save it

;disable escape sequences
;and enable controls

sby setting M.CTL

;disable controls and print
;CHECK FOR EDIT KEYS
;3 — BACKSPACE

; — CONTROL-X
sMARGIN?

: YES, SOUND BELL
;ADVANCE INPUT INDEX

:BACKSLASH AFTER CANCELLED LINE

;OUTPUT 'CR’
;OUTPUT PROMPT CHAR

;INIT INPUT INDEX

sWILL BACESPACE TO 0
sdo new RDCHAR (allow escapes)
sUSE SCREEN CHAR

:+ FOR CONTROL-U
:1ift char from screemn

;jno upshifting needed

;ADD TO INPUT BUFFER

Appendix |: Firmware Listings

BB

2 W L



(4 <

A

-
h

FDB7:C9
FDB9:D0
FD8B:20
FDBE : A9
FD90:D0
FD92:

FD92: A4
FD94: A6
FD96:20
FD99:20
FDOC: AD
FDY9E: A9
FDAO:4C
FDA3:

FDA3:AS
FDA5:09
FDA7:85
FDA9:AS5
FDAB:85
FDAD: A5
FDAF:29
FDB1:DO
FDB3:20
FDB6:A9
FDBA:20
FDBB:B1
FDBD: 20
FDCO: 20
FDC3:90
FDC5:60
FDChH:

FDCOH: 44
FDC7 : 90
FDCO:4A
FDCA: 44
FDCB: A5
FDCD:90
FDCF: 49
FDD1:65
FDD3:48
FDD&: A9
FOD&: 20
FDD9:68
FDDA:

FDDA: 48
FDDB:4A
FDDC:4A
FDDD: 44
FDDE: 4A
FDDF:20
FDE2:68
FDE3:

FDE3:29
FDE5:09
FDE7:C9
FDE9:90
FDEB:69
FDED:

E8

EA

K}/
02
FF
ic

BD
ED

E5

FD
F9

FD

FDB6
FD

FD

FD

FDAD

FDB3

FDDI

FD

FD

FDED

350

351

352 CROUT1
353 CROUT
3154

355 =

3156 PRAI
357

358 PRYX2
359

360

361

362

363 *

364 XAMB
365

366

367

368

369 MODBCHK
370

371

372 XAM
373 DATAOUT
374

375

376

377

378

379 RTS4C
380 *

381 XAMPM
g2

383

384

385

386

87

388 ADD
389

390

391

392

393 *

394 PRBYTE
395

396

397

398

399

400

401 *

402 PRHEX
403 PRHEXZ
504

405

406

407 *

CMP
BNE
JSR
LDA
BNE

LDY
LDX
JSR
JSR
LDY
LDA
JMP

LDA
ORA
STA
LDA
STA
LDA
AND
BNE
JSR
LDA
JSR
LDA
JSR
JSR
BCC
RTS

LSR
BCC
L5R
LSR
LDA
BCC
EOR
ADC
PHA
LDA
JSR
FPLA

PHA
LSR
LSR
LSR
LSR
JSR
PLA

AND
ORA
CMP
BCC
ADC

#58D
NOTCR
CLREOL sCLR TD EOL IF CR
#58D

couT (ALWAYS)

AlH ;PRINT CR,Al IN HEX
AlL

CROUT

PRNTYX

#3500

#SAD sPRINT '—'

CouT

AlL

#3507 +SET TO FINISH AT

A2L : MOD B=7

AlH

A2H

AlL

#507

DATAOUT

PRAL

#3540

COUT ;OUTPUT BLANK

(ALL),Y

PRBYTE ;OUTPUT BYTE IN HEX

NXTAL

MODBCHE ;NOT DONE YET. GO CHECK MOD 8
: DONE.

A ;DETERMINE IF MONITOR MODE IS
XAM ; EXAMINE, ADD OR SUBTRACT

A2L
ADD
#5FF ;FORM 2'S COMPLEMENT FOR SUBTRACT.
AlL

#5BD ;PRINT '=', THEN RESULT
cout

;PRINT BYTE AS 2 HEX DIGITS
: (DESTROYS A-REG)

o

RHEXZ

f#$0F ;PRINT HEX DIGIT IN A-REG
#5B0 ; LSBITS ONLY.

#5BA

COUT

#506

Appendix |: Firmware Listings

205




FDED:6C
FDFO:

FDFO:2C
FDF3:4C
FDF6: 84
FDF8:48
FDF9:20
FDFC:68
FDFD: A4
FDFF:60
FEOO:

FEQO:C6
FEO2:FO0
FEOQ&4:

FEQ4:CA
FE05:D0
FEO7:C9
FEO9:D0
FEOB:

FEOR:85
FEOD: AS
FEOF:91
FE11:Eb
FE13:D0
FE15:E6
FEL17:60
FE18:

FE18: A4
FE1A:B9
FEL1D:85
FELF: 60
FE20:

FE20: A2
FE22:B5
FE24:95
FE26:95
FE28:CA
FE29:10
FE2B:60
FEZC:

FE2C:Bl
FE2E:91
FE30:20
FE33:90
FE35:60
FE36:

FE36:B1
FE38:D1
FE3A:F0
FE3C: 20
FE3F:Bl
FE&41:20
FE44: A9
FE46:20
FE49:A9
FE4B: 20
FE4E:Bl
FE50:20

2061

36

7B
B4
35

78
35
34
9F
16
BB
31
40
40

02
41

34
FF
31

01
3E
42
44

F7

0o

06
FB

FB

FDA3

FELD

FDC6

FEL17

01

FE22

FC
FE2Z2C

FE38

FD

FD

408
409
410
411
412
413
414
415
416
617
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

CouT

CouTl

COUTZ

BL1

BLANK

STOR

RTSS
*

SETMODE

SETMDZ

*

LT
LT2

MOVE

*
VERIFY

JMP

BIT
JMP
STY

JSR
PLA
LDY
RTS

DEC
BEQ

DEX

BNE

STA
LDA
STA
INC

INC
RTS

LDY
LDA
STA
RTS

LDX
LDA
STA
STA
DEX
BPL
RTS

LDA
STA
JSR
BCC
RTS

LDA

BEQ
JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR

(CSWL)

VFACTV
DOCOUT1
YSAV]

VIDWALT

YSAV1

TSAV
XAMB

SETMDZ
#$BA
KAMPM

MODE
A2L
(A3L),Y
A3L
RTS5
A3H

YSAV
IN-1,Y
MODE

#$01
A2L,X
ALL,X
A5L,X

LT2

(AIL),Y
(A4L),Y
NXTA4
MOVE

(ALL),Y
(ASL) ,Y
VFYOK
PRAL
(AIL),Y
PRBYTE
#5A0
couT
#5A8

(ASL),Y
PRBYTE

s+VECTOR TO USER QUTPUT ROUTINE

svideo firmware active?

;jmask II mode characters

s SAVE Y-REG

:SAVE A -REC

;OUTPUT CHR AND CHECK FOR CTRL-5
;RESTORE A-REG

s AND Y-REG

;RETURN TO SENDER...

;BLANK TO MON

;AFTER BLARK

;DATA STORE MODE?

; NO; XAM, ADD, OR SUBTRACT.
;KEEP IN STORE MODE

:STORE AS LOW BYTE AT (A3)

;INCR A3, RETURN.

;SAVE CONVERTED ':', '+',
s =1, "' AS MODE

;COPY A2 (2 BYTES) TO
s AL AND AS

;MOVE (Al) THRU (A2) TO (A&4)

sVERTFY (Al) THRU (A2)
s WITH (A4)

Appendix |: Firmware Listings

'HH

FLL'RL ' 'HHOHOHO'HOTH

'

EL |

HAd

L




¢

|

-
|

FE53:A9
FE55:20
FES58:20
FE5B:90
FESD: 60
FESE:

FESE:20
FE61:A9
FE63:48
FE64:20
FE67:20
FEGA:B5
FE6C: B4
FEGE:68
FE6F:38
FE70:E9
FE72:D0
FE74:60
FE75:

FE75:84
FE76:FO0
FE78:B5
FE7A:95
FE7C:CA
FETD:10
FE7F :60
FE8O:

FEB0:AD
FEB2:D0
FEB4:AD
FEBG: 84
FE88:60
FEB9:

FE89:A9
FEBB: 85
FEBD:A2
FEBF:AD
FE91:D0
FE93:

FE93:A9
FE95:85
FE97:A2
FE99: AD
FE9B:AS
FE9D:29
FESF:D0
FEALl:CO
FEA3:FD
FEAS:BO
FEA7:09
FEA9:AD
FEAB:94
FEAD:95

FEBO:4C
FEB3:
FEB3:4C

A9

ED FD
B4 FC

D9
75 FE
14
DO F8
53 F9

3A
3B

0l
EF

o7
ic
3A

F9

00 ED

03 EO

FE36

FE63

FETF

FE78

FEB6&

FE9B

FEA7

FEDE
FEC2

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

VFYOK

LIST

LIST2

*
AlPC

AlPCLP

A1PCRTS
*

SETINV

SETNORM
SETIFLG

*

SETKBD
INPORT
INPRT

*

SETVID
OUTPORT
OUTPRT

IOPRT

NOTPRTO

TOPRT2

*

XBASIC
*

BASCONT

LDA
JSR
JSR
BCC
RTS

JSR
LDA
PHA
JSR
JSR
STA
5TY
PLA
SEC
SBC
BNE
RTS

TXA
BEQ
LDA
STA
DEX
BPL
RTS

LDY
BNE
LDY
STY
RTS

LDA
STA
LDX
LDY
BNE

LDA
STA
LDX
LDY
LDA

BNE
CPY
BEQ
BRA
ORA
LDY
STY
STA
RTS

JHP

JHMP

#3549
cout
NXTA4
VERIFY

AlPC
#514

INSTDSP
PCADJ
PCL

PCH

#3501
LIST2

ALPCRTS
AlL,X
PCL,X

A1PCLP

#$3F
SETIFLG
#SFF
INVFLG

#3500
A2L
#KSWL
#KEYIN
IOPRT

#50

A2L
#CSHL
#COUT1
A2L
#$0F
NOTPRTO
#KEYIN
IOPRT1
OPRTO
#<{I0ADR
#500
LOCO, X
LOCL, X

BASIC

BASIC2

;MOVE Al (2 BYTES) TO
; PC IF SPEC'D AND
; DISASSEMBLE 20 INSTRUCTIONS.

;ADJUST PC AFTER EACH INSTRUCTION.

;NEXT OF 20 INSTRUCTIONS

; IF USER SPECIFIED AN ADDRESS,
; COPY IT FROM Al TO PC.
;YEP, S0 COPY IT.

3SET FOR INVERSE VID
;3 VIA COUTL
3SET FOR NORMAL VID

;D0 'IN#D'
;D0 ' INFAREG'

;DO "PR#O'
;DO 'PRAAREG"

:not slot O
;Continue if KEYIN

;=>do PRFO

;TO BASIC, COLD START

;TO BASIC, WARM START

Appendix I: Firmware Listings

207



FEB6G: 524 *

FEB6:20 75 FE 525 GO JSR AlPC ;ADDR TO PC IF SPECIFIED
FEE9:20 3F FF 526 J5R RESTORE :RESTORE FAKE REGISTERS
FEBC:6C 3A 00 527 JMP (PCL) : AND GO!

FEBF: 528 *

FEBF:4C D7 FA 529 REGZ JMP REGDSP ;G0 DISPLAY REGISTERS
FEC2: 530 *

FEC2:3A 531 OPRTO DEC A ;Need SFF

FEC3:8D FB 07 532 STA  CURSOR ;set checkerhoard cursor
FEC6:A% F7 533 LDA  #SFF-M.CTL ;reset mode

FECB:80 04 FECE 534 BRA DOPRO

FECA: 535 *

FECA:4C FB 03 536 USR JMP USRADR ;JUMP TO CONTROL-Y VECTOR IN RAM
FECD: 537 *

FECD:60 538 WRITE RTS ;Tape write not needed
FECE: 539 *

FECE:8D 7B 06 540 DOPRO STA VFACTV ;8ay video firmware inactive
FED1:8D OE CO 541 STA CLRALTCHAR ;switch in normal char set
FED4:0C FB 04 542 TSE  VMODE ;jdon't change M.CTL
FED7:DA 543 PHX ;save X and Y

FEDB:5A 544 PHY ;for rest of PRAO
FED9:20 CD CD 545 JSR  CHKS80 sconvert to 40 if needed
FEDC:7A 546 PLY

FEDD:FA 547 PLX

FEDE:A9 FD 548 IOPRTL LDA  #<COUTL ;set I/0 page

FEED:80 C9 FEAR 549 BRA I0PRT2 ;=»go set output hook
FEE2: 550 *

FEE2: 551 * DECCH decrements the current cursor

FEE2: 552 * CLRCH sets all ecursors to 0

FEE2: 553 * SETCUR sets cursors to value in Acc.

FEE2: 554 * See explanatory note with GETCUR

FEE2: 555 *

FEE2:5A 556 DECCH PHY ;(From $FC10)

FEE3:20 9D CC 557 JSR GETCUR ;get current CH

FEE6:88 558 DEY ;decrement it

FEE7:80 05 FEEE 559 BRA SETCURL :Zo update cursors

FEE9: 560 *

FEE9:A9 01 561 CLRCH LDA #1 :set all cursors to 0O
FEEB:3A 562 WDTHCH DEC A jdec window width (from SFC17)
FEEC:5A 563 SETCUR PHY ssave Y

FEED: AB 564 TAY jneed value in Y

FEEE:20 AD CC 565 SETCURI JSR GETCUR2 ;save new CH

FEF1:7A 566 PLY ;restore Y

FEF2:AD 7B 05 567 LDA  OURCH ;and get new CH into ace
FEF5:60 568 RTS ;(Need LDA to set flags)
FEF6: 569 *

FEF6:20 0D FE 570 CRMON JSR BL1 +HANDLE CR AS BLANK
FEF9:68 571 PLA : THEN POP STACK
FEFA:68 572 PLA ; AND RETURN TO MON
FEFB:DO 6C FF69 573 ENE  MONZ ; (ALWAYS)

FEFD: 574 *

FEFD: 60 575 READ RTS :Tape read not needed
FEFE: 576 *

FEFE: 577 * OPTBL is a table containing the new opcodes that
FEFE: 578 * wouldn't fit into the existing lookup table.

FEFE: 579 %

FEFE:12 580 OPTBL DFB 512 sORA (ZPAG)

FEFF: 14 581 DFB 514 ;TRB ZPAG

208 Appendix |: Firmware Listings

(i

W O O O W

e TL T




O

FFO0: 1A
FFOl1:1C
FF02:32
FFD3:34
FFO4:3A
FF05:3C
FF06:52
FFO7:5A
FFOB:64
FF09:72
FFOA:74
FFOB:7A
FFOC:7C
FFOD:89
FFOE:92
FFOF:9C
FF10:9E
FF1l:B2
FF12:D2
FF13:F2
FFl4:FC
FF15:
FF15:
FF15:
FF15:
FF15:
FF15:
FF15:38
FF16:FB
FF17:37
FF18:FB
FF19:39
FFlA:21
FF1B:36
FFlC:21
FF1D:3A
FFLE:FB
FFLF:FA
FF20:3B
FF21:FA
FF22:F9
FF23:22
FF24:21
FF25:3C
FF26:FA
FF27:FA
FF28:3D
FF29:3E
FF2A:3F
FF2ZB:FC
FF2C:00
FF2D:
FF2D:A9 C5
FF2F:20 ED
FF32:A9 D2
FF34:20 ED
FF37:20 ED
FF3A:

FD

FD
FD

0016

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603 NUMOPS
604
605
606
607
608
609 INDX
610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633 *

634 PRERR
635

636

637

638

639 *

* * ¥ ¥ ¥

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
EQU

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFBE
BRK

LDA
JSR
LDA
JSR
JSR

S1A
s51C
$32
$34
S34A
$3c
§52
$5A
$64
5§72
574
5TA
s$7¢
589
$92
$9cC
$9E
$B2
5D2
§F2
SFC

*~0PTBL-1

$38
SFB
837
SFB
539
521
536
521
§3A
5F8
SFA
$3B
SFA
$F9
§22
521
53C
SFA
SFA
$3D
$3E
$3F
SFC

#sC5
couT
52
couT
cout

+INC A

;TRE ABS
;AND (ZPAG)
sBIT ZPAG,X
sDEC A

sBIT ABS,X
;EOR (ZPAG)
s PHY

s 5TZ ZPAG
:ADC (ZPAG)
:STZ ZPAG,X
s PLY

; JMP (ABS,X)
sBIT TMM
;STA (ZPAG)
35TZ ABS
;5TZ ABS,X
;LDA (ZPAG)
;CMP (ZPAG)
;SBC (ZPAG)
;7?7 (the unknown opcode)
;number of bytes to check

INDX contains pointers to the mnemonics for each of
the opcodes in OPTEL.
set indicate extensions to MNEML or MNEMR.

Pointers with BIT 7

= P99
R

sPRINT 'ERR', THEN FALL INTO
; FWEEPER.

Appendix I: Firmware Listings

[209



FF3A:A9
FF3C:4C
FF3F:

FF3F:AS
FF41:48
FF42:A5
FF44: Ab
FF46: AL
FF48:28
FF49:60
FF4A:

FF4A: 85
FF4C: 86
FF4E: B4
FF50:08
FF51:68
FF52:85
FF54:BA
FF55:86
FF57:D8
FF58:60
FF59:

FF59:20
FF5C:20
FFS5F:20
FF62:20
FF65:

FF65:D8
FF66: 20
FF69:A9
FF6B:85
FF6D: 20
FF70:20
FF73:20
FF76:84
FF78:AD
FFTA:88
FF7B:30
FF7D:D9
FF80:D0
FF82:20
FF85: A4
FFB7:4C
FF8A:

FFBA:A2
FF8C:0A
FFBD:0A
FF8E:0A
FF8F:0A
FF90:0A
FF91:26
FF93:26
FF95:CA
FF96:10
FF98:A5
FF9A:D0
FF9C:B5
FF9E:95

210

87
ED

48
45

4
47

45

47

48

49

B4
2F
93
89
3A
33
c7
A7
34
13
E8

F8
BE

73

03

3E

FB

06
3F
3D

FD

FE
FB

FE

FF

FD

FF

FF

FF

FF

FF65

FF7A

FF30

FFA2

640
b41
642
643
LYY
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697

BELL

#
RESTORE

RESTRI1

SAVE

SAV1

*

OLDRST

MON

MONZ

NXTITM

CHRSRCH

DIG

NXTBIT

NXTBAS

LDA

LDA
PHA
LDA
LDX

PLP
RTS

STA
5TX
STY
PHP
PLA
STA
TSX
STX
CLD
RTS

JSR
JSR
J3R
JSR

CLD
JSR
LDA
STA
JSR
JSR
JSR

LDY
DEY
BEMI

BNE
JSR
LDY
JMP

LDX
ASL
ASL
ASL
ASL
ASL
ROL
ROL
DEX
BPL
LDA

LDA
STA

#587
couT

STATUS

ASH
XREG
YREG

ASH
XREG
YREG

STATUS

SPNT

SETNORM
INIT
SETVID
SETKEBD

BELL
#1544

PROMPT

GETLNZ

ZMODE

GETNUM

YSAV
#SUBTBL~CHRTBL

MON
CHRTBL,Y
CHRSRCH
TOSUB
YSAV
NXTITM

;MAKE A JOYFUL NOISE, THEN RETURN.

;RESTORE 6502 REGISTER CONTENTS
; USED BY DEBUG SOFTWARE

;SAVE 6502 REGISTER CONTENTS
; FOR DEBUG SOFTWARE

;SET SCREEN MODE
; AND INIT KBD/SCREEN
; AS I/O DEVS.

;MUST SET HEX MODE!
;FWEEPER.
;"' PROMPT FOR MONITOR

;READ A LINE OF INPUT
;:CLEAR MONITOR MODE, SCAN IDX
;GET ITEM, NON-HEX

; CHAR IN A-REG.

i X=REG=0 IF NO HEX INPUT

; COMMAND NOT FOUND, BEEP & TRY AGAIN.
;FIND COMMAND CHAR IN TABLE

;NOT THIS TIME

;GOT IT! CALL CORRESPONDING SUBROUTINE
; PROCESS NEXT ENTRY ON HIS LINE

;GOT HEX DIGIT,
; SHIFT INTO A2
;LEAVE X=$FF IF DIG

; IF MODE IS ZERO,
; THEN COPY A2 TO Al AND A3l

Appendix I: Firmware Listings

e e M L T T



FFAQ:95 41 698 STA  A3H,X

FFAZ:E8 699 NXTBS2 INX
FFA3:FO F3  FF98 700 BEQ  NXTBAS

FFA5:D0 06 FFAD 701 BNE  NXTCHR

FFA7:42 00 702 GETNUM LDX  #500 ;CLEAR A2

FFA9:86 3E 703 STX AL

FFAB:86 3F 704 STX  AZH

FFAD:B9 00 02 705 NXTCHR LDA  IN,Y :GET CHAR

FFBO:CB 706 INY

FFB1:20 99 c3 707 JSR  UPSHIFTO jupshift if necessary (set high bit)
FFB4:49 BO 708 EOR  #$B0

FFB6:C% 0A 709 CMP  #50A

FFB8:90 DO  FFBA 710 BCC  DIG ;it's a digit

FFBA:80 37 FFF3 711 BRA GETHEX scheck for other digits
FFBC:00 712 BRK

FFBD:00 713 BRE

FFBE: T4 #

FFBE:A9 FE 715 TOSUB LDA  #<GD ;DISPATCH TO SUBROUTINE, BY
FFCO: 48 716 PHA ; PUSHING THE HI-ORDER SUBR ADDR,
FFC1:B9 EO FF 717 LDA  SUBTBL,Y ; THEN THE LO-ORDER SUBR ADDR
FFC4: 48 718 PHA ; ONTO THE STACK,

FFC5:A5 31 719 LDA  MODE ; (CLEARING THE MODE, SAVE THE OLD
FFC7:AD 00 720 ZMODE LDY  #800 ; MODE IN A-REG),

FFC9:84 31 721 STY  MODE

FFCB:60 722 RTS ; AND 'RTS' TO THE SUBROUTINE!
FFCC: 723 %

FFCC:EA 724 NOP

FFCD: 725 *

FFCD:BC 726 CHRTBL DFB  $BC i"C  (BASIC WARM START)
FFCE:B2 727 DFE  $B2 3°Y (USER VECTOR)

FFCF : BE 728 DFB  S$BE ;"E  (OPEN AND DISPLAY REGISTERS)
FFDO:EF 729 DFE  SEF ; (MEMORY VERIFY)

FFD1:C4 730 DFB  SC4 ;K (IN#SLOT)

FFD2:A9 731 DFB  $A9 ;"P  (PRASLOT)

FFD3:BB 732 DFB  $BB ;"B (BASIC COLD START)

FFD4: A6 733 DFB  SA6 ;'=" (SUBTRACTION)

FFD5: A4 734 DFB  5A4 ;"+" (ADDITION)

FFD6:06 735 DFB 506 M (MEMORY MOVE)

FFD7:95 736 DFE  $95 ;'<' (DELIMITER FOR MOVE, VFY)
FFDB:07 737 DFB 507 ;N (SET NORMAL VIDEO)
FFD9:02 738 DFB  $D2 ;I (SET INVERSE VIDED)
FFDA:05 739 DFBE 505 ;L (DISASSEMBLE 20 INSTRS)
FFDB: 00 740 DFE 500 ;G (EXECUTE PROGRAM)
FFDC:93 741 DFB 593 ;':' (MEMORY FILL)

FFDD: A7 742 DFB  SA7 ;'+" (ADDRESS DELIMITER)
FFDE:C6 743 DFB  5C6 ;'"CR' (END OF INPUT)

FFDF:99 Thi DFB  $99 ; BLANK

FFED: 745 *

FFEQ: 746 * Table of low order monitor routine

FFEO: 747 * dispatch addresses.

FFEOQ: 748 *

FFEQ:B2 749 SUBTBL DFB  >BASCONT-1

FFELl:C9 750 DFE  »USR-1

FFE2:BE 751 DFE  >REGZ-1

FFE3:35 752 DFE  >VERIFY-1

FFE4:8C 753 DFE  >INPRT-1

FFE5:96 754 DFB >0UTPRT-1

FFE6: AF 755 DFB  »XBASIC-1

R Appendix I: Firmware Listings

211




FFET:17
FFE&:17
FFE9:2B
FFEA:1F
FFEB:B3
FFEC:7F
FFED:5D
FFEE:B5
FFEF:17
FFFO:17
FFF1:F5
FFF2:03
FFF3:

FFF3:69
FFF5:C9
FFF7:B0
FFF9:60
FFFA:

FFFA:FB
FFFC:62
FFFE:03

212

88
FA
91

03
FA
c8

FF8A

7156
757
758
759
760
761
762
763
764
765
766
767
768 *
769 GETHEX
770
771
172
773 *
174
775
776 IBRQVECT

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFBE
DFB
DFE
DFB
DFB

ADC
CMP
BCS
RTS

DW
DW
DW

>SETMODE~1
>SETMODE-1
DMOVE-1
>LT-1
>SETNORM=-1
>SETINV-1
JLIST=1
»G0-1
>SETMODE-1
»SETMODE-1
>CRMON-1
»BLANK-1

588
#5FA
DIG

NMI
RESET
NEWIRQ

; NON—-MASKABLE INTERRUPT VECTOR
;RESET VECTOR
; INTERRUPT REQUEST VECTOR

Appendix |: Firmware Listings

) { W T O { W YO o W W W o WO W W W W O




B

AlH
AlPC
AL

ASL
ACIADONE
ADDINP
AINOFLSH
ALTCHARSET
ASTAT
BAS2H
BASCONT
BASICIN
BCKSPC
BELL2
BL1
BOOTSCRN
BREV
BUTN1
C3KEYIN
CGo
CHEBELL
CH
CLEOLZ
CLR2
CLRBOVID
CLRANI
CLRCOL
CLREOPI
CLRLIN
CLRSC3
CMDCR
CMDI
CMDLIST
CMDQ
CMDT2
CMDZ2
CMNOINT
CMRGHT
col

CoMl
COMMAND
COMTRL
cout
CROUT
CSWL
CTLDO
CTLNUM
CURSOR
Ccv
DEFAULT
DEFLOOP
DIG
DOCOUTL
DONXTCUR
DV10LOOP
ERR

ESC2
ESCNUM

ic
3F
&3
&5
€900
FBF8
C94D
T03F5
CHAZ
2A
29
€317
FAA3
0215
FEO4

TFC10
CFC2
FD62
F9BA
C528
€132
FC46
ccoz
CEDA

?C0O5C
FC9C
CBCF
CCo4

7F832

BF
CABT
CASD
CARBS
CB17
CALD
C58E
C56F
0738
FCF6
C266
€338
FDFO
FC62
CD2A
CD6F
CD9l
C51D
FDB6&
C2F1
C6D9
CA30
FB54
FECE
C5CA

9B
ccco
CCED

AlL
AZH
ASH

ACC
ACTAINT
ADV2
AIPASS
AMPERV
BADRD1
BAS2L
BASH
BASICINIT
BEEPFIX
BINH
BLANK
BOOTTMP
BS

co3
CANCEL
CHAR1
CHEMOU
CHOK
CLEOPI
CLR3
CLRBO
CLRANZ
CLREOL
CLRHALF
CLRPORT
CLRSCR
CMDCUR
CMDE
CMDN
CMDR
CMDT3
CMFOUND
CMNOVBL
CMROK
COL
coM2
COMMPORT
COPYROM
COUTI
CR
CTLADR
CTLDONE
CTLOFF
CVBUT
DATAOUT
DEFCOM
DENIBI
DIGLOOP
DOCTL
DOPRO
DVI1OLT
ESC
ESC3
ESCRDKEY

FE78
IE

42
CBFF
c908
?FBF4
c922
FDO3
C6aD3
FECI
EQ03
EQDOD
TFBDD
0214
FCDO
7C326
04
c307
CA76
FIB4
CR4E
FFCD
CBEE
CBC7
COOE
7CO5E
FCh4
CD9B
7CFFF
F836
CATY
CAl&
CABO
CA99
coc7
C555
C578
CA43
FCCA
FCFC
C263
C348
FEF&
FCBS
CD58
cD71
CD95
C516
FBBC
c2p9
ceD7
0356
C6FB
7C701
Cl11
ccony
cpoc
CCF8

ALPCLP
AZL
ALGL
ACDONE
ACATST
ADVANCE
ATPORT2
APPLE2C
BADREAD
BASCALC
BASIC2
BASIC
BELLI
BINL
BLAST
BPRINT
BUTMODE
C3couTl
CDONE2
CHAR2
CHERT
CHRTBL
CLRO
CLR40

CLRALTCHAR

CLRAN3
CLREOP2
CLRIT
CLRROM
CLRTOP
CMDD
CMDLOOP
CMDP2
CMDS
CMDTABLE
CMLOK
CMNOY
CMSET
COLDSTART
COM3
COMOUT
COPYROM2
CRMON
CRRTS
CTLCHAR
CTLGO
CTLON
CVMOVED
DCX
DEFFF
DENIBL
DNIBL
DODRV2
DRVZBOOT
ENTR1
ESCO
ESCCHAR
ESCTAB

cooo
10058
FEE9
FC42
cC97
F838
CATD
CAGS8
CAG7
CAT8
CAC6
CAS5
C538
C55D
C542
30
CA36
€200
FDF6
TFD8B
37
CD54
CDE0
CDls
C4ED
FEE2
C2FC
CBAs5
CBC2
clss
C60B
c230
?CCE3
0638
C28C

Appendix I: Firmware Listings

AlPCRTS
A3H

ASH
ACIABUF
ADD
ATEATIT
AITST2
APPLEIL
BANGER
BASCLC2
BASICENT
BASL
BELL
BINPUT
BOOTDEV
BREAK
BUTNO
C3ENTRY
CDONE
CHK80
CHRSRCH
CKDIG
CLR1
CLRBOCOL
CLRAND
CLRCH
CLREOP
CLRKED
CLRSC2
CMDB
CMDI2
CMDL
CMDP
CMDT
CMDZ
CMLOOP
CMNTO
CMXMOV
COLOR
COMINIT
COMSLOT
COUTZ
CROUT1
CSWH
CTLCHARO
CTLGO1
CTLTAB
CVNOVBL
DECCH
DEFIDX
DEVNO
DOCLR
DONE
DRV2ENT
ENTR
ESCl
ESCHAR
EXITI

213




C2BA
0538
TFA9B
F9AG
7CH48
FB56
c398
GCAT
CCBF
TFD6F
CB57
1FD25
C28F
CH4E
TFCCY
F81C
CELB
Ca0C
C405
FEBD
32
FEDE
cova
CcB31
c8el
CB99
FFFE
CFF9
€332
FD1B
CO8R
0400
00
FE22
08

80

2E
O4F8
T06FD
0478
T04FD
?7C052
FBRE
31
cD63
07FC
077¢
co15
co17
CF99
CFCB
C72F
0300
FC99
ccce
FC35
03FB
FD4A

2141

EXITX
EXTINT
FIXSEV
FMT2
FUGIT
GBCALC
GETALT2
GETCURI
GETCURX
GETLN1
GETST
GOTKEY
GOREMOTE
HANGING
HEADR
HLINEL
HOOKITUP
INCMD
INENT
INPRT
INVFLG
IOPRT]
TOUDSEL
IRQ3
IRQ7
TRQDNE3
IRQVECT
JMPDEST
JPWRITE
KEYIN
LCBANK1
LINE1
LOCO
LT2
M.CTL
M.PASCAL
MASK
MAXL
MAXYL
MINL
MINYL
MIXCLR
MNNDX1
MODE
MOUBUT
MOUMODE
MOUSTAT
MOUXINT
MOUYINT
MOVEC2M
MOVERET
MSG
NBUF1
NEWC1
NEWESC
NEWOPS
NMI
NOESC2

EXTENT
FBORG
FLAGS
FNDCTL
GBASCALC
GBEMPTY
GETALT
GETCUR
GETFMT
GETLNZ
GETX

GO
GOTERM
HDDONE
HEXDEC2
HLINE
HOOKUP
INDX
INIT
INSDS1
INVX
I0PRT2
IOUENBL
IRQ4
IRQ8
IRQDONE
IRQ
JPINIT
KBDSTRRB
KEYINO
LCBANK2
LIST
LOC1

LT

M. CURSOR
M. VMODE
MASK1
MAXXH
MBASIC
MINXH
HMIRQLP
MIXSET
MNNDX2
MON
MOUCLR
MOUSEINT
MOUTEMP
MOUXL
MOUYL
MOVEIRQ
MOVESTRT
MSLOOP
NEWADV1
NEWCLEOLZ
NEWIRQ
NEWVTAB
NOCMD
NOESCAPE

C63D
FBB2
CB1B

27
CBDB
cscc
CCAD
FFF3

?7FD6A
TCF06
CB9F
F8CC
CSBE
C598
FC58
F897
?FBA8C
c4lc
FBDO
cooo
FF58
C806
CB850
caac
?03FE
Ch63
C32F
FB8a

39

2F
FE63
FD38

08
44
cIn9
067D
C798
047D
Cc8c2
F3CO
FBCY
FF69
7C058
CDSF
co66
cos7

CFIF
02
07F8
FBAO
FCBD
7FABL
FCa8
C46B
C26B

EXTENT1
FBVERSTION
FLUSH
FORMAT
GBASH
GBNOOVR
GETBUF
GETCUR2
GETHEX
GETLN
GETY
GOBREAK
GOTONE
HDLOOP
HEXTODEC
HOME
IEVEN
INSDS2
INITMOUSE
INSTDSF
T0ADR
I0RTS
IRQIL
IRO5
IRQDNEL
TROLOC
ISMRE1
JPREAD
KBDWAIT
KSWH
LENGTH
LIST2
LOOKPICK
M. 40
M.GOXY
MACSTAT
MASK2
MAXXL
MBBAD
MINXL
MIRQSTD
MNEML
MNNDX3
MONZ
MOUDSBL
MOUSOFF
MOUX1
MOUY 1
MOVARM
MOVELOOP
MOVMODE
MSLOT
NEWADV
NEWCLREOL
NEWMON
NEWVTABZ
NOERROR
NOESC

05F9
Ccl42
F962
CH4LB
26
Cc393
C3A6
CCB7
FCa0
FFAT
Cria
06
2C
C5B8
70057
CDAS
0200
0200
7FESB
CCl2
FESB
cos8
cez2?
CB5E
CBEF
C989
C22F
€335
cooo

Appendix I: Firmware Listings

EXTINT2
FIXCH
FMT1
FUG1
GBASL
GETALTIL
GETCOUT
GETCUR3J
GETINDX
GETNUM
GKEY
GOODF8
HZ
HDPOS2
HIRES
HOMECUR
INBUF
IN
INPORT
INVERT
IOPRT
10U
IRQ2
IRQ6
TRQDNE2
IRQTBLE
ISRDY
JPSTAT
KBD
KSWL
LF
LMNEM
LORES
M.CTL2
M.MOUSE
MAKTBL
MAXH
MAXYH
MINH
MINYH
MISTAT
MNEMR
MODBCHK
MOUARM
MOUENBL
MOUSON
MOUXH
MOUYH
MOVEAUX
MOVE
MPADDLE
MSWAIT
NEWBRK
NEWCR
NEWOP1
NEXTAL
NOESC1
NOFIX

o WO ] L o W 1 O O O O T S O




4 < <

c725
C36A
TCCHB
C22ZE
FCBA
FFA2
0778
067A
FEFE
?FE95
CLlEE
c213
CF71
cas50
F95C
3A
CC3D

FE00
FD92
F92a
F948
?7FF2D
FBFS5
FBDB
TF944
CF51
CEB1
C7DA
FAFD
CEF1
CS5EB
co18
CHAB
C6CB
C642
C6a71
col2
co13
C6EF
7Cc019
1F938
FF3F
FADA
4E
FAD2
FBEF
FCC8
1FCR3
BFFA
CE79
TCEAD
CBAZ
F&79
CB38
C61F
ClBC
C100

NOPATRN
NOTI
NOTINV]
NOTRDY
NXTAL
NXTBS2
NXTCUR
OLDCUR2
OPTEL
OUTPORT
P1READ
P2READ
PASCALC
PASSKIPI
PCADJ4
PCL
PICK1
PICK
PLOT
PRAL
PRADRAG
PRELNK
PRERR
PRMN1
PENTBL
PRNTX
PSETUP
PSTATUS
PUTINBUF
PWRCON
PWRITERET
QTBL
RDBOCOL
RDATD
REDAT4
RDDHDR
RDHD3
RDLCRAM
RDRAMRD
RDSEC3
EDVBLBAR
RELADR
RESTORE
RGDSP1
ENDL
RTEL
RTS2B
RTS4B
RTS6
SCOMD
SCR4
SCR8
SCRLFT
SCRN2
SCROLLIT
SEEKZERD
SEROUT
SERSLOT

€371
CBFE
CCHB
FE%4
FCB4
FD75
FF73
0679
0578
FE97
ClFB
c217
CF/P
covc
F953
CF19
cci33
ccip
FBOE
F910
F930
FDDA
CEF7
FBF9
FED4

CF54
CEBE
CE3B
03F4
FB12
CE4S5
COI1F
ChAA
CHAS
Ch56
TCO1D
cooz2
col4
ChE3
TFEFD
FAG2
TFF44
FBO2
Cos8l
FBOC
F961
?7FDC5
?FF4C
CE58
CEB2
CEAD
CB6D
CEB0
CB35
€296
Cc191
Cl46

NOREAD
NOTACTA
NOTINV2Z
NOWAIT
NXTA4
NXTCHAR
NXTITM
OLDCUR
OURCH
OUTPRT
P1STATUS
P2STATUS
PASCLC2
PBFULL
PCADJ
PCTL
PICK2
PICKY
PLOTIL
PRADR]
PRADRS
PRBYTE
PRET
PRMN2
PRNTOP
PROMPT
PSETUP2
PSTERR
PVMODE
PWREDUP
PWRUP2Z
QUIT
RDBOVID
RDAT1
EDATA
RDHDO
RDHIRES

RDMATNRAM

BDRAMWRT
RDSECT
READ
RESET
RESTR1
RGDSP2
ROMIN
RTMASK
RTS2
RTS4C
SAV1
SCR1
SCRS5
SCR9
SCRLIN
SCRN4S
SCROLLUP
SERIN
SEROUT2
SERVID

CA93
FD5F
CCc53
D47F
FF98
FFAD
FAS9
?FF59
05FB
ClE4
C1F6
C215
CCOB
€973
F956
C7Fb
CC3F
CF&41
CECO
F214
FO4A
TFBIE
?7FDE3
cl68
F340
FD96
CF30
7C070
D4B8
CEF4
FAAG
CEL4
C63F
CEBA
coo3
C65E
FDOC
7CO1B
C685
FAE4
FAD7
FABD
Ch4l
2D
c37B
FBIF
FB2E
TFC34
FF4A
CESE
CESB
CBBRY
CBBO
CE53
TFCT0
Cl1E
Ccl9D
coco

NOSHIFT
NOTCR1
NOTINV
NUMBER
NXTBAS
NXTCHR
OLDBRE
OLDRST
OURCV
P1INIT
PIWRITE
P2WRITE
PASINVERT
PBOK
PCADJ3
PDOK
PICK3
PINIT
PNOTRDY
PRADR2
PRBL2
FREAD
PRHEX
PRNOW
PRNTYX
PRYX2
PSETX
PTRIG
PWDTH
PWRET
PWRUP
X
RDADR
RDATZ
RDCARDRAM
RDHDI
RDKEY
RDMIX
RDSECI
RDSPL
REGDSP
RESET.X
RETRY1
RMNEM
ROMOK
RTMSKZ
RTS2D
RTS4
SAVE
SCR2
SCR6
SCRL3
SCRLODD
SCRNB4
SCROLL
SERISOUT
SEROUT3
SET40

C4F9
FD4D
FEAT
0016
FF30
?7F85F
0478
FEC2
can?
CLF3
c211
CO64
CF35
TF954
3B
C7EB
CC4A
CERC
C402
F926
TF94C
FB25
FDES
TF941
Cl4C
CF66
c222
Co967
CEDD
GEC2
C506
€060
col6
ChBC
?7FD35
Cha&7
€011
colc
C687
[HID N
FEBF
£354
Cch57
LF
0478
FB31
FBFC
FE17
BFFB
CE66
CE%6
CBSE
1FBT1
CB30
BFF8
03R8
Cl117
cool

Appendix I: Firmware Listings

NOSTAT2
NOTCR
NOTPRTO
NUMOPS
NXTBIT
NXTCOL
OLDCH
OPRTO
OUTENT
PLREAD2
P2ZINIT
PADDLO
PASREAD
PCADJ2
PCH
PDON
PICK4
PIORDY
PNULL
PRADR3
PRBL3
PREAD2
PRHEXZ
PRNTAX
PRNT
Psl
PSTAT2
PUTBUF
PWR1
PWRITE
QLOOP
RD4DSW
RDALTZP
RDAT3
RDCHAR
RDHD2
RDLCBNK2
RDPAGE2
RDSEC2
RDTEXT
REGZ
RESETLC
RETRY
RNDH
ROMSTATE
RTS1
RTS3
RTSS5
SCNTL
SCR3
SCR7
SCRLEVEN
SCEN
SCROLLDN
SDATA
SERMODE
SERFORT
SETBOCOL

215




CDBE
TC059
Cla4
CB67
FE80
FELD
FAAB
coos
CBE3
CBC1
Cc205
2R
ClE2
clcl
BFF9
FB65
C3DB
?C3IF2
CAED
C25C
?7FBSB
C71B
0578
€275
FFBE
057F
€051
FClA
FECA
oc
CE31
FB26
FC22
FCA9
CDEO
Cbhn2
20
co0s5
cpa9
FDE3
C9AD
CFF6
c752
C4B0O
ca471
C495
CBFO
C4AR
46
CT6E
0008
FFC7

SET80
SETANO
SETCH
SETDBAS
SETINV
SETMDZ
SETPLP
SETSTDZP
SETUP2
SEV1
SIN
SLOTZ
SODONE
SORDY2
SSTAT
STITLE
STOREL
STORE3
STSET
SUDONE
TABV
TBLLOOP2
TEMPA
TESTKED
TOSUB
TWSER
TXTSET
up
USR
VBLMODE
VIDMODE
VLINEZ
VTAB
WAITZ
WINI
WIN&O
WNDLFT

WRCARDRAM

X.CUR.ON
XAM
XBITKBD
XFERAZP
XLOOPL
XMCLAMP
XMHLOOP
XMREAD
XNOSBUF
XRBUT2
XREG
XRST1
YHI
ZMODE

CcooD
TC05B
7FB64
TFB4D
TC454

FE18
TFB6F

CACD

FE93

CC4C

C465

Ccl

D3F2

c207

CF29
7FEOB
?C3F7

C3F9

CAF6

C249
7C020

c70D

0O5F8

DBOO

D6FF

cos0

05FA
ccio
D

FE36

FCO4

FB28

FB59

FCAA

CDED

CE18

CEDA
TFECD

CDE7

FDA3

coco

CFEOQ

C7EB0

C4B4

C4ED

c50C

91

C98F

C9AD

C43D

47

C7Fe

*% SUCCESSFUL ASSEMBLY :=

** ASSEMBLER CREATED ON 15-JAN-B4 21:28

SET80VID
SETAN1
SETCOL
SETGR
SETIOU
SETMODE
SETPWRC
SETTERM
SETVID
SHOWCUR
SINOCH
SLTDMY
SOFTEV
souT
STARTXY
STOR
STORE4
STORES
STWASOK
SUNODEF
TAPEOUT
TBELLOOP
TEMPY
THBUF
TREKEY
TETCLR
TYPHED
UPDATE
V2
VERIFY
VibouTl
VLINE
VTAB23
WAIT3
WIN2
WINS
WNDREST
WRITE
X.S8I
XAM8
XBEB1
XFERC2ZM
XMBASIC
XMCLEAR
XMHOME
XMSKIP
XON
XRDEBD
XRKBD1
XSETMOU
YREG
ZZNM1
NO ERRORS

** TOTAL LINES ASSEMBLED 4406
** FREE SPACE PAGE COUNT

216

47

COOF
TC05D
FEEE
CE23
CDAl
FEB4
€360
?FB39
FB4B
C45E
CBAS
C46C
C1BF
c030

FBFO
€3C1
C3B3
FFEOQ
C257
C740
D4F8
€293
?7FBO9
067F
C054
cCol
c399
co70
0678
FBFD
04FB
FC24
FEEB
CDF2
CDD4
22
Cco04
CDRO
FDCH
c9cz
CFE6
c78D
C59A
CACF
C4FC
c7s8
C8C5
C423
C452
35
CB24

SETALTCHAR
SETAN2
SETCUR1
SETHOOKS
SETIT
SETNORM
SETROM
SETTXT
SETWND
SILOOP
SKPLFT
SMINVALID
SOMAIN
SPKR
STATUS
STORADV
STORE
STORY
SUBTBL
suouT
TELI
TEMP1
TERM1
TITLE
TRSER
TXTPAGEL
up2
UPSHIFTO
VELCLR
VFACTV
VIDOUT
VMODE
VTABZ
WDTHCH
WIN3
WINBO
WNDTOP
WRMATNRAM
X.50
XAMPM
XBKB2
XFERZP
XMBOUT
IMDONE
XMINT
XMTSTINT
XPAGE
XRDSER
XRLOOP
X50FF
YS5AV]
ZZNM2

Appendix I: Firmware Listings

SETALTZP
SETAN3
SETCUR
SETIFLG
SETKED
SETPG3
SETSRC
SETUP
SETX
SINOMDD
SKPRT
S0CMD
SORDY
SPNT
STCLR
STORCH
STORE2
STRTS
SUDODEF
TAB
TBL2
TEMP
TERMCUR
TOOFAR
TWKEY
TXTPAGE2
UPSHIFT
USRADR
VBLINT
VFYOK
VIDWALT
VTAB4D
WALT
WINO
WING
WNDBETM
WNDWDTH
X.CUR.OFF
X.UPSHIFT
XBASIC
XCOORD
XFER
XMCDONE
XMH2Z
XMODE
XNOKEY
XRBUT
XRDSNO
XRSET
XXX
YSAV
ZZQUIT

S ({9 O




e e



Aiesso|n




B R

Al1esso| b

65C02: The microprocessor used in the Apple lic computer.

ACIA: Asynchronous Communications Interface Adapter. A
single chip that converts data from parallel to serial form, and
vice versa, and handles serial transmission and reception and
RS-232-C signals, under the control of its internal registers set
and changed by firmware or software.

accumulator: The register in the 6502 and 65C02
microprocessors where most computations are performed.

acronym: A word formed from the initial letters of a name or
phrase, such as ROM, from read-only memory.

ADC: See analog-to-digital converter.

address: A number used to identify something, such as a
location in the computer's memory.

analog: Represented in terms of a physical quantity that can
vary smoothly and continuously over a range of values. For
example, a conventional 12-hour clock face is an analog device
that represents the time of day in terms of the angles of the
clock’'s hands. Compare digital.

analog-to-digital converter: A device that converts quantities
from analog to digital form. For example, the Apple lic’'s hand
control converts the position of the control dial (an analog
quantity) into a discrete number (a digital quantity) that changes
in steps even when the dial is turned smoothly.

AND: A logical operator that produces a true result if both of its
operands are true, a false result if either or both of its operands
are false; compare OR, exclusive OR, NOT.

Apple llc: A personal computer in the Apple Il family,
manufactured and sold by Apple Computer, Inc.

Glossary 219



220

Applesoft: An extended version of the BASIC programming
language used with the Apple llc computer. The firmware for
interpreting and executing programs in Applesoft is included in
the Apple llc ROM.

ASCIl: American Standard Code for Information Interchange; a
code in which the numbers from 0 to 127 stand for text
characters, used for representing text inside a computer and for
transmitting text between computers or between a computer
and a peripheral device.

assembler: A language translator that converts a program
written in assembly language into an equivalent program in
machine language.

assembly language: A low-level programming language in
which individual machine-language instructions are written in a
symbolic form more easily understood by a human programmer
than machine language itself.

asserted: Made true (positive in positive-true logic; negative in
negative-true logic).

asynchronous: Having a variable time interval between
characters.

back panel: The rear face of the Apple lic computer, which
includes the power switch, the power connector, and
connectors for two serial devices, a video display device, an
external disk drive, and a mouse or hand control.

bandwidth: A measure of the range of frequencies a device can
handle. In the case of a video monitor, greater bandwidth
enables it to display more information; to display 80 columns of
text, a monitor should have a bandwidth of at least 12 MHz.

base address: In indexed addressing, the fixed component of
an address.

baud: A unit of signaling speed equal to the number of discrete
conditions or signal events per second. Often equated (though
not precisely) with bits per second.

binary: The representation of numbers in terms of powers of
two, using the two digits 0 and 1. Commonly used in
computers, since the values 0 and 1 can easily be represented
in physical form in a variety of ways, such as the presence or
absence of current, positive or negative voltage, or a white or
black dot on the display screen.

Glossary

R W T i e .




B

bit: A binary digit (0 or 1); the smallest possible unit of
information, consisting of a simple two-way choice, such as yes
or no, on or off, positive or negative, something or nothing.

board: See printed-circuit board.

boot: To start up a computer by loading a program into memory
from an external storage medium such as a disk. Often
accomplished by first loading a small program whose purpose
is to read the larger program into memory. The program is said
to pull itself up by its own bootstraps.

bootstrap: See boot.

BREAK: A SPACE (0) signal sent over a communication line, of
long enough duration to interrupt the sender. This signal is
often used to end a session with a timesharing service.

BRK: A 65C02 instruction that causes the microprocessor to
halt.

buffer: An area of the computer's memory used as a holding
area where information can be stored by one program or device
and then read out by another at a different speed.

bus: A group of wires that transmit related information from one
part of a computer system to another. In the Apple lic, the
address bus has 16 wires, and the data bus has eight.

byte: A unit of information consisting of a fixed number of bits;
on the Apple llc, one byte consists of eight bits and can
represent any value between 0 and 255.

carriage return: An ASCII| character (decimal 13; Appendix H)
that ordinarily causes a printer or display device to place the
subsequent character on the left margin. On a manual
typewriter, this movement is combined with line feed (the
advancement of the paper to the next line). With computers,
carriage return and line feed are separate, causing hair-raising
problems for the user.

carrier: The background signal on a communication channel
that is madified to carry the information. Under RS-232-C rules,
the carrier signal is equivalent to a continuous MARK (1) signal;
a transition to 0 then represents a start bit.

carry flag: The C bit in the 65C02 processor status register,
used to hold the carry bit in addition and subtraction.

Glossary [221




222

cathode-ray tube: An electronic device, such as a television
picture tube, that produces images on a screen coated with
phosphors that emit light when struck by a focused beam of
electrons.

central processing unit: See processor.

character: A letter, digit, punctuation mark, or other symbol
used in printing, displaying or transferring information.

character code: A number used to represent a text character
for processing by a computer system.

chip: The small piece of semiconducting material (usually
silicon) on which an integrated circuit is fabricated.

Clear To Send: An RS-232-C signal from a DCE to a DTE that
is normally kept false until the DCE makes it true, indicating that
all circuits are ready to transfer data out.

code: (1) A number or symbol used to represent some piece of
information in a compact or easily processed form. (2) The
statements or instructions making up a program.

cold start: The process of starting up the Apple llc when the
power is first turned on (or as if the power had just been turned
on) bv loading the operating system into main memory, then
loading and running a program. Compare warm start.

command: A communication from the user to a computer
system (usually typed from the keyboard) directing it to perform
some action.

command character: An ASCIl character, usually
or (ConTrOL H(1), that causes the serial port firmware to interpret
subsequent characters as a command.

command register An ACIA location (at address $CO9A for
port 1 and $COAA for port 2) that stores parity type and
RS-232-C signal characteristics.

communication mode: An operating state in which serial port 2
(or 1, if so set) is prepared to exchange data and signals with a
DCE (such as a modem).

compiler: A language translator that converts a program written
in a high-level programming language into an equivalent
program in some lower-level language (such as machine
language) for later execution. Compare interpreter.

Glossary

et Fle Tl BT B T T Tl Tl Tl Tl DT L TL




RN EEEE

composite video: A video signal that includes both display
information and the synchronization (and other) signals needed
to display it.

computer: An electronic device for performing predefined
(programmed) computations at high speed and with great
accuracy.

computer system: A computer and its associated hardware,
firmware, and software.

connector: A physical device such as a plug, socket, or jack,
used to connect two devices to one another.

control character: A character that controls or modifies the way
information is printed or displayed. Control characters have
ASCIl codes between $00 and $1F (or between $80 and $9F if
the high-order bit is set). You can generate them at the

Apple lic keyboard by holding down (ConTROL ) while typing one
of the letter keysor@ [ \ 1 ®or _.

control register: An ACIA location (at address $C09B for port 1,
or $COAB for port 2) that stores data format and baud rate
selections.

CPU: Central processing unit; see processor.
CRT: See cathode-ray tube.

cursor: A symbol displayed on the screen that marks where the
user's next action will take effect or where the next character
typed from the keyboard will appear.

DAC: See digital-to-analog converter.

data: Information; especially information used or operated on by
a program.

data bit: One of five to eight bits representing a character.

Data Carrier Detect: An RS-232-C signal from a DCE (such as
a modem) to a DTE (such as an Apple lic) indicating that a
communication connection has been established.

Data Communication Equipment: As defined by the RS-232-C
standard, any device that transmits or receives information.
Usually this is a modem. However, when a Modem Eliminator is
used, the Apple lic itself looks like a DCE to the other device,
and the other device looks like a DCE to the Apple lic.

Glossary [223




224

data format: The form in which data is stored, manipulated or
transferred. Serial data transmitted and received by port 1 or 2
has a data format of: one start bit, five to eight data bits, an
optional parity bit, and one, one and a half, or two stop bits.

Data Set Ready: An RS-232-C signal from a DCE to a DTE
indicating that the DCE has established a connection.

Data Terminal Equipment: As defined by the RS-232-C
standard, any device that generates or absorbs information,
thus acting as a terminus of a communication connection.

Data Terminal Ready: An RS-232-C signal from a DTE to a
DCE indicating a readiness to transmit or receive data.

DCD: See Data Carrier Detect.
DCE: See Data Communication Equipment.

debug: To locate and correct an error or the cause of a
problem or malfunction in a computer system. Typically used to
refer to software-related problems.

decimal: The common form of number representation used in
everyday life, in which numbers are expressed in terms of
powers of ten, using the ten digits 0 to 9.

default: A value, action, or setting that is assumed or set in the
absence of explicit instructions otherwise.

demodulate: To recover the information being transmitted by a
modulated signal; for example, a conventional radio receiver
demodulates an incoming broadcast signal to convert it into
sound emitted by a speaker.

device: (1) A physical apparatus for performing a particular task
or achieving a particular purpose. (2) In particular, a hardware
component of a computer system.

digit: (1) One of the characters 0 to 9, used to express numbers
in decimal form. (2) One of the characters used to express
numbers in some other form, such as 0 and 1 in binary or 0

to 9 and A to F in hexadecimal.

digital: Represented in a discrete (noncontinuous) form, such as
numerical digits. For example, contemporary digital clocks
display the time in numerical form (such as 2:57) instead of
using the positions of a pair of hands on a clock face. Compare
analog.

Glossary

G T T < { W O o W W O o WO W W W o W




f
14

™

1
e

f
19

f
4

™

I
14

F

I

i

=

digital-to-analog converter: A device that converts quantities
from digital to analog form.

DIP: See dual in-line package.

disassembler: A language translator that converts a
machine-language program into an equivalent program in
assembly language, more easily understood by a human
programmer. The opposite of an assembler.

disk: An information storage medium consisting of a flat,
circular magnetic surface on which information can be recorded
in the form of small magnetized spots, similarly to the way
sounds are recorded on tape.

disk drive: A device that writes and reads information on the
surface of a magnetic disk.

diskette: A term sometimes used for the small (5-1/4-inch)
flexible disks used with the Apple Disk Il drive.

Disk Il drive: A model of disk drive made and sold by Apple
Computer for use with the Apple lle computer; uses 5-1/4-inch
flexible (floppy) disks.

Disk Operating System: An optional software system for the
Apple lle that enables the computer to control and communicate
with one or more Disk |l drives.

display: (1) Information exhibited visually, especially on the
screen of a display device. (2) To exhibit information visually.
(3) A display device.

display device: A device that exhibits information visually, such
as a television receiver or video monitor.

display screen: The glass or plastic panel on the front of a
display device, on which images are displayed.

DOS: See Disk Operating System.
DSR: See Data Set Ready.

DTE: See Data Terminal Equipment.
DTR: See Data Terminal Ready.

dual in-line package: An integrated circuit packaged in a
narrow rectangular box with a row of metal pins along each
side; similar in appearance to an armored centipede.

echo: To send an input character to a video display, printer, or
other output device.

Glossary 225




226

edit: To change or modify; for example, to insert, remove,
replace, or move text in a document.

editor: A program that enables the user to create and edit
information of a particular form; for example, a text editor or a
graphics editor.

effective address: In machine-language programming, the
address of the memory location on which a particular instruction
actually operates, which may be arrived at by indexed
addressing or some other addressing method.

emulation mode: A manner of operating in which one computer
or interface imitates another.

even parity: Use of an extra bit set to 0 or 1 as necessary to
make the total number of 1 bits (among the data bits plus the
parity bit) an even number.

error message: A message displayed or printed to notify the
user of an error or problem in the execution of a program.

escape mode: A state of the Apple lle computer, entered by
pressing the key, in which certain keys on the keyboard
take on special meanings for positioning the cursor and
controlling the display of text on the screen.

escape sequence: A sequence of keystrokes, beginning with
(Esc), used for positioning the cursor and controlling the display
of text on the screen.

exclusive OR: A logical operator that produces a true result if
one of its operands is true and the other false, a false result if
its operands are both true or both false; compare OR, AND,
NOT.

execute: To perform or carry out a specified action or
sequence of actions, such as those described by a program.

firmware: Software stored permanently in hardware: programs
in read-only memory (ROM). Such programs (for example, the
Applesoft interpreter and the Apple llc Monitor program) are
built into the computer at the factory; they can be executed at
any time but cannot be modified or erased from main memory.
Compare hardware, software.

fixed-point: A method of representing numbers inside the
computer in which the decimal point (more correctly, the binary
point) is considered to occur at a fixed position within the

Glossary

LoFleFle® mO 'R RR R TLOTLTLT T




number. Typically, the point is considered to lie at the right end
of the number, so that the number is interpreted as an integer.
Compare floating-point.

flexible disk: A disk made of flexible plastic; often called a
floppy disk. Compare rigid disk.

floating-point: A method of representing numbers inside the
computer in which the decimal point (more correctly, the binary
point) is permitted to float to different positions within the
number. Some of the bits within the number itself are used to
keep track of the point's position. Compare fixed-point.

form feed: An ASCII character (decimal 12; Appendix H) that
causes a printer or other paper-handling device to advance to
the top of the next page.

framing error: In serial data transfer, absence of the expected
stop bit(s) at the end of a received character. The serial port 1
and 2 ACIAs record this error by setting bit 1 (FRM) of its
status register to 1. The ACIA checks and records each framing
error separately: if the next character is OK, the FRM bit is
cleared.

full duplex: Capable of simultaneous two-way communication.

graphics: (1) Information presented in the form of pictures or
images. (2) The display of pictures or images on a computer's
display screen. Compare text.

half duplex: Capable of communication in one direction at a
time.

hand control: An optional peripheral device that can be
connected to the Apple lic's hand control connector and has a
rotating dial and a pushbutton; typically used to control
game-playing programs, but can be used in more serious
applications as well.

hand control connector: A 9-pin connector on the Apple lic's
back panel, used for connecting hand controls to the computer.

hardware: Those components of a computer system consisting
of physical (electronic or mechanical) devices. Compare
software, firmware.

Glossary [227




2281

hertz: The unit of frequency of vibration or oscillation, also
called cycles per second; named for the physicist Heinrich Hertz
and abbreviated Hz. The Apple llc's 65C02 microprocessor
operates at a clock frequency of 1 million hertz, or 1 megahertz
(MHz).

hexadecimal: The representation of numbers in terms of
powers of sixteen, using the sixteen digits 0 to 9 and A to F.
Hexadecimal numbers are easier for humans to read and
understand than binary numbers, but can be converted easily
and directly to binary form: each hexadecimal digit corresponds
to a sequence of four binary digits, or bits.

high-level language: A programming language that is relatively
easy for humans to understand. A single statement in a
high-level language typically corresponds to several instructions
of machine language.

high-order byte: The more significant half of a memory address
or other two-byte quantity. In the Apple lic's 65C02
microprocessor, the low-order byte of an address is usually
stored first and the high-order byte second.

high-resolution graphics: The display of graphics on the
Apple lic's display screen as a six-color array of points,
280 columns wide and 192 rows high.

hold time: In computer circuits, the amount of time a signal
must remain valid after some related signal has been turned off;
compare setup time.

Hz: See hertz.
IC: See integrated circuit.

index: (1) A number used to identify a member of a list or table
by its sequential position. (2) A list or table whose entries are
identified by sequential position. (3) In machine-language
programming, the variable component of an indexed address,
contained in an index register and added to the base address to
form the effective address.

indexed addressing: A method of specifying memory addresses
used in machine-language programming.

index register: A register in a computer processor that holds an
index for use in indexed addressing. The Apple lic's 65C02
microprocessor has two index registers, called the X register
and the Y register.

Glossary

ki

L § W T § ML L W L L LT




{{{r {* p

'R EE

input: (1) Information transferred into a computer from some
external source, such as the keyboard, a disk drive, or a
modem. (2) The act or process of transferring such information.

instruction: A unit of a machine-language or assembly-language
program corresponding to a single action for the computer's
processor to perform.

integer: A whole number, with no fractional part; represented
inside the computer in fixed-point form.

integrated circuit: An electronic component consisting of many
circuit elements fabricated on a single piece of semiconducting
material, such as silicon; see chip.

interface: The devices, rules, or conventions by which one
component of a system communicates with anocther.

interpreter: A language translator that reads a program written
in a particular programming language and immediately carries
out the actions that the program describes. Compare compiler.

interrupt: A temporary suspension in the execution of a
program by a computer in order to perform some other task,
typically in response to a signal from a peripheral device or
other source external to the computer.

inverse video: The display of text on the computer's display
screen in the form of black dots on a white (or other single
phosphor color) background, instead of the usual white dots on
a black background.

1/0: Input/output; the transfer of information into and out of a
computer. See input, output.

1/O device: Input/output device; a device that transfers
information into or out of a computer. See input, output,
peripheral device.

1/0O link: A fixed location that contains the address of an
input/output subroutine in the Apple llc Monitor program.

K: Two to the tenth power, or 1024 (from the Greek root kilo,
meaning one thousand); for example, 64K equals 64 times
1024, or 65,536.

keyboard: The set of keys built into the Apple llc computer,
similar to a typewriter keyboard, for typing information to the
computer.

Glossary 229




230

keystroke: The act of pressing a single key or a combination of
keys (such as (ConTROL)H(C)) on the Apple llc keyboard.

kilobyte: A unit of information consisting of 1K (1 024) bytes, or
8K (8192) bits; see K.

KSW: The symbolic name of the location in the Apple lic's
memory where the standard input link is stored; stands for
keyboard switch. See 1/O link.

language: See programming language.

language translator: A system program that reads a program
written in a particular programming language and either
executes it directly or converts it into some other language
(such as machine language) for later execution. See interpreter,
compiler, assembler.

least significant bit: The right-hand bit of a binary number as
written down; its positional value is 0 or 1.

line feed: An ASCII character (decimal 10; Appendix H) that
ordinarily causes a printer or video display to advance to the
next line.

load: To transfer information from a peripheral storage medium
(such as a disk) into main memory for use; for example, to
transfer a program into memory for execution.

local: Nearby; capable of direct connection using wires only.
location: See memory location.

logical operator: An operator, such as AND, that combines
logical values to produce a logical result.

low-level language: A programming language that is relatively
close to the form that the computer’s processor can execute
directly. Low-level languages available for the Apple lic include
65C02 machine language and 65C02 assembly language.

low-order byte: The less significant half of a memory address
or other two-byte quantity. In the Apple lic's 65C02
microprocessor, the low-order byte of an address is usually
stored first and the high-order byte second.

low-power Schottky: A type of TTL integrated circuit having
lower power and higher speed than a conventional TTL
integrated circuit.

Glossary

J /L (N T W L 2 T S O T




i
| ¥

f
i

i

1mmy
| S

B R

low-resolution graphics: The display of graphics on the
Apple lic's display screen as a sixteen-color array of blocks,
40 columns wide and 48 rows high.

machine language: The form in which instructions to a
computer are stored in memory for direct execution by the
computer's processor. Each model of computer processor (such
as the 65C02 microprocessor used in the Apple llc) has its own
form of machine language.

main memory: The memory component of a computer system
that is built into the computer itself and whose contents are
directly accessible to the processor.

MARK parity: A bit of value 1 appended to a binary number for
transmission. The receiving device can then check for errors by
looking for this value on each character.

memory: A hardware component of a computer system that can
store information for later retrieval; see main memory,
random-access memory, read-only memory, read-write
memory.

memory location: A unit of main memory that is identified by an
address and can hold a single item of information of a fixed
size; in the Apple llc, a memory location holds one byte, or
eight bits, of information.

MHz: Megahertz; one million hertz. See hertz.

microcomputer: A computer, such as the Apple llc, whose
pProcessor is a miCroprocessor.

microprocessor: A computer processor contained in a single
integrated circuit, such as the 65C02 microprocessor used in
the Apple llc.

microsecond: One millionth of a second; abbreviated us.
millisecond: One thousandth of a second; abbreviated ms.

mode: A state of a computer or system that determines its
behavior.

modem: Modulator/demodulator; a peripheral device that
enables the computer to transmit and receive information over a
telephone line; a DCE that connects a DTE to communication
lines.

modem eliminator: The physical crossing of wires that replaces
a pair of modems for direct connection of two DTEs.

Glossary 231




232

modulate: To modify or alter a signal so as to transmit
information; for example, conventional broadcast radio transmits
sound by modulating the amplitude (amplitude modulation,

or AM) or the frequency (frequency modulation, or FM) of a
carrier signal.

monitor: See video monitor.

Monitor program: A system program built into the Apple llc in
firmware, used for directly inspecting or changing the contents
of main memory and for operating the computer at the
machine-language level.

most significant bit: The leftmost bit of a binary number as
written down. This bit represents 0 or 1 times 2 to the power
one less than the total number of bits in the binary number. For
example, in the binary number 10000, which contains five digits,
the 7 represents 1 times two to the fourth power—or sixteen.

nanosecond: One billionth (in British usage, one
thousand-millionth) of a second; abbreviated ns.

network: A collection of interconnected, individually controlled
computers, together with the hardware and software used to
connect them.

nibble: A unit of information equal to half a byte, or four bits;
can hold any value from 0 to 15. Sometimes spelled nybble.

NOT: A unary logical operator that produces a true result if its
operand is false, a false result if its operand is true; compare
AND, OR, exclusive OR.

NTSC: (1) National Television Standards Committee; the
committee that defined the standard format used for
transmitting broadcast video signals in the United States.
(2) The standard video format defined by the NTSC.

object code: See object program.

object program: The translated form of a program produced by
a language translator such as a compiler or assembler; also
called object code. Compare source program.

odd parity: Use of an extra bit set to 0 or 1 as necessary to
make the total number of 1 bits an odd number.

opcode: See operation code.

operand: A value to which an operator is applied; the value on
which an opcode operates.

Glossary

BACEEEL CEACEL CROTE R R ELEL R 'EL'ER C'EL RN TR




BN

operating system: A software system that organizes the
computer's resources and capabilities and makes them available
to the user or to application programs running on the computer,

operation code: The part of a machine-language instruction that
specifies the operation to be performed; often called opcode.

operator: A symbol or sequence of characters, such as + or
AND, specifying an operation to be performed on one or more
values (the operands) to produce a result.

OR: A logical operator that produces a true result if either or
both of its operands are true, a false result if both of its
operands are false; compare exclusive OR, AND, NOT.

output: Information transferred from a computer to some
external destination, such as the display screen, a disk drive, a
printer, or a modem.

overrun: A condition that occurs when the Apple llc processor
does not retrieve a received character from the ACIAs receive
data register before the subsequent character arrives. The ACIA
automatically sets bit 2 (OVR) of its status register; subsequent
characters are lost. The receive data register contains the last
valid data word received.

page: (1) A screenful of information on a video display,
consisting on the Apple lic of 24 lines of 40 or 80 characters
each. (2) An area of main memory containing text or graphical
information being displayed on the screen. (3) A segment of
main memory 256 bytes long and beginning at an address that
is an even multiple of 256 bytes.

page zero: See zero page.

parallel interface: An interface in which many bits of
information (typically eight bits, or one byte) are transmitted
simultaneously over different wires or channels. Compare serial
interface.

parity: Maintenance of a sameness of level or count, usually the
count of 1 bits in each character, for error checking.

parity error: Absence of the correct parity bit value in a received
character. The serial port ACIAs record this error by setting
bit 0 (PAR) of their status registers to 1.

PC board: See printed-circuit board.

Glossary [233




234

phase: (1) A stage in a periodic process; a point in a cycle; for
example, the 65C02 microprocessor uses a clock cycle
consisting of two phases called PHIO and PHI1. (2) The
relationship between two periodic signals or processes; for
example, in NTSC color video, the color of a point on the
screen is expressed by the instantaneous phase of the video
signal relative to the color reference signal.

pipelining: A feature of a processor that enables it to begin
fetching the next instruction before it has finished executing the
current instruction. All other things equal, processors that have
this feature run faster than those without it.

pointer: An item of information consisting of the memory
address of some other item.

pop: To remove the top entry from a stack.

port: The point of connection, usually a physical connector,
between a computer and a peripheral device, another computer,
or a network.

power supply: The hardware component of a computer that
draws electrical power from a power outlet and converts it to
the forms needed by some other hardware component.

printed-circuit board: A hardware component of a computer or
other electronic device, consisting of a flat, rectangular piece of
rigid material, commonly fiberglass, from which all conducting
material except the desired circuits is etched, and to which
integrated circuits and other electronic components are
connected.

processor: The hardware component of a computer that
performs the actual computation by directly executing
instructions represented in machine language and stored in
main memory.

program: (1) A set of instructions describing actions for a
computer to perform in order to accomplish some task,
conforming to the rules and conventions of a particular
programming language. (2) To write a program.

programming language: A set of rules or conventions for
writing programs.

prompt: To remind or signal the user that some action is
expected, typically by displaying a distinctive symbol, a
reminder message, or a menu of choices on the display screen.

Glossary

0 O O

t

IR RSB T)EL_E)

4
| S




prompt character: A text character displayed on the screen to
prompt the user for some action. Often also identifies the
program or component of the system that is doing the
prompting; for example, the prompt character ] is used by the
Applesoft BASIC interpreter, = by Integer BASIC, and * by the
system Monitor program.

prompt message: A message displayed on the screen to
prompt the user for some action.

protocol: A predefined exchange of control sighals between
devices enabling them to prepare for and carry out coordinated
data transfers.

push: To add an entry to the top of a stack.

radio-frequency modulator: A device for converting the video
signals produced by a computer to a form that can be accepted
by a television receiver.

RAM: See random-access memaory.

random-access memory: Memory in which the contents of
individual locations can be referred to in an arbitrary or random
order.

raster: The pattern of parallel lines making up the image on a
video display screen. The image is produced by controlling the
brightness of successive dots on the individual lines of the
raster.

read: To transfer information into the computer’'s memory from
a source external to the computer (such as a disk drive or
modem) or into the computer's processor from a source
external to the processor (such as the keyboard or main
memaory).

read-only memory: Memory whose contents can be read but
not written; used for storing firmware. Information is written into
read-only memory once, during manufacture; it then remains
there permanently, even when the computer's power is turned
off, and can never be erased or changed. Compare read-write
memory, random-access memory, write-only memory.

read-write memory: Memory whose contents can be both read
and written; often misleadingly called random-access memory,
or ARAM. The information contained in read-write memory is
erased when the computer's power is turned off, and is

Glossary 235




236

permanently lost unless it has been saved on a more permanent
storage medium, such as a disk. Compare read-only memory,
random-access memory, write-only memory.

receive data register: A read-only register in each serial port
ACIA (at location $C098 for port 1 and $SCOAS8 for port 2) that
stores the most recent character successfully received.

register: A location in a computer processor where an item of
information, such as a byte, is held and modified under program
control. Registers in the 65C02 microprocessor include the
accumulator (A), two index registers (X and Y), the stack
pointer (S), the processor status register (P), and the program
counter (PC). The PC register holds two bytes (sixteen bits); the
other registers hold one byte (eight bits) each.

remote: Too distant for direct connection using wires or cables
only.

Request To Send: An RS-232-C signal from a DTE to a DCE to
prepare the DCE for data transmission.

return address: The point in a program to which control returns
on completion of a subroutine.

RF modulator: See radio-frequency modulator.
RI: See Ring Indicator.

rigid disk: A disk made of a hard, nonflexible material. Compare
flexible disk.

Ring Indicator: An optional RS-232-C signal from a DCE to a
DTE that indicates the arrival of a call.

ROM: See read-only memory.

routine: A part of a program that accomplishes some task
subordinate to the overall task of the program.

RS-232-C: A standard created by the Electronic Industries
Association (EIA) to allow devices of different manufacturers to
exchange serial data—particularly via telephone lines.

RTS: See Request To Send.

run: (1) To execute a program. (2) To load a program into main
memory from a peripheral storage medium, such as a disk, and
execute it.

save: To transfer information from main memory to a peripheral
storage medium for later use.

Glossary

1 T W O o N O {  { O Y W |

1!

[EL."En. 'EL T

LLTL

3




A

i

ik

screen: See display screen.

scroll: To change the contents of all or part of the display
screen by shiftirg information out at one end (most often the
top) to make room for new information appearing at the other
end (most often the bottom), producing an effect like that of
moving a scroll of paper past a fixed viewing window. See
viewport, window.

serial interface: An interface in which information is transmitted
sequentially, one bit at a time, over a single wire or channel.
Compare parallel interface.

setup time: The amount of time a signal must be valid in
advance of some event; compare hold time.

silicon: A non-metallic, semiconducting chemical element from
which integrated circuits are made.

soft switch: A means of changing some feature of the Apple lic
from within a program; specifically, a location in memory that
produces some special effect whenever its contents are read or
written.

software: Those components of a computer system consisting
of programs that determine or control the behavior of the
computer. Compare hardware, firmware.

source code: See source program.

source program: The original form of a program given to a
language translator such as a compiler or assembler for
conversion into another form; sometimes called source code.
Compare object program.

space character: A text character whose printed representation
is a blank space, typed from the keyboard by pressing the
SPACE bar.

SPACE parity: A bit of value 0 appended to a binary number for
transmission. The receiving device can look for this value on
each character as a means of error checking.

stack: A list in which entries are added or removed at one end
only (the top of the stack), causing them to be removed in LIFO
(last-in-first-out) order.

start bit: A transition from a MARK signal to a SPACE signal
for one bit-time, indicating that the next string of bits represents
a character.

Glossary 237




238

status register: A register in an ACIA (at location $C099 for
port 1 and $COAS for port 2) that stores the state of two of the
RS-232-C signals and the state of the transmit and receive data
registers, as well as the outcome of the most recent character
transfer.

stop bit: A MARK signal following a string of data bits (or their
optional parity bit) to indicate the end of a character.

string: An item of information consisting of a sequence of text
characters.

strobe: (1) An event, such as a change in a signal, that triggers
some action. (2) A signal whose change is used to trigger some
action.

subroutine: A part of a program that can be executed on
request from any point in the program, and which returns
control to the point of the request on completion.

television receiver: A display device capable of receiving
broadcast video signals (such as commercial television) by
means of an antenna. Can be used in combination with a
radio-frequency modulator as a display device for the Apple llc
computer. Compare video monitor.

television set: See television receiver.

terminal: A device consisting of a typewriterlike keyboard and a
display device, used for communicating between a computer
system and a human user. Personal computers such as the
Apple llc typically have all or part of a terminal built into them.

terminal mode: An operating state of the Apple llc
communication port in which the firmware makes the computer
act like a simple ASCII terminal.

text: (1) Information presented in the form of characters
readable by humans. (2) The display of characters on the
Apple lic's display screen. Compare graphics.

text window: An area on the Apple lic's display screen within
which text is displayed and scrolled.

transistor-to-transistor logic: (1) A family of integrated circuits
used in computers and related devices. (2) A standard for
interconnecting such circuits that defines the voltages used to
represent logical zeros and ones.

Glossary

LT Tl

{9

I

WL {0 9 O

(.

3



O

transmit data register: A write-only register in one of the serial
port ACIAs (at location $C098 for port 1 and $COAS8 for port 2)
that holds the current character to be transmitted.

troubleshoot: To locate and correct the cause of a problem or
malfunction in a computer system. Typically used to refer to
hardware-related problems; compare debug.

TTL: See transistor-to-transistor logic.

unary operator: An operator that applies to a single operand;
for example, the minus sign (=) in a negative number such
as -6 is a unary arithmetic operator.

user: The person operating or controlling a computer system.

user interface: The rules and conventions by which a computer
system communicates with the person operating it.

vector: (1) The starting address of a program segment, when
used as a common point for transferring control from other
programs. (2) A memory location used to hold a vector, or the
address of such a location.

video: (1) A medium for transmitting information in the form of
images to be displayed on the screen of a cathode-ray tube.
(2) Information organized or transmitted in video form.

video monitor: A display device capable of receiving video
signals by direct connection only, and which cannot receive
broadcast signals such as commercial television. Can be
connected directly to the Apple llc computer as a display
device. Compare television receiver.

viewport: All or part of the display screen, used by an
application program to display a portion of the information (such
as a document, picture, or worksheet) that the program is
working on. Compare window.

warm start: The process of restarting the Apple llc after the
power is already on, without reloading the operating system into
main memory and often without losing the program or
information already in main memory. Compare cold start.

window: The portion of a collection of information (such as a
document, picture, or worksheet) that is visible in a viewport on
the display screen; compare viewport.

word: A group of bits of a fixed size that is treated as a unit;
the number of bits in a word is a characteristic of each
particular computer.

Glossary 239




240

wraparound: The automatic continuation of text from the end of
one line to the beginning of the next, as on the display screen
or a printer.

write: To transfer information from the computer to a
destination external to the computer (such as a disk drive,
printer, or modem) or from the computer's processor to a
destination external to the processor (such as main memory).

X register: One of the index registers in the 65C02
MiCroprocessor.

Y register: One of the index registers in the 65C02
MiCroprocessor.

zero page: The first page (256 bytes) of the Apple lic's
memory, also called page zero. Since the high-order byte of any
address in this page is zero, only the low-order byte is needed
to specify a zero-page address; this makes zero-page locations
more efficient to address, in both time and space, than
locations in any other page of memory.

Glossary

{0 {W  T { W




e { {



Aydeibonqig




R

AydesBor|1aqriagq

Apple If Monitors Peeled. Cupertino, Calif.: Apple Computer,
Inc., 1978.

Currently not updated for Apple lle and llc, but a good
introduction to Apple Il series input/output procedures;
also useful for historical background.

Apple lle Design Guidelines. Cupertino, Calif.: Apple Computer,
Inc., 1982.

Addendum to the Design Guidelines. Cupertino, Calif.: Apple
Computer, Inc., 1984,

Apple lle Reference Manual. Cupertino, Calif.: Apple Computer,
Inc., 1982.

Applesoft BASIC Programmer's Reference Manual, Volumes 1
and 2. For the Apple Il, lle, and llc. Cupertino, Calif.:
Apple Computer, Inc., 1982.

The version that applies to both the Apple lle and the
Apple llc has Apple product number A2L0084 (Vol. 1) and
A2L0085 (Vol.2).

Applesoft Tutorial. Cupertino, Calif.: Apple Computer, Inc., 1982.

Leventhal, Lance. 6502 Assembly Language Programming.
Berkeley, Calif.: Osborne/McGraw-Hill, 1979.

Bibliography [243




Synertek Hardware Manual. Santa Clara, Calif.: Synertek
Incorporated, 1976.

Does not contain instructions new to 65C02, but is the
only currently available manufacturer's hardware manual
for 6500 series microcomputers.

Synertek Programming Manual. Santa Clara, Calif.: Synertek,
Incorporated, 1976.

The only currently available manufacturer's programming
manual for 6500 series microcomputers.

Watson, Allen, Ill. “ A Simplified Theory of Video Graphics,
Part I." Byte Vol. 5, No. 11 (November, 1980).

——. "A Simplified Theory of Video Graphics, Part Il." Byte
Vol. 5, No. 12 (December, 1980).

. "More Colors for Your Apple." Byte Vol. 4, No. 6 (June,
1979).

. “True Sixteen-Color Hi-Res.” Apple Orchard Vol. 5,
No. 1 (January, 1984).

Wozniak, Steve: “System Description: The Apple II." Byte Vol. 2,
No. 5 (May, 1977).

Bibliography

T L O W O O O O O O {

[ W




O U O\ Y\ L Y LY\ Y (N O (O (L (O (- A |

S 0 A R 0 0 0 0 A A






4

L

X @ p u

References to entries in Volume 2 are in square brackets | |.

Cast of Characters

* (asterisk) 179
\ (backslash) 59

— (blinking underscore cursor) 154

= (greater than sign) 59
? (guestion mark) 58, 59
| (right bracket) 59

A

A register 17
accumulator 17
ACIA 134, 148, 253-262, [63]
block diagram 255
interrupts [60]
address bus 12, 213
AKD 218-219
ALTCHAR 104-105, 218, [73]
alternate character set 68, [73]
ALTZP 25, 28, 216, [46]
analog inputs 176, [68]
annunciator outputs [76]
ANSI [84]
any-key-down 79, 229
flag [66]
Apple Extended 80-Column
Text Card [67, 74|
Apple Language Card [64]

Index

Apple Il series differences [60-78]
Apple llc
block diagram 210
care of 205-206
differences from Apple lle [61-78]
expansion 2
Apple lle ROMs [72]
Applesoft & commands 52
Applesoft BASIC 59, [16-18, 40|
BASIC interpreter 24
Applesoft interpreter 21, 224-225
arithmetic, hexadecimal 193
ASCIl [71, 83, B6-87]
character set 79, [97, 114-122]
assemblers 199
assembly language, and mouse 171
asterisk (") 179
automatic line feed 131, 145
automatic repeat 3
Autostart ROM [69]
auxiliary memory screen holes
135-136, 149-150
See also screen holes
auxiliary RAM 20
AUXMOVE See MOVEAUX
AY-3600-type keyboard decoder 229

247




_i

B

B command 131, 144
back panel B, 9
backslash (%) 59, 62
backspace 62
bank 25
bank-switched memory 22, [64, 69]
BANK2 216
BASIC 130, 163, 175-177, 179, 180,
192, [114]
and assembly language support 171
and hand controls 173
and mouse 163, 172
BASICS disk [39, 69]
baud rate 137, 258
BCLK 256
BELL 84
BELL1 84
BIT instruction [3]
bits [103]
blanking intervals 233
blinking underscore cursor (_) 154
block diagrams
ACIA 255
Apple llc 210
BREAK 132, 137, 145
break instructions [48]
BREAK signal [75]
BRK 75, 189, [43]
buffer 59
serial I/O [75]
built-in diagnostics [62]
built-in disk drive 8
built-in self-tests [65]
button interrupt mode 164, 167
bypassing firmware [58-60]
byte(s) [103, 104]

C3KEYIN 55
CALL statement 179
Canadian keyboard [91]
cancel line 62
4,79, [84]
card(s) [74, 75]
care of computer 205-206
carriage return 139, 152
carrier 137
CAS (column-address strobe) 228
cassette input and output [67-68, 77]
certifications [99]
CH (cursor horizontal) 63
changing memory contents 184
changing registers 190
character(s)

flashing 68

generator 241

inverse 68

normal 68

sets [71, 73]
chips, custom [78]
clamping boundaries 171
CLAMPMQOUSE 168
CLEARMOUSE 168
CLEOLZ 116
clock 211

master 213

system 213
CLREOL 116
CLREOP 116
CLRSCR 117
CLRTOP 117
code conversions [114-122]
cold-start procedure 49, 50
colors

high-resolution 243

low-resolution 242, [63]

power-up. 51 command character 146, [75]
command register 134, 148, 260
c Communication Card [74]
; CO6X 267 communication port 141
{ co7X 217 comparing data in memory 188-189

C3COUT1 55, 64

- — F N B e — S
e s o S S S =

OA T HNTTATNIIOOAMNTNTTTTT

Index

248]

e e ——

—




connector(s)
back panel 8-9
game [76]
power 207
serial port 257
CONTINUE BASIC command 192
4, 79, 229
transferring 42-43
control characters 64
control register 134, 148, 258-259
CONTROL-A, as command character
143
[53]
(H) 62
CONTROL-I, as command character
130, 132
CONTROL-K, as command character
193
56, 126, 142
as command character 193
155
[53]
156, 159
62
197

commands 52

CONTROL RESET 50

conversion, number [106]

COUT 55, 117, 191

COUT1 55, 68, 117

CP/M [40]

CPU See 65C02

CR See carriage return

CREF 220, 221, 251

CROUT 117

CROUT1 117

CSW 56, 70, 104

cursor 58, 130, 143, 193
blinking underscore (_) 154
flashing checkerboard 55
flashing question mark 130, 143
inverse solid 55

Index

custom chips [78]
custom integrated circuits 215-223
CV 63

D

D command 131, 144
data, transferring 41-42
data bits 137
data bus 213
Data Carrier Detect [60]
data format 137, 138, 144, 151
data inputs 21
Data Set Ready See DSR
Data Terminal Ready See DTR
DCB 261
DCD [60]
decimal, negative [107]
device signature 72
DEVNO [21]
DHIRES 49, 104, 106, 107, 166
diagnostics, built-in [62, 65]
differences among Apple II's [61-78]
disable MouseText 65
DISK 221, 222
disk
controller cards [74]
controller unit See WM
input and output 124-126
I/O firmware entry points 20
disk drive 8
connector 252
port [50]
speed 13
disk-use light 6, [71]
display
address mapping 235-238
inverse 191
memory addressing 234
memory switches 43-47
modes 104-108, 239-247
normal 191
page maps 108-114
pages 102-103




250]

DISVBL 166
DISXY 166
DMA transfers [70]
DOS 126, 130, 143, 179, 180, [39, 69]
interrupts [42]
zero page use [16-18]
double-high-resolution 245
graphics [74]
colors 100-101
drive, external, startup 126
drive motor 49
DSR 256, 261, [60]
DSR1B 257
DSR2B 257
DTR 260
DTR1B 257
DTR2B 257
dumb terminal 159
Dvorak keyboard 6, [88]
dynamic-RAM refreshment and timing
226-229

E

echo 131, 145, 155, 260

EIA standard 258

80 columns 65, 93

80/40 column switch 5

80COL 104, 105, 107, 108, 218, 219,
220

BOSTORE 39, 44, 45, 104, 105, 107,
108, 216, 238, 241

electrical power 206

ENBDO 217

enable MouseText 65

ENBVBL 166

ENBXY 166

ENCLCRAM 216

English keyboard [90]

enhanced video firmware 20, 224

enter terminal mode 145

entry points, firmware [31-36]

environmental specifications 205-206

Index

4

61

61

escape codes 60

escape sequences 4
even-parity [114]

EXAMINE command 190
examining memory contents 181
examining registers 190
expansion ROM space 73
Extended 80-Column Text Card [64]
external drive startup 126
external interrupts [55]

external power connector 207
EXTINT 256, [55, 60]

F

FCC [99]
firmware 12
entry points [30-36]
listings [126-215]
locations [30-36]
protocol 71, 134, 148
video routines 115-123
flag inputs 21
FLASH 256
flashing characters 68
flashing checkerboard cursor 55
flashing power light 6
forced cold start 50
14M 215, 220, 221
FORTRAN [41]
40 columns, switching to 80 5
40-column 65, 93
48K memory 34, 35, 39
framing errors 258
French keyboard [91-92]
full duplex 156-158

T (N W (W W W O o W W o W (

\



B EEREEEEEE SR

G

GAME 1/O connector [76]

game input 267

game paddles See hand controls
GAMESWO 268

GAMESW1 268

General Logic Unit (GLU) 13
German keyboard [93]

GETLN 58-62, 180

GETLN1 59, 82

GETLNZ 82

GLU 221

GND 257

GO command 189, 190, 192, 198
graphic bits [109]

graphics mode 96-102

greater than sign (=) 59

H

half duplex 155
hand control 8, 173-178
circuits 269
connector 174
input [76]
signals 270
hand controller 267
handle 9, 206
hardware
accesses 21
addresses [66]
locations 181, [15]
page locations 164
headphones 232
heat 206
hexadecimal [106]
arithmetic 193

Index

high-resolution 97
colors 243
display 243
double 245
graphics colors 98-99
Page 1 37
Page 2 38
HIRES 44, 45, 104, 105, 107, 216,
218, [67]
HLINE 117
HOME 118
HOMEMOUSE 168
HRP1 37
HRP1X 37, 45
HRP2 45
HRP2X 38
humidity 205

/

| command 131, 145, 158

I/O firmware, video routines 120-123

I/O links 55

icons 68

identification bytes 71

IEC [99]

IN#2 143, 154

IN#n 56, 70

index registers 17

INH 217

INITMOUSE 169

input and output, disk 124-126

input buffer (page $02) 36

Input/Output Unit (IOU) 13, 215,
218-219, [78]

instruction cycle times [63]

Integer BASIC 59, [16-18, 41, 69]

Integrated Woz Machine (IWM) 13

internal converter 208

internal voltage converter 206

[251




252]

interrupt(s) 24, 75, 260, [40-60, 70]
ACIA [49]
Apple Il and [42]
Apple Il Plus and [42]
Apple lle and [43]
disk drive port [49]
DOS and [42]
keyboard [52-53]
Monitor and [42]
mouse [49]
Pascal and [42]
65C02 and [43]
6551 [49]
vertical blanking [49]
interrupt handler(s)
mouse 163
user's [57]
interrupt requests 52
interrupt vector [43-44]
interrupt-handling sequence [45]
inverse 65
characters 68
display 191
solid cursor 55
INVERSE command 191
invoking the monitor 179
IOREST [36]
IORTS [36]
IOSAVE [36]
10U (Input/Output Unit) 13, 215,
218-219, (78]
IOUDIS 49, 104, 106, 166, [67, 68]
IOUSELIO 219
IRQ 75, 156, 219, [43]
handling routine [34]
vector [36]
ISO [84]
layout [89]
Italian keyboard [94]
IWM (Integrated Woz Machine) 13,
222

Index

J

jack 7

JMP $C600 126

JMP indirect instruction [3]
joysticks See hand controls

K

K (1024) 17
K command 131, 145
KBD 217
keyboard 229-231
buffer [52-53]
character decoder 225
circuit diagram 230
data [66]
input buffer 37
interrupts  [52, 53]
layout [71]
ANSI [90]
British See English
Canadian [91-92]
Dvorak [88]
English [90]
French [91-92]
German [93]
ISO [90]
Italian [94-95]
Sholes [85]
Western Spanish [96]
signals 231
strobe 79, 229, |50, 66]
switch 5
standard 5
KEYIN 55, 57, 58
KSTRB 77, 219, 256
KSW 56, 57, 70, 104

L

L command 131, 145
LANGSW 256
LDPS 220, 241, 251

{E b F b B! B ool B ! B e B o E . P

'Hl

‘L

LRk tEl

T 'H



line feed 145, 152
automatic 131
line length 136, 150

line voltage 205
line width 139, 144
LIST command 199
local 154
low-resolution
colors 242
display 242
graphics 96

M

machine identification [63]
main memory screen holes 135-136,
149, 150
main RAM 20
MARK (1) 132
MARK parity 138, [114]
master clock 213
maximum current drain 252
memory
addressing 223-229
bank-switched 22
bus organization 224
comparing data in 188-189
display switches 43-47
dump 182-184
examining contents 181
48K 34
map 18, [15-28]
moving data in 186-188
organization [64]
state [48]
switches, display 43-47
Memory Management Unit See MMU
microprocessor, 65C02 12, 15
mini-phone jack 7
MIXED 105, 107, 218, [67]
mixed-modes displays 102
MMU 13, 215-217, 267, 271, [78]
mnemonic 199
modem 8, 151
modes, display 239-247

Index

monitor 8, 24, 59, 179-203, 224
entry point [36]
interrupts and [42]
output 248
register commands 189-190
ROM [69]
video routines 115
zero page use [15]
mouse 8, 160-174, [49-50]
BASIC and 163, 172
Pascal and 171
button 171
interrupt mode 164
signals 266
clamping boundaries 171
connector 264
direction [59]
firmware 167
firmware entry points 20
hardware locations 164-167
input 262, [76]
interrupt handler 165
interrupts [58]
movement interrupt mode 163
operating modes 163
port 161-174
transparent mode 163
waveform 263
X direction 167
Y direction 167
MOUSEID 264
MouseText 65, 68-69, 90-91, [73, 114]
MOUX1 167
MOUY1 167
MOVE command 186-188, 195, [36]
MOVEAUX 41-42
movement/button interrupt mode 164,
167
movement interrupt mode 163, 167
moving data in memory 186-188
MSLOT [21]
MSW 264

[253




254

N

N command 131, 145, 156
n CONTROL-K 56

NE5S56 265, 271, [77]
negative decimal [107]
NEWIRQ [34]

nibble [104]

NMI vector [36, 43]
non-maskable interrupts 52
NORMAL command 191
normal characters 65, 68
normal display 191

NTSC 87, 233, 242, 248, 251
#6 130

#7 143

#8 143

o

odd-parity [114]

old monitor ROM [62]

1 CONTROL-P 130
1VSOUND 251

(&) 4,82

operand 199

operating systems [39-40]
operating temperature 205
output and input, disk 124-126
output jack 232

P

P command 132, 145
P register 17
paddle(s) 267
button 0 268
button 1 268
inputs [68, 76]
timing circuit [77]
page 18
page $02 (input buffer) 36
page $03 36
page 504 36
page 508 37

Index

page 0 18
page zero 24
page 1 18
PAGE2 44-45, 105, 107-108, 216,
238, 241, [46-48, 67]
page three [19]
page B, auxiliary RAM [52]
PAL 233
parity 145
bit(s) 138, 262
checking 260
Pascal 67, 126, 130, 134, 170, [114]
ID byte 134, 148
interrupts and [42]
language [41]
operating system [40]
PC (program counter) 16
PCAS 220
PDLO 176
PDLO/XMOVE 219
PDL1 176
PEEK [40]
peripheral identification numbers [112]
peripheral-card memory space [65-66]
peripheral-card ROM space [65]
phone jack 7
PIN numbers [112]
PINIT 72,121, 134, 148
PLOT 118
plotter 8
POKE [40]
ports 70, [70]
POSMOUSE 168
power 8
connector 207
consumption 207, 208
light 6, [71]
requirements 206
supply [100]
power-on light [71]
power-up byte 51

\ LT (] S N W W Y S

§ o " f S f Y o A T Y O o O

£l



TR EE RS

PR#1 130
PR#2 143, 154
PR#6 126
PR#n 56, 70
PRAS 217, 219, 220, 251
PRBL2 118
PRBYTE 118
PREAD 72, 121, 134, 148,177
PRERR 118
PRHEX 118
primary character set 68, [73]
printer 8
PRINTER: 130
processor status register 17
ProDOS 126, 130, 143, 180, [39, 63]
program counter (PC) 16, 201
prompt 58, 154

characters 59
PRTAX 118
PSTATUS 72, 123, 134, 148
PTRIG 166
published entry points [32-36]
pull from stack 17
push onto stack 17
PWRITE 72, 121, 134, 148

Q

Q command 145

Q3 215, 217, 219
guestion mark (?) 58, 59
quit terminal mode 145

R

R command 132
R/W 217, 219, 221, 257
RAD-RA7T 217
RAM 17
addressing 226-229
locations [15]
RAMRD 38, 39, 43, 44, 216, [46]
RAMWRT 38, 39, 43, 44, 216, [46]

Index

random number 58
random-access memory (RAM) 17
RAS (row-address strobe) 228
RD1B 257
RD63 167
RD80COL 105
RDB0OSTORE 105
RDALTCHAR 105
RDALTZP 26
RDBNK2 26
RDCHAR 82
RDCRAM [46]
RDDHIRES 106
RDHIRES 45, 105
RDIOUDIS 106, 166
RDKEY 55, 57
RDLCRAM 26
RDMIXED 105
RDPAGEZ2 105
RDRAMRD 39
RDRAMWRT 39
RDTEXT 105
RDTNO 167
RDVBLMSK 166
RDXYMSK 166
RDYOEDGE 166
read-only memory (ROM) 17
READMOUSE 163, 168, [51-52]
receive register 262
registers 15, 213

examining 190
relative humidity 205
REMIN 143
remote 154, 159
remote device 145
REMOUT 143
(REPT) key [71]
Request to Send See RTS
key 4,79, 82, 221, 113, 256,

[71]

reset port 1 132
reset port 2 145
reset routine 48
reset vector 49-51, [36]

(84]

[255




256

retype 62
RF modulator 233

RGB monitor 245
rollover 3

ROM 17

ROM addressing 224-225
ROMEN2 217

RS-232 129

RSTVBL 166

RSTXINT 166, 216
RSTXY 166

RSTYINT 166, 216

RTS instruction 260, [36]

S

S command 132

S register 17

safety instructions 207, [99]

schematic diagrams 271-276

scratch-pad RAM [65]

screen holes 36, 73, 74, 133, 134,
136, 149, 171-173, [20-22, 47]

SCRN 119

scroll 65

SEGA 218

SEGB 218, 220, 251

self-tests See diagnostics, built-in

SER 221, 256

serial buffering [55]

serial data transfer [57]

serial firmware [50]

serial 1/O buffers [75]

serial I/O port 128-159

serial input buffer 37

Serial Interface Card [74]

serial interrupts [55, 56]

serial port circuits 254

serial port 1 20, 129-139

Index

serial port 2 20, 141-159
command character 143, 146
command character hardware

locations 130, 132, 134
firmware protocol 147
hardware locations 148
initial characteristics 130, 147

SEROUT 251

SERVEMOUSE 163, 168, [51]

SETCOL 119

SETMOUSE 167-168, [50-51]

SETPWRC 51

7™M 220, 223

key 79, 229, [84]

shift-key mod [68]

Sholes keyboard 5

signature byte 134, 148, 170

simplified keyboard (Dvorak) [88]

(6) 126

65C02 12, 15, [63]
address bus 213
addressing modes [10]
block diagram 211
clock 211
cycle time [1, 2]
data bus 213
data sheet [5-13]
differences from 6502 211,

[1-3, 6-7]
execution time [1-2]
instruction set [12-13]
opcodes [12]
registers 213
signal descriptions [11]
timing diagram [8]
timing signals 214-215

6502 verus 65C02 211

6551 Asynchronous Communication

Interface Adapters See ACIA

slot 7 drive 1 [74]

SLOTC3ROM [66]

SLOTCXROM [66]

Fi

B B HOHOTHOTHOTH

(E

| = S S N WL S L 8 B Y

'H



LV & & & KK &M kAR & A& &N oA

slots 70
versus ports [70]
soft switches 22, 215, 218, 221
(&) 82
SPACE (0) 132
SPACE parity 138, [114]
speaker 83-84, [67]
external 7
output jack 232
volume control 232
SPKR 219
stack 24, [42, 46]
stack pointer 17
standard 1/O links 55
standard keyboard 5
start bit 137
status register 134, 148, 261
stop bits 137
stop-list 65
STORE command 194
strobe 79
inputs 21
SUD See System Utilities Disk
Super Serial Cards [74]
SW0 175
SW1 175
switch inputs 175, [76]
switches, soft 22, 215
SYNC 219, 233, 251
system clock 213
system monitor 179-203

System Utilities Disk 129, 131, 136,

141, 145, 150, [75, 112]

T

T command 145, 154-156, 159

[84]
TD1B 257

telephone jack 7
temperature 205, 208

Index

terminal mode 145, [53]

TEXT 105, 107, 218, 220, 221, 251,

[67]
text

and low-resolution graphics Page 1

36

and low-resolution Page 1X 36

and screen low-resolution Page 2

37

displays 241

modes 90-95

window 63, 66
TLP1 36
TLP1X 36, 45
TLP2X 37
toggle switches 22
transferring control 42-43
transferring data 41-42

transmit/receive data register 134,

148
transmit register 262
transparent mode 163, 167, 171
triggering paddle timers [68]

U

USA standard keyboard 5
USER command 197
user’s interrupt handler [57]
utility strobe [67]

v

validity check 49

VBL [67, 73, 76]

VBLINT 163, 164, 218, [67, 73]
VDE [99]

vectors 55

ventilation 206

VERIFY command 188, 196, [36]

vertical blanking 163, [49, 50, 73]

interrupts [68]

257




VID 248 Y

ELE;M Zlgen Y register 17
counters 233-234 YO 218,262, 264
: ¥1 263, 264
dispiay, S8 YINT 164, [66, 67
display circuits 240 ;106,:67)
display modes 239-247 YMOVE 219
expansion 8 YOEDGE 166
expansion connector 249-252
expansion output 249 4
output signals 248 Z command 132, 139
routines zap 132, 139, 145
firmare 115-123 zero page 24, 184

1/O firmware 120-123
monitor 115-119
VLINE 119
voltage 205
converter 10
volume control 7, 232

w

WAIT [36]

warm-start procedure 50
Western Spanish keyboard [96]
WNDW 219, 233, 251

word [106]

Woz Integrated Machine 13, 222

X

X register 17

X0 215,218,262, 264
X1 215, 263, 264
XFER 41, 42

XINT 164, [66, 67]
XOEDGE 166

258 Index

WPl TEW (L TL EF (EL (BL (EL Ed Rl (EL CEL (R TR OE)

[kl



' O O O v A Y v O O v A (O s s (s O A Y v Y [




THEETETE TR, Abi_ﬂ‘-wj







Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

TLX 171-576

030-1022-A
1984 Apple Compuler, Inc
Printed in U.S.A




