Reference Manual

S
2
S
:
S

L]y 9ddy ayy

G O O O O

Customer Satisfaction

Limitation on Warranties
and Liability

It you discover physical defects in the manuals distributed with an Apple product or in the
media on which a software product is distributed, Apple will replace the documentation
or media at no charge 1o you during the 80-day period after you purchased the product

In addition, it Apple releases a corrective update to a software product during the 90-day
period after you purchased the software, Apple will replace the applicable disks and
documentation with the revised version at no charge 1o you during the six months after
the date of purchase.

In some countries the replacement period may be different; check with your authorized
Apple dealer. Return any item to be replaced with proof of purchase 1o Apple or an
authorized Apple dealer.

Even though Apple has tested the software described in the manual and reviewed its
contents, neither Apple nor its software suppliers make any warranty or representation,
either express or implied, with respect to this manual or to the software described in this
manual, their quality, performance, merchantability, or fitness for any particular purpose
As a result, this software and manual are sold “'as is,”' and you the purchaser are
assuming the entire risk as 1o their quality and performance. In no event will Apple or its
software suppliers be liable for direct, indirect, incidental, or consequential damages
resulting from any defect in the software or manual, even if they have been advised of the
possibility of such damages. In particular, they shall have no liability for any programs or
data stored in or used with Apple products, including the costs of recovering or
reproducing these programs or data. Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or conseguential damages, so the above
lirmitation or exclusion may not apply 1o you,

Copyright

Product Revisions

This manual and the software (computer programs) described in it are copyrighted by
Apple or by Apple’s software suppliers, with all rights reserved. Under the copyright laws,
this manual or the programs may nol be copied, in whole or part, without the written
consent of Apple, except in the normal use of the software or to make a backup copy
This exception does not allow copies to be made for others, whether or not sold, but all of
the material purchased (with all backup copies) may be sold, given, or lent to another
person. Under the law, copying includes translating into another language.

You may use the software on any computer owned by you, but extra copies cannot be
made for this purpose. For some products, a multi-use license may be purchased 1o allow
the software to be used on more than one computer owned by the purchaser. including a
shared-disk system. (Contact your authorized Apple dealer for information on multi-use
licenses.)

Apple cannot guarantee that you will receive notice of a revision to the software
described in the manual, even if you bave returned a registration card received with the
product. You should periodically check with your authorized Apple dealer

© Apple Computer, Inc. 1984
20525 Mariani Avenue
Cupertino, California 95014

Apple, the Apple logo, and ProDOS are trademarks of Apple Computer, Inc
Simultaneously published in the United States and Canada. All rights reserved

Warning

This equipment has been certified to comply with the limits for a Class B computing
device, pursuant to Subpart J of Part 15 of FCC Rules. Only peripherals (computer
input/output devices, terminals, printers, etc.) certified to comply with the Class B limits
may be attached 1o this computer. Operation with non-certified peripherals is likely to
result in interference to radio and TV receplion

Reorder Appla Product #A2L.4030

The Apple llc [}

e et e

A V¢

Apple llc Reference Manual
Volume 1

Sjuajuo’) Jo ajqey

— o e—
= e e | ———— R B

o
o

Volume 1
W st of Figures and Tables XV
I Preface XXV
= Chapter 1 Introduction 1

—

1.1 Qutside of Machine
2 1.1.1 The Keyboard

3 Features

4 Special Function Keys

4 Cursor Movement Keys

4 Modifier Keys

5 The 80/40 Switch

5 The Keyboard Switch

6 Disk-Use and Power Lights

7 1.1.2 The Speaker

8 1.1.3 The Built-in Disk Drive

1.1.4 The Back Panel

10 1.2 Inside of Machine

10 1.2.1 The Internal Voltage Converter
11 1.2.2 The Main Logic Board

13 1.2.3 The Other Circuit Boards

U g L

e Table of Contents [iii

AF Chapter 2 Memory Organization and Control 15

15 2.1 The 65C02 Microprocessor

17 2.2 Overview of the Address Space

18 2.3 Memory Map and Memory Switching

20 2.3.1 Main RAM Addresses
($0000-$BFFF and $D000-$FFFF)

20 2.3.2 Auxiliary RAM Addresses
($0000-8BFFF and $D000-$FFFF)

20 2.3.3 ROM Addresses ($C100-$FFFF)

21 2.3.4 Hardware Addresses ($C000-$COFF)

22 2.4 Bank-Switched Memory

24 2.4.1 Page Allocations

, 24 Page $00 (One-Byte Addresses)
| 24 Page $01 (The 65C02 Stack)
. 24 Pages $D0-$FF (ROM and RAM)

25 2.4.2 Using Bank Selector Switches
34 2.5 48K Memory
! 36 2.5.1 Page Allocations

, 36 Page $02 (The Input Buffer)

’ 36 Page $03 (Global Storage and Vectors)
36 Pages $04 Through $07

i (Text and Low-Resolution Page 1)

! 37 Pages $08 Through $0B

! (Text and Low-Resolution Page 2)

! 37 Page $08 (Communication Port Buffers)

L 37 Pages $20 Through $3F

! (High-Resolution Page 1)

1 38 Pages $40 Through $5F

(High-Resolution Page 2)
i 38 2.5.2 Using 48K Memory Switches
| M 2.5.3 Transfers Between Main and Auxiliary

| Memory
41 Transferring Data
T 42 Transferring Control

! 43 2.5.4 Using Display Memory Switches
| 48 2.6 The Reset Routine
49 2.6.1 The Cold-Start Procedure (Power On)
50 2.6.2 The Warm-Start Procedure (CONTROL-RESET)
. 50 2.6.3 Forced Cold Start (a-CONTROL-RESET)
(i 51 2.6.4 The Reset Vector

R M M MM M D O & W e M e W e

ra\

iv] Table of Contents

! . Chapter 3 Introduction to Apple lic 1/0 55
55 3.1 The Standard I/O Links
I 56 3.1.1 Changing the Standard 1/O Links
- 57 3.2 Standard Input Features
-"5 57 3.2.1 RDKEY Input Subroutine
I 58 3.2.2 KEYIN Input Subroutine
. 58 3.2.3 GETLN Input Subroutine
- 60 3.2.4 Escape Codes With GETLN
I 62 3.2.5 Editing With GETLN
- 62 Cancel Line
- 62 Backspace
I 62 Retype
63 3.3 Standard Output Features
g 63 3.3.1 COUT Output Subroutine
I 64 3.3.2 Control Characters With COUT1
64 3.3.3 Control Characters With C3COUT1
... 66 3.3.4 The Stop-List Feature
I 66 3.3.5 The Text Window
68 3.3.6 Normal, Inverse, and Flashing Text
. 68 Primary Character Set Display
I 69 Alternate Character Set Display
70 3.4 Port |/O
-""2 70 3.4.1 Standard Link Entry Points
I 7 3.4.2 Firmware Protocol
73 3.4.3 Port I/O Space
| 73 3.4.4 Port ROM Space
73 3.4.5 Expansion ROM Space
= 73 3.4.6 Port Screen-Hole RAM Space
I - 75 3.5 Interrupts
= B Chapter 4 Keyboard and Speaker 77
L_ 77 4.1 Keyboard Input
--ﬂ 79 4.1.1 Reading the Keyboard
82 4.1.2 Monitor Firmware Support
82 GETLNZ
i 82 GETLN1
I 82 RDCHAR
B 83 4.2 Speaker Output
e 83 4.2.1 Using the Speaker
I 84 4.2.2 Monitor Firmware Support
. 84 BELLA1
.. 84 BELL
.--—- Table of Contents v

._Chapter 5

Video Display Output 87

89
80
90
91
93
96
96
97
100
102
102
104
108
115
120

5.1 Specifications
5.2 Text Modes
5.2.1 Text Character Sets
5.2.2 MouseText
5.2.3 40-Column Versus 80-Column Text
5.3 Graphics Modes
5.3.1 Low-Resolution Graphics
5.3.2 High-Resolution Graphics
5.3.3 Double-High-Resolution Graphics
5.4 Mixed-Mode Displays
5.5 Display Pages
5.6 Display Mode Switching
5.7 Display Page Maps
5.8 Monitor Firmware Support
5.9 I/O Firmware Support

- Chapter 6

Disk Input and Output 125

126
126

6.1 Startup
6.2 External Drive Startup

._Chapter £

il

Serial I/O Port 1 129

130
133
134
134
135
136
137
138
139
139

7.1 Using Serial Port 1

7.2 Characteristics at Startup

7.3 Hardware Page Locations

7.4 1/O Firmware Support

7.5 Screen Hole Locations

7.6 Changing Port Characteristics
7.6.1 Data Format and Baud Rate
7.6.2 Carriage Return and Line Feed
7.6.3 Sending Special Characters
7.6.4 Displaying Output on the Screen

Table of Contents

Iml Imi Il s s ml] 1 mn 1 &N ImN IEl sl =i] el

(

!: W Chapter 8 Serial 1/0 Port 2 141
143 8.1 Using Serial Port 2
147 8.2 Characteristics at Startup
148 8.3 Hardware Page Locations
148 8.4 I/O Firmware Support
149 8.5 Screen Hole Locations
150 8.6 Changing Port Characteristics
151 8.6.1 Data Format and Baud Rate
152 8.6.2 Carriage Return and Line Feed
153 8.6.3 Routing Input and Output
155 Half Duplex Operation
156 Full Duplex Operation
E 159 Terminal Mode
!; . Chapter 9 Mouse and Game Input 161
162 9.1 Mouse Input
162 9.1.1 Mouse Connector Signals
- 163 9.1.2 Mouse Operating Modes
163 Transparent Mode
163 Movement Interrupt Mode
i 164 Button Interrupt Mode
164 Movement/Button Interrupt Mode
I ; 164 Vertical Blanking Active Modes
l—-ﬂ 164 9.1.3 Mouse Hardware Page Locations
L 167 9.1.4 1/O Firmware Support
- 170 Pascal Support
W4 171 BASIC and Assembly-Language Support
l ' 171 9.1.5 Screen Holes
173 9.1.6 Using the Mouse as a Hand Control
__— 174 9.2 Game Input
L_ 174 9.2.1 The Hand Control Signals
_ 175 Switch Inputs (SW0 and SW1)
| 176 Analog Inputs (PDLO and PDL1)
I - 177 9.2.2 Monitor Support
177 PREAD
L
L'-"'.
-
b Table of Contents [vii

(] Chapter 10

Using The Monitor 179

179 10.1 Invoking the Monitor

180 10.2 Syntax of Monitor Commands
181 10.3 Monitor Memory Commands

181 10.3.1 Examining Memory Contents
182 10.3.2 Memory Dump

184 10.3.3 Changing Memory Contents
184 Changing One Byte

185 Changing Consecutive Locations
186 10.3.4 Moving Data in Memory

188 10.3.5 Comparing Data in Memory
189 10.4 Monitor Register Commands

190 10.4.1 Changing Registers

190 10.4.2 Examining Registers

191 10.5 Miscellaneous Monitor Commands
191 10.5.1 Display Inverse and Normal
192 10.5.2 Back to BASIC

193 10.5.3 Redirecting Input and Output
193 10.5.4 Hexadecimal Arithmetic

194 10.6 Special Tricks With the Monitor
194 10.6.1 Multiple Command Lines
195 10.6.2 Filling Memory

196 10.6.3 Repeating Commands

197 10.6.4 Creating Your Own Commands
198 10.7 Machine-Language Programs
198 10.7.1 Running a Program

199 10.7.2 Disassembled Programs

201 10.8 Summary of Monitor Commands
201 Examining Memory

202 Changing the Contents of Memory
202 Moving and Comparing

202 The Register Command

202 Miscellaneous Monitor Commands
203 Running and Listing Programs

= Chapter 11

Hardware Implementation 205

205 11.1 Environmental Specifications

206 11.2 Power Requirements *

2086 11.2.1 The External Power Supply
207 11.2.2 The External Power Connector
208 11.2.3 The Internal Converter

Table of Contents

LTI VT T TR T TN TR T N TR T

N\

IRl [N

IR

)|

4 ¥ ¥ ¥ ¥ Y ¢

210 11.3 Apple lic Overall Block Diagram
211 11.4 The CMQOS 65C02 Microprocessor
212 11.4.1 65C02 Block Diagram

213 11.4.2 65C02 Timing

215 11.5 The Custom Integrated Circuits
216 11.5.1 The Memory Management Unit (MMU)
218 11.5.2 The Input/Output Unit (IOU)
220 11.5.3 The Timing Generator (TMG)
221 11.5.4 The General Logic Unit (GLU)
222 11.5.5 The Disk Controller Unit (IWM)
223 11.6 Memory Addressing

224 11.6.1 ROM Addressing

226 11.6.2 RAM Addressing

226 Dynamic-RAM Refreshment

227 Dynamic-RAM Timing

229 11.7 The Keyboard

232 11.8 The Speaker

232 11.8.1 Volume Control

232 11.8.2 Output Jack

233 11.9 The Video Display

233 11.9.1 The Video Counters

234 11.9.2 Display Memory Addressing
235 11.9.3 Display Address Mapping

239 11.9.4 Video Display Modes

241 Text Displays

242 Low-Resolution Display

243 High-Resolution Display

245 Double-High-Resolution Display
248 11.9.5 Video Output Signals

248 Monitor Output

249 Video Expansion Output

252 11.10 Disk 1/O

253 11.11 Serial |/O

258 11.11.1 ACIA Control Register

260 11.11.2 ACIA Command Register
261 11.11.3 ACIA Status Register

262 11.22.4 ACIA Transmit/Receive Register
262 11.12 Mouse Input

267 11.13 Hand Controller Input

271 11.14 Schematic Diagrams

Index 279
Table of Contents lix

Volume 2

- Appendix A

The 65C02 Microprocessor

A1 Differences Between 6502 and 65C02
A.1.1 Differing Cycle Times
A.1.2 Differing Instruction Results

A.2 Data Sheet

awmnmN

i Appendix B

Memory Map

15 B.1 Page Zero

19 B.2 Page Three

20 B.3 Screen Holes

23 B.4 The Hardware Page

15

= Appendix C

Important Firmware Locations

31 C.1 The Tables

32 C.2 Port Addresses

34 C.3 Other Video and I/O Firmware Addresses
34 C.4 Applesoft BASIC Interpreter Addresses
34 C.5 Monitor Addresses

31

| Appendix D

Operating Systems and Languages

37 D.1 Operating Systems

37 D.1.1 ProDOS

37 D.1.2 DOS

38 D.1.3 Pascal Operating System
38 D.1.4 CP/M

38 D.2 Languages

38 D.2.1 Applesoft BASIC

39 D.2.2 Integer BASIC

39 D.2.3 Pascal Language

39 D.2.4 FORTRAN

Table of Contents

37

fEl /W Nl IE, IEL (E1 (W} IEl (W} PN, TRL UM, WL () (M) 1w

L

“ppendfx E Interrupts 41

41 E.1 Introduction

41 E.1.1 What Is an Interrupt

42 E.1.2 Interrupts on Apple || Computers
43 E.1.3 Interrupt Handling on the 65C02
43 E.1.4 The Interrupt Vector at $FFFE

44 E.2 The Built-in Interrupt Handler

46 E.2.1 Saving the Memory Configuration
46 E.2.2 Managing Main and Auxiliary Stacks
47 E.3 User’s Interrupt Handler at $3FE

48 E.4 Handling Break Instructions

49 E.5 Sources of Interrupts

50 E.6 Firmware Handling of Interrupts

50 E.6.1 Firmware for Mouse and VBL

52 E.6.2 Firmware for Keyboard Interrupts

53 Using Keyboard Buffering Firmware

53 Using Keyboard Interrupts Through Software
54 E.6.3 Using External Interrupts Through Firmware
55 E.6.4 Firmware for Serial Interrupts

55 Using Serial Buffering Transparently

56 Using Serial Interrupts Through Firmware

57 Transmitting Serial Data

57 A Loophole in the Firmware

58 E.7 Bypassing the Interrupt Firmware
58 E.7.1 Using Mouse Interrupts Without the Firmware
59 E.7.2 Using ACIA Interrupts Without the Firmware

e

Table of Contents [xi

[] Appendix F

il

Apple Il Series Differences 61
61 F.1 Overview
63 F.1.1 Type of CPU
63 F.1.2 Machine Identification
64 F.2 Memory Structure
64 F.2.1 Amount and Address Ranges of RAM
65 F.2.2 Amount and Address Ranges of ROM
66 F.2.3 Peripheral-Card Memory Spaces
66 F.2.4 Hardware Addresses
67 $C000 to $CO0F
67 $C010 to $CO1F
68 $C020 to $CO2F
68 $C030 to $CO3F
68 $C040 to SCO4F
68 $C050 to $CO5F
69 $C060 to $CO6F
70 $C070 to $CO7F
70 $C080 to BCO8F
70 $C090 to $COFF
71 F.2.5 Monitors
72 F.3 I/O in General
72 F.3.1 DMA Transfers
72 F.3.2 Slots Versus Ports
72 F.3.3 Interrupts
73 F.4 Keyboard
73 F.4.1 Keys
74 F.4.2 Character Sets
75 F.5 Speaker
75 F.6 Video Display
75 F.6.1 Character Sets
76 F.6.2 MouseText
76 F.6.3 Vertical Blanking
76 F.6.4 Display Modes
77 F.7 Disk 1/O
77 F.8 Serial I/O
77 F.8.1 Serial Ports Versus Serial Cards
78 F.8.2 Serial I/O Buffers
79 F.9 Mouse and Hand Controls.
79 F.9.1 Mouse Input
79 F.9.2 Hand Control Input and Qutput
80 F.10 Cassette I/O
81 F.11 Hardware
81 F.11.1 Power
81 F.11.2 Custom Chips

Table of Contents

™ ™ '™ 'm MM

E H

mOTRL IRl TR, TR, B (E)

[

. Appendix G USA and International Models

83 G.1 Keyboard Layouts and Codes

85 G.1.1 USA Standard (Sholes) Keyboard
88 G.1.2 USA Simplified (Dvorak) Keyboard
89 G.1.3 ISO Layout of USA Keyboard

90 G.1.4 English Keyboard

91 G.1.5 French and Canadian Keyboards
93 G.1.6 German Keyboard

94 G.1.7 Italian Keyboard

96 G.1.8 Western Spanish Keyboard

97 G.2 ASCIl Character Sets

99 G.3 Certifications

99 G.3.1 Radio Interference

99 G.3.2 Product Safety

99 G.3.3 Important Safety Instructions
100 G.4 Power Supply Specifications

83

i Appendix H Conversion Tables

103 H.1 Bits and Bytes

106 H.2 Hexadecimal and Decimal

107 H.3 Hexadecimal and Negative Decimal
109 H.4 Graphics Bits and Pieces

112 H.5 Peripheral Identification Numbers
114 H.6 Eight-Bit Code Conversions

103

. Appendix | Firmware Listings

125

Glossary

219

Bibliography

243

Index

247

Tell Apple Card

A U

Table of Contents

m&qﬁ pue sainbi{ jo um:

Yo = L ||.l-..-.-l.j|.. - - i

B e e e e e o i e -culrncll_...n.i!...n.lllu‘.:.iill]ldlrr iy e

w0
| =
@
w
]
=)
o
w
o
Volume 1 a
w
- Chapter 1 Introduction
2 Figure 1-1 Apple lic With Standard USA Keyboard
2 Figure 1-2 Back and Left Side of Computer
3 Figure 1-3 Front and Right Side of Computer
3 Table 1-1 Keyboard Specifications
5 Figure 1-4 The USA Standard or Sholes Keyboard
{Keyboard Switch Up)
6 Figure 1-5 Simplified or Dvorak Keyboard
{Keyboard Switch Down)
7 Figure 1-6 Speaker, Volume Control, and Phone Jack
8 Figure 1-7 Built-in Disk Drive
9 Figure 1-8 Back Panel Connectors
10 Figure 1-9 Block Diagram of Inside of Machine
11 Figure 1-10 Power Supply and Voltage Converter
12 Figure 1-11 Main Logic Board
H Chapter 2 Memory Organization and Control
16 Figure 2-1 Block Diagram Model of 65C02
19 Figure 2-2 Apple lic Memory Map
23 Figure 2-3 Bank-Switched Memory
26 Table 2-1 Bank Select Switches
27 Figure 2-4 Read ROM
28 Figure 2-5 Read ROM, Write RAM, and Use First
$D0 Bank
29 Figure 2-6 Read ROM, Write RAM, and Use Second
$D0 Bank
30 Figure 2-7 Read RAM and Use First $D0 Bank
31 Figure 2-8 Read RAM and Use Second $D0 Bank

List of Figures and Tables [xv

32 Figure 2-9
33 Figure 2-10

35 Figure 2-11
39 Table 2-2
39 Figure 2-12
40 Figure 2-13
41 Table 2-3
42 Table 2-4
43 Table 2-5
45 Table 2-6
46 Figure 2-14

47 Figure 2-15

48 Figure 2-16
52 Table 2-7

Read and Write RAM and Use First $D0Bank
Read and Write RAM and Use Second
$D0 Bank

48K Memory Map

48K Memory Switches

48K RAM Selection: Split Pairs

48K RAM Selection: One Side Only
48K RAM Transfer Routines
Parameters for MOVEAUX Routine
Parameters for XFER Routine

Display Memory Switches

PAGE2 Selections With 80STORE On
and HIRES Off

PAGEZ2 Selections With B0STORE On
and HIRES On

RESET Routine Flowchart

Page 3 Vectors

= Chapter 3 Introduction to Apple lic 1/0
59 Table 3-1 Prompt Characters
60 Table 3-2 Escape Codes With GETLN
64 Table 3-3 Control Characters With COUT1
65 Table 3-4 Control Characters With C3COUT1
68 Table 3-5 Text Window Memory Locations
70 Table 3-6 Port Characteristics
72 Table 3-7 Firmware Protocol Locations
73 Table 3-8 Port I/O Locations
75 Table 3-9 Port Screen-Hole Locations
B Chapter 4 Keyboard and Speaker
77 Table 4-1 Keyboard Input Characteristics
80 Table 4-2 Keys and ASCII Codes
83 Table 4-3 Speaker Output Characteristics
£l Chapter 5 Video Display Output
88 Table 5-1 Guide to the Information in This Chapter
89 Table 5-2 Video Display Specifications
91 Table 5-3 The Display Character Sets
xvi | List of Figures and Tables

L I I B |1 S | I || S M1 /E1 /™1 (sL (s /st (el e (el 1l

L)\

l

List of Figures and Tables

|
e
92 Figure 5-1 MouseText Characters
| 94 Figure 5-2 40-Column and 80-Column Text
bt (With Alternate Character Set)
95 Figure 5-3 Text Mode Characteristics and Switching
— 97 Table 5-4 Low-Resolution Graphics Colors
] 99 Table 5-5 High-Resolution Graphics Colors
100 Figure 5-4 High-Resolution Display Bits
e 101 Table 5-6 Double-High-Resolution Graphics Colors
— 103 Table 5-7 Video Display Page Locations
105 Table 5-8 Display Soft Switches
- 107 Table 5-9 Display Modes Supported by Firmware
L 107 Table 5-10 Other Display Modes
110 Figure 5-5 Map of 40-Column Text Display
S 111 Figure 5-6 Map of 80-Column Text Display
b 112 Figure 5-7 Map of Low-Resolution Graphics Display
113 Figure 5-8 Map of High-Resolution Graphics Display
b, 114 Figure 5-9 Map of Double-High-Resolution Graphics
o Display
115 Table 5-11 Monitor Firmware Routines
—— 120 Table 5-12 Port 3 Firmware Protocol Table
! 122 Table 5-13 Pascal Video Control Functions
_d
= N Chapter 6 Disk Input and Output
- 125 Table 6-1 Disk I/O Characteristics
—
— M chapter 7 Serial 1/O Port 1
- 130 Table 7-1 Serial Port 1 Characteristics
131 Table 7-2 Printer Port Commands
el 133 Table 7-3 Initial Characteristics of Printer Port
- 134 Table 7-4 Serial Port 1 Hardware Page Locations
134 Table 7-5 Port 1 I/O Firmware Protocol
il 135 Table 7-6 Port 1 Screen-Hole Locations
= 137 Figure 7-1 Port 1 Characteristics
138 Figure 7-2 Data Formats
-
— W chapter s Serial 1/O Port 2
o 142 Table 8-1 Serial Port 2 Characteristics
144 Table B-2 Modem Port Characteristics
—
|
—
] xvii

147
148
148
149
151
152
154
155
157

158

Table 8-3
Table 8-4
Table 8-5
Table 8-6
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5

Figure 8-6

Initial Characteristics of Communication Port

Serial Port 2 Hardware Page Locations
Port 2 I/O Firmware Protocol

Serial Port 2 Screen Hole Locations
Port 2 Characteristics

Devices in a Typical Communication Setup

Effect of IN#2

Effect of IN#2 and T Command (Half Duplex)

Effect of IN#2 and T Command (Full
Duplex Terminal)

Effect of IN#2, PR#2 and T Command
(Full Duplex Host)

i Chapter 9

162
166
168
170
172
174

Table 9-1
Table 9-2
Table 9-3
Table 9-4
Table 9-5
Table 9-6

Mouse and Game Input

Mouse Input Port Characteristics
Mouse Hardware Page Locations
Mouse Firmware Routines

Mouse Port I/O Firmware Protocol
Mouse Peripheral Card RAM Locations
Game Input Characteristics

ol Chapter 11
205

207
207
208
208
210
212
213
214
215
217
217
218
218
220
220
221
221

xwviil |

Table 11-1

Table 11-2
Figure 11-1
Table 11-3
Table 11-4
Figure 11-2
Figure 11-3
Table 11-5
Figure 11-4
Table 11-6
Figure 11-5
Table 11-7
Figure 11-6
Table 11-8
Figure 11-7
Table 11-9
Figure 11-8
Table 11-10

J
II

Hardware Implementation

Summary of Environmental
Specifications

Power Supply Specifications
External Power Connector
External Power Connector Signals
Internal Converter Specifications
Apple llc Block Diagram

65C02 Block Diagram

65C02 Microprocessor Specifications
65C02 Timing Signals

65C02 Timing Signal Descriptions
The MMU Pinouts

The MMU Signal Descriptions
The 10U Pinouts

The I0OU Signal Descriptions

The TMG Pinouts

The TMG Signal Descriptions

The GLU Pinouts

The GLU Signal Descriptions

List of Figures and Tables

M "M 'FL FL OTEFL Pl O'EL TEL FLEL. R

1]

o e

"

¢ v

"

222
222
224
225
225
225
227
227
228
229
230
231
232
236
237
238
238
240
242
246

247

248
250
251
252
253
254
255
256
256
257
257
259
260
261
263
263

Figure 11-9

Table 11-11

Figure 11-10
Figure 11-11
Figure 11-12
Figure 11-13
Figure 11-14
Table 11-12
Figure 11-15
Table 11-13
Figure 11-16
Figure 11-17
Figure 11-18
Figure 11-19
Figure 11-20
Table 11-14

Table 11-15

Figure 11-21
Table 11-16

Figure 11-22

Figure 11-23

Figure 11-24
Figure 11-25
Table 11-17
Figure 11-26
Table 11-18
Figure 11-27
Figure 11-28
Figure 11-29
Table 11-19
Figure 11-30
Table 11-20
Figure 11-31
Figure 11-32
Figure 11-33
Figure 11-34
Figure 11-35

The IWM Pinouts

The IWM Signal Descriptions

Memory Bus Organization

The 23128 ROM Pinouts

The 2316 ROM Pinouts

The 2332/2364 ROM Pinouts

The 64K RAM Pinouts

RAM Address Multiplexing

RAM Timing Signals

RAM Timing Signals

Keyboard Circuit Diagram

Keyboard Signals

Speaker Circuit Diagram

Display Address Transformation
40-Column Text Display Memory
Display Memory Addressing

Memory Address Bits for Display Modes
Video Display Circuits
Character-Generator Control Signals

7 MHz Video Timing Signals (40-Column,
Low-Resolution and High-Resolution
Display)

14 MHz Video Timing Signals
(80-Column and Double-High-Resolution
Display)

Video Output Back Panel Connectors
The Video Expansion Connector Pinouts
The Video Expansion Connector Signals
Disk Drive Connector

Disk Drive Connector Signals

Serial Port Circuits

6551 ACIA Block Diagram

The 6551 Pinouts

The 6551 Signal Descriptions

Serial Port Connectors

Serial Port Connector Signals

ACIA Control Register

ACIA Command Register

ACIA Status Register

Sample Mouse Waveform

Mouse Movement and Direction
Waveforms

List of Figures and Tables Xix

264
264
265
266
267
268
268
269
270

Figure 11-36
Table 11-21

Figure 11-37
Figure 11-38
Figure 11-39
Table 11-22

Figure 11-40
Figure 11-41
Figure 11-42

Volume 2

Mouse Connector

Mouse Connector Signals
Mouse Circuits

Mouse Button Signals

Hand Controller Connector
Hand Control Connector Signals
How to Connect Switch Inputs
Hand Control Circuits

Hand Control Signals

[] Appendix A
2

Table A-1

The 65C02 Microprocessor

Cycle Time Differences

iAppendfx B

16
19
20
22

24
25
26
27
28

Memory Map

Table B-1
Table B-2
Table B-3
Table B-4

Table B-5
Table B-6
Table B-7
Table B-8
Table B-9

Zero Page Use

Page 3 Use

Main Memory Screen Hole Allocations
Auxiliary Memory Screen Hole
Allocations

Addresses $C000 through $CO03F
Addresses $C040 through $CO5F
Addresses $C060 through $CO7F
Addresses $C080 through $COAF
Addresses $COBO through $COFF

i Appendix C

32 Table C-1
32 Table C-2
33 Table C-3
33 Table C-4
34 Table C-5

35 Table C-6

Important Firmware Locations

Serial Port 1 Addresses

Serial Port 2 Addresses

Video Firmware Addresses

Mouse Port Addresses

Apple lic Enhanced Video and
Miscellaneous Firmware

Apple llc Monitor Entry Points and
Vectors

List of Figures and Tables

i

(w4 WL o W W | |) o o L o W =) o W o W of WO o

Tl

i

14 Y Y Y ¥ A Y

W Appendix E

Interrupts
45 Figure E-1

58
58

Table E-1
Table E-2

Interrupt-Handling Sequence
Activating Mouse Interrupts
Reading Mouse Interrupts

= Appendix F

Apple Il Series Differences

80

Figure F-1

Apple Il, Il Plus, and lle Hand Contral

Signals

I Appendix G

USA and International Models

USA Standard or Sholes Keyboard
(Keyboard Switch Up)

Keys and ASCII Codes

USA Simplified or Dvorak Keyboard
(Keyboard Switch Down)

85

86
88

89

80

80

91

92

92

93

93

94

95

96

96

98
100

Figure G-1

Table G-1
Figure G-2

Figure G-3
Figure G-4
Table G-2
Figure G-5
Figure G-6
Table G-3
Figure G-7
Table G-4
Figure G-8
Table G-5
Figure G-9
Table G-6

Table G-7
Table G-8

ISO Version of USA Standard Keyboard

(Keyboard Switch Up)

English Keyboard

(Keyboard Switch Down)

English Keyboard Code Differences
From Table G-1

French Keyboard

(Keyboard Switch Down)

Canadian Keyboard

(Keyboard Switch Down)

French and Canadian Keyboard Code
Differences From Table G-1

German Keyboard

(Keyboard Switch Down)

German Keyboard Code Differences
From Table G-1

ltalian Keyboard

(Keyboard Switch Down)

Italian Keyboard Code Differences From

Table G-1

Western Spanish Keyboard
(Keyboard Switch Down)

Western Spanish Keyboard Code
Differences From Table G-1

ASCIl Code Equivalents

50 Hz Power Supply Specifications

List of Figures and Tables

L]

| Appendix H Conversion Tables -
104 Table H-1 What a Bit Can Represent 2
105 Figure H-1 Bits, Nibbles, and Bytes
106 Table H-2 Hexadecimal/Decimal Conversion p—
108 Table H-3 Decimal to Negative Decimal Conversion a
109 Table H-4 Hexadecimal Values for High-Resolution
Dot Patterns E
113 Table H-5 PIN Numbers -_—
115 Table H-6 Control Characters, High Bit Off
116 Table H-7 Special Characters, High Bit Off i
117 Table H-8 Uppercase Characters, High Bit Off
118 Table H-9 Lowercase Characters, High Bit Off
119 Table H-10 Control Characters, High Bit On -'L'
120 Table H-11 Special Characters, High Bit On -
121 Table H-12 Uppercase Characters, High Bit On
122 Table H-13 Lowercase Characters, High Bit On .-:
B
[
e
.
.-l_"
=
—
B
—
=
=
—_—
&
.
_—
&
ﬂ.
]

Xxii | List of Figures and Tables

H Y8 X ¢ A o o |

L

I

' Radio Frequency Interference Statement

The equipment described in this manual generates and uses radio-frequency
energy. If it is not installed and used properly, that is, in strict accordance with
our instructions, it may cause interference with radio and television reception.

This equipment has been tested and complies with the limits for a Class B
computing device in accordance with the specifications in Subpart J, Part 15,
of FCC rules. These rules are designed to provide reasonable protection
against such interference in a residential installation. However, there is no
guarantee that the interference will not occur in a particular installation,
especially if you use a “‘rabbit ear" television antenna. (A “rabbit ear" antenna
is the telescoping-rod type usually contained on TV receivers.)

You can determine whether your computer is causing interference by turning it
off. If the interference stops, it was probably caused by the computer or its
peripheral devices. To further isolate the problem:

» Disconnect the peripheral devices and their input/output cables one at a
time. If the interference stops, it is caused by either the peripheral device
or its I/0 cable. These devices usually require shielded I/0 cables. For
Apple peripheral devices, you can obtain the proper shielded cable from
your dealer. For non-Apple peripheral devices, contact the manufacturer
or dealer for assistance.

If your computer does cause interference to radio or television reception, you
can try to correct the interference by using one or more of the following
measures:

* Turn the TV or radio antenna until the interference stops.
* Move the computer to one side or the other of the TV ar radio.
* Move the computer farther away from the TV or radio.

* Plug the computer into an outlet that is on a different circuit than the TV or
radio. (That is, make certain the computer and the radio or television set
are on circuits controlled by ditferent circuit breakers or fuses.)

» Consider installing a rooftop television antenna with coaxial cable lead-in
between the antenna and TV.

If necessary, you should consult your dealer or an experienced radio/television
technician for additional suggestions. You may find helpful the following
booklet, prepared by the Federal Communications Commission:

“How to Identify and Resolve Radio-TV Interference Problems. "

This booklet is available from the U.S. Government Printing Office,
Washington, DC 20402, stock number 004-000-00345-4.

Radio Frequency Interference Statement [xxiii

39eJ3.

= —— o = = —
R e e SR e e e —
T e e L B e e e L Sea S i iy = eyl K A |

RN

aoey}oad

This is the reference manual for the Apple llc personal
computer. It contains detailed descriptions of all of the
hardware and firmware that make up the Apple lic. The manual
is divided into two volumes: Volume | contains all the chapters;
Volume |l contains the appendixes.

This manual contains a lot of information about the way the
Apple llc works, but it doesn't tell you how to use the Apple llc.
For this, you should read the other Apple llc manuals, especially
the Apple lic Interactive Owner's Manual.

This manual describes the internal operation of the Apple llc as
completely as possible in a single reference work. The criterion
for deciding to include an item of information was whether it
would help an assembly-language programmer or hardware
designer.

. Contents of This Manual

This manual presents first the physical characteristics of the
Apple llc (Chapter 1), then the hardware locations and firmware
that control memory management and input/output (Chapters 2
through 10), and finally the electrical and electronic
inplementation of those capabilities (Chapter 11). The
appendixes contain summary tables and information comparing
other Apple products to the Apple llc.

Chapter 1 identifies the main physical features of the Apple llc.

Chapter 2 presents an overview of the 65C02 microprocessor
{whose instruction set appears in Appendix A), and then
discusses the processor's address space, what it contains, and
how to control it.

Contents of This Manual XXV

Chapter 3 is an introduction to Chapters 4 through 9. It
describes the common characteristics of input/output
processing. Chapters 4 through 9 then discuss the kinds of
devices—Dboth built-in and attachable—that the Apple lic
supports:

® Keyboard and speaker (Chapter 4)

¢ Video display (Chapter 5)

® Disk drives (Chapter 6)

® Serial port 1 for printers and plotters (Chapter 7)

e Serial port 2 for modems and other communication devices
(Chapter 8)

® Mouse and hand controls, including game paddles and
joysticks (Chapter 9)
Chapter 10 is a brief tutorial on how to use the Monitor
firmware to disassemble and debug machine-language
programs, and manipulate memory contents.

Chapter 11 is a detailed description of the hardware that
implements the features described in the earlier chapters. This
information is included primarily for programmers, but it will
also help you if you just want to understand more about the
way the Apple llc works.

Additional reference information appears in the appendixes.
Appendix A is the manufacturer's description of the 65C02
instruction set, including the 27 new instructions available on
the CMOS version of the 65C02 used in the Apple lic.

Appendix B is a memory map of the Apple lic, including detailed

tables of page zero, page three, the screen holes, and the
hardware page.

Appendix C lists the published firmware entry points, arranged
by address, and indicates where in the manual they are
described. The list includes I/O firmware (pages $C1 through
$CF) and Monitor firmware (pages $FO0 through $FF). For
Applesoft interpreter firmware (pages $D0 through $EF), refer to
the Applesoft BASIC Reference Manual (in two volumes).

Appendix D discusses the operating systems and languages
that run on the Apple lic.

Appendix E describes how to use the Apple lic's interrupt
handling capabilities.

Preface

El

4| I N - N T | S - R W | G - | - .

1|

" ™M '’

LS I

l

Appendix F contains an overview of the differences among the
Apple Il series computers.

Appendix G contains the keyboard layouts, code conversion
tables, and external power supply characteristics of USA and
international models of the Apple llc.

Appendix H contains reference tables for code and number
base conversion.

Appendix | contains a listing code for the Monitor, enhanced
video firmware, and input/output firmware contained in the
Apple lic. The listings do not include the built-in Applesoft
interpreter, which is discussed in the Applesoft BASIC
Programmer’s Reference Manual.

The bibliography lists articles and books containing additional
information about the Apple lic and related products.

The glossary defines many of the technical terms used in this
manual.

At the back of this manual is a Tell Apple Card. Please fill it out
and send it in. Your experience with this manual will help us
plan new reference materials.

W Symbols in This Manual

Captions, cross-references and
incidental definitions appear in
marginal glosses like this.

This manual uses a three-level numbering system to make it
easier to cross-reference information. A reference like 2.4.3
means Chapter 2, section 4, subsection 3. G.1.8 refers to
Appendix G, section 1, subsection 8.

Special text in this manual is set off in several different ways,
as shown in these examples.

Warning
Important information regarding your safety or protection of
data appears in boxes like this.

Note: Information that is useful but not central to the
discussion in a given part of the text appears in gray boxes
like this.

Symboals in This Manual XXVii

uonanpo.Iuf

|t

18@1deyo

L

This chapter introduces you to the Apple llc. It identifies the
major components of the machine, both outside and inside, and
tells you where in the rest of the manual to find information
about each one.

B 1.1 outside of Machine

Appendix G illustrates and
discusses several international
keyboard layouts.

Figure 1-1 shows an Apple llc with a Standard USA keyboard.
This chapter discusses both the Standard (Sholes) and
Simplified (Dvorak) USA keyboards, as well as the lights and
switches on the front of the machine.

Figure 1-2 is a diagram of the parts of the computer that you
can see, hear, or access from the outside. The Apple llc comes
equipped with keyboard, speaker (with headphone jack and
volume control), disk drive, attachable power supply, and
internal voltage converter. It also has built-in interfaces and
connectors for a serial printer, video display, special video
display adapters, modem, mouse, and game controls.

1.1 Qutside of Machine 11_

El

There are no user connections inside the Apple llc, but

expansion is possible and easy with the connectors on the E

Apple llc back panel. | —

' Figure 1-1. Apple lc With Figure 1-2. Block Diagram of =
Standard USA Keyboard External Features !;_

)

7.

L

p_—)

]

E

Keyboard Disk Drive
(See Figs. 1-4 and 1-5) (See Fig. 1-7) (See Fig. 1-8) (See Fig. 1-86)

Back Panel Speaker

Tl F

1.1.1 The Keyboard

ASCII stands for American The front of the Apple llc includes the keyboard (Figure 1-3),

Standard Code for Information

Interchange. Table 4-2 lists the the computer’'s primary input device. It has a typewriter layout,
ASCII character encoding for the uppercase and lowercase, and can generate all 128

Standard and Simplified USA characters—including control characters—in the ASCII
keyboards. Appendix G lists the

encoding for international character set. The front of the computer also has a reset key,
keyboards. 80/40 switch, keyboard switch, disk-use light, and power light.

™ T m o m

..MM m m m

2] Chapter 1: Introduction

Figure 1-3. Keyboard and Front of Apple lic

Reset Switch Keyboard Switch Power Light
80/40 Column Switch Keyboard Disk Use Light

Table 1-1 lists the characteristics of all Apple lic keyboards and
front panels.

Table 1-1. Keyboard Specifications

Number of keys: 63

Character encoding: ASCI

Number of codes: 128

Features: Automatic repeat, two-key rollover
Special function keys: (RESET), (6], (&)

Cursor movement keys: = &0 0 (DELETE),
Modifier keys: (CONTROL), (SHIFT), (TAPSLOCK),
Front-panel switches: 80/40 switch, keyboard switch
Front-panel lights: Fower light, disk-use light
Features

The Apple lic keyboard has automatic repeat on all character
keys: if you hold the key down longer than about a second, the
character it generates repeats. It also has two-key rollover,
which means if you type a second key before releasing a prior
key, the new character enters the computer the same as
though the previous key were released first. (This is important
for fast touch typists.)

&k & r L Lr S mr e i

1.1 Qutside of Machine E

f

The Apple keys are connected to
one-bit addresses in memory,
described in Chapter 9.

Chapter 2 describes the results of
the various reset procedures.

The Menitor is a built-in program
that performs some of the basic
activities of the computer, such as
retrieving and storing key codes as
they come in, and clearing or
updating the display screen.

The other keys to use with

are:@ [\ | " _ and their
international equivalents (see
Appendix G).

Special Function Keys

The Apple lic has three special function keys: (RESET), and two
keys marked with apples: one outlined, (&), and one filled in,

(&).

has a direct line to the 65C02 microprocessor: holding
down while pressing causes the Apple lic to
restart processing with a program that puts the machine in a
known state (Chapter 2). So you don't accidentally destroy
current work, the reset takes effect only if you hold down

while pressing (RESET).
If you hold down both and (&) while pressing (RESET),

the computer starts up as if you just turned it on.

Cursor Movement Keys

Four of the cursor movement keys have arrows on them: left,
right, down and up. The other three keys are (RETURN), (DELETE)
and (TAB). All generate ASCII control characters (Table 4-2).
However, it is up to the operating system or application
program to interpret and act on the control codes that these
keys generate.

Modifier Keys

Three special keys, (CONTROL), (SHIFT) and (caPs-LOCK), change
the codes generated by the other keys. None of these keys
generates a code when pressed by itself. A fourth key, (£sc),
generates a control code that the Monitor responds to by
interpreting certain subsequent keystrokes in a modified way.

(ConTROL), when pressed in combination with letter keys or
certain other keys, produces ASCII control characters.

works the same on the Apple lic as on an ordinary
typewriter: it selects uppercase letters and the upper characters
on the keys.

(caps-LOCK), in its down position, changes the letter keys to
uppercase, but does not affect other keys.

is not a modifier key in the same sense as and
(SHIFT); you do not hold it down while pressing other keys.
Rather, you press and it generates the ESC control
character (key code $1B—see Table 4-2). Many programs,
including the built-in Monitor program, then interpret other
specific keys as designating an escape sequence.

Chapter 1: Introduction

Fl FL FL P IFL IFL I el Pl

Fl

'Fi

Fi

M oroE

Fl

The 80/40 Switch

This switch takes effect only if the The 80/40 switch selects whether information is to be displayed
program or ‘;’Deﬁa'”;g 5:5‘_?"”55“3” in 40 columns to the line or 80 columns. This switch indicates
b, D o Bt 40-column display in its down position, and 80-column display

in its up position.

Note: Not all programs check this switch. Even programs that
do check the switch may rely on the user setting it before
running the program.

The Keyboard Switch

The keyboard switch selects which of the two keyboard layouts
and character sets the computer is to get from the keyboard
and display on the screen. On USA versions of the Apple llc,
select the Standard Sholes keyboard layout (Figure 1-4) with
the switch in the up position, and the Dvorak Simplified layout
(Figure 1-5) with the switch in the down position.

Figure 1-4. The USA Standard or Sholes Keyboard (Keyboard Switch Up)

/ﬁf-‘;‘--‘{-‘ ﬂr-;-‘f.'£=.,‘.’-'.f ﬁm‘ use ﬂt-‘d—!.‘.f

! = # by lo k & * / ! —_— +
Bse ! 7 J 4 5 b 7 # g a = = delete
£ 7 |
tah] w £ A 7 ¥ U / 0 P [7 \
: n
contrl A 5 0 f G H J K i : i PEfum
< > ?

shifr 2 X E y 3 ,l1|'l M . . f shifr

" : G L] - > ¥ g5

R

1.1 Outside of Machine [5

Figure 1-5. Simplified or Dvorak Keyboard (Keyboard Switch Down). Note: Shaded characters may be in different

positions on some models.

foo [l

ﬁx’f& s /wmr

! @ # % x & * { /
o | 7 2 |3 5 e |7 g |9 |o
b : - 172 |r |7 |s |e |»
cantol F v |/ o | H 7 N | S = | mum
shi Sl o (v |k |x |a |w|w v |7 |
eps | T
U a - - > + 1

Appendix G illustrates the
keyboard layouts for both
keyboard switch positions on
several international versions of the
Apple llc.

On international models, the keycaps indicate the character
positions for the local keyboard layout, which is selected when
the keyboard switch is down. When up, the keyboard switch
selects the USA Standard characters and key layout.

Disk-Use and Power Lights

The red disk-use light glows whenever the built-in disk drive's
motor is on.

The green power light glows when normal power is present at
the Apple lic's internal power supply.

Warning

If the power light flashes on and off, turn off the computer
immediately. Find out what caused the condition (such as a
brownout) and remedy it before turning the computer on again.
Above all, do not use the disk drive when the power light is
flashing; this may damage the computer.

Chapter 1: Introduction

L PL . LT T s W TPt TP L P T s 1 e P Y

Fl

M Tl

1.1.2 The Speaker

The Apple lic has a loudspeaker in the bottom of the case, as
shown in Figure 1-6. The speaker enables Apple lic programs
to produce a variety of sounds that make programs more
useful and interesting. There is also a volume control on the
left side of the Apple llc case, and a mini-phone jack for
connecting headphones or an external speaker.

The way programs control the The jack accepts either one-channel (monaural) or two-channel
speaker is described in section 4.2. (stereo) plugs, although speaker output is monaural only.
Inserting a plug disconnects the built-in speaker.

Figure 1-6. Speaker, Volume Control, and Phone Jack

Phone Jack Speaker (Inside)
Volume Control Knob

o

1.1 Outside of Machine [7

s b

Fl

1.1.3 The Built-in Disk Drive

1/0 means input (information The Apple lic has a built-in disk drive (Figure 1-7) that is fully -~
Eﬁ:ﬂTtg(;:rtgrmstig?mm%?r:eﬂoa?%f me COMPpatible with Apple Disk Il—that is, it reads and writes
corrl::puter}. Chaptergﬁae%;;::bes single-sided, 35-track disks. The drive door is on the right side ——
how to use the Apple lic’s disk 1O of the Apple lic case. o
hardware and firmware.
Figure 1-7. Buiit-in Disk Drive d
e
_
—
e
=
—
Disk Drive Door E.
—_—
1.1.4 The Back Panel =
The back panel of the Apple lic (Figure 1-8) has seven =
connectors and a main power switch. From left to right they L
are:
® a 9-pin D-type miniature connector for connecting hand ;
controls, a mouse, a joystick or some other pointing device
® a 5-pin DIN connector for serial input and output (port 2; =
normally for a modem) L
® a 15-pin D-type connector for video expansion
® an RCA-type jack for a video monitor !-_-
® a 19-pin D-type connector for connecting a second disk
drive :
® another 5-pin DIN connector for serial input and output [
(port 1; normally for a printer or plotter) =
® a special 7-pin DIN connector for power input &
—
L
=
8l Chapter 1: Introduction -

B —— _

-

| |
v
-

r
5
L

T

F
|

i

=
.

™
I

NN

-
-

-
-

=

F

[

[HF

r

==

The installation manuals for the external devices contain
instructions for connecting them. Be sure to move the handle
until it clicks into position for propping up the computer before

attaching cables to the back panel.

Figure 1-8. Back Panel Connectors

R TR T RO |

—

Mouse and Hand
Control Connector
(See Figs. 11-37
and 11-42)

Serial Port2 Video Expansion Handle Serial Port 1 Power Switch
Connector Connector Connector
(See Fig. 11-30) (See Fig. 11-25) (See Fig. 11-30)
Video Output External External Power
Connector Disk Drive Connector
(See Fig. 11-24) Connector (See Fig. 11-1)

(See Fig. 11-26)

1.1 Outside of Machine

'Kl

B 1.2 inside of Machine

Chapter 11 discusses in further
detail these components and how
they work.

Figure 1-9 shows the main components inside the &

Apple llc computer.

Figure 1-9. Block Diagram of Inside of Machine E
-
=
b
=
-
-
]
L
-
L
[)

Voltage Speaker Built-in Main Logic Board =
Converter (underneath) Disk Drive (See Figure 1-11)
L

1.2.1 The Internal Voltage Converter -
L.

The built-in voltage converter operates from a 15V DC source,
such as provided by the external power supply furnished with
the Apple llc (Figure 1-10). The voltage converter provides
power for the logic board, built-in disk drive, one external disk
drive, and the |/O signals available at the back panel.

™ IFl

m

Chapter 1: Introduction

o 5

Complete specifications of the
Apple llc power supply and voltage
converter appear in Chapter 11.

Figure 1-10. Power Supply and Voltage Converter

Power Switch Power Supply
Internal Voltage Converter

The voltage converter produces three different voltages: +35V,
+12V, and -12V. (Minus 5V is derived from -12V on the main
logic board.) It is a high-efficiency switching converter that
protects itself and the rest of the Apple llc against short
circuits and other mishaps.

1.2.2 The Main Logic Board

Almost all the electronic parts of the Apple lic are attached to
the main logic board, which is mounted flat in the bottom of the

case.

1.2 Inside of Machine 11

i 4
—
' Figure 1-11 shows the main logic board and the most important
a integrated circuits (ICs) in the Apple lic. They are the :
i . s CPU (central processing unit), RAM (random access memory), =
rmware is program e that is 5 i i
Storedd I read oy THemory. It da ROM (read-only memory) I(_.:s for keyboard eqcodnng. display
be read and executed, but nat character generation, and firmware, and the five custom L
changed. integrated circuits. 3
|
{ Figure 1-11. Main Logic Board e
I [
e
Character &
Generator ROM
WM ;
TMG
-
oL -
" Auxiliary RAM -
—
b
Waupt-Arbr J-",i.-.- "EF
Main RAM —
k-
B
-
A 'F'r-i:f' r PU o2 eraned £l | i -
/) ' LT |||L:;'L'!r'_;__.'__! . &
L A _ b rrr.r_r_.rrr: |',.rli r | 1‘ 374
fia) b
e
sud Ferwsan UL 73204 Keyboard ROM 1ou
’ {; o ""r Firmware ROM MMU —
7l HETmENeEN 65C02 Microprocessor
—]
The specifications of the 65C02 are The CPU is a 65C02 microprocessor. The 65C02 is a CMOS _
given in Chapter 11; the 65C02 version of the 6502, which is an eight-bit microprocessor with a
instruction set is given in y :
Appendix A, sixteen-bit address bus. In the Apple lic, the 65C02 runs at E
1 MHz and performs up to 500,000 eight-bit operations per
second.
s
=
121 Chapter 1: Introduction E

e e

Chapter 11 describes how RAM
works; Appendix B lists impaortant
RAM locations.

ROMs: see Chapter 11.

The Applesoft language interpreter
is described in the Applesoft
Tutorial and the Applesoft BASIC
Programmer's Reference Manual,

Memory addressing: see
Chapter 2.

See Chapters 3 through 9.

Chapter 11 discusses the functions
of these integrated circuits in some
detail.

O

V

The keyboard is scanned by an IC that generates matrix values
for a read-only memory (ROM). The value of this ASCII code is
latched and readable by programs.

The character generator ROM converts display information to a
form that display devices can use.

The other ROM contains the Monitor, the Applesoft BASIC

interpreter, enhanced video firmware, and other input/output
firmware. The firmware that this ROM contains is described
throughout this manual.

Five of the large IC's are custom-made for the Apple lic:

® The Memory Management Unit (MMU) contains most of the
logic that controls memory addressing in the Apple llc.

® The Input/Output Unit (IOU) contains most of the logic that
controls the built-in input and output features of the
Apple llc.

® The Timing Generator (TMG) generates all the system and
I/O clock and timing signals from a 14 MHz oscillator.

® The General Logic Unit (GLU) performs the remaining logic
functions required.

® The Integrated Woz Machine (IWM) is a single-chip version
of the Apple Disk Il controller card.

1.2.3 The Other Circuit Boards

The Apple llc contains other circuit boards that serve special
purposes: a motor-speed control board and a read/write logic
board for the disk drive, and a matrix board for detecting the

position of keys pressed. This manual does not discuss these
circuit boards.

Warning

Adjustment of disk drive speed must be done by an authorized
Apple Service Center. Do not attempt to adjust the speed of
your built-in disk drive. If you do, you may damage it and you
will void your warranty.

1.2 Inside of Machine 13

jos3u0” pue uoneziuebig Alowayy

¢ 1931deyo

This chapter is an introduction to the microprocessor, the
number of separate locations (addresses) it can access, and the
addresses set aside for special purposes. The last section of
this chapter describes the reset routines, which restore the
computer to a known state.

. PX The 65C02 Microprocessor

Figure 2-1 is a model of the 65C02 microprocessor. The 65C02
has one 16-bit register and five 8-bit registers. Registers are

fast-acting storage areas where the processor performs and
keeps track of its work.

2.1 The 65C02 Microprocessor [15

Figure 2-1. Block Diagram Model of 65C02. Copyright 1982, NCR Corporation.

Used by permission of NCR Corporation, Dayton, Ohio. i
—=f——— Rogistor Section Control Section ————3= =
RES IAQ NMI -
f H'"GI::H k :> Interrupt |
AD] 9‘[;'“___. Logic -
A v @ ! * * -
A2 Register - ADY W |
(%) - I -
AT |
ABL a [Stack Pouﬁ’t'e'r_‘@ — = SYNG
Al : % Register Wi =
[5] “—1 P ——— |
A r E@—___ 1 Insiruction [!
D
Af ALU e g:'frfu
- G —— K3 ’— o 5
ﬁ 2 ’
| —
Addrass | | = é
Bus e)
| Accumulntor c
N i
A — = = g E
prp— é <:r> PoL - Chock i)
= Ge
A0 E <:_ = > PCH Processor Ds::i:::s: -
g - Siatus u
A1 o, £ : (\'_—, Aegister (P} L---- &i0ut) -
ERERS 3 (:: < :.ﬂ;‘;::;r] <:> “. S - Eﬂutl
— 50
A13 = | L E
AT | =]
A5 Data Bus __n; J Instruction
Butfer R Register i |
L L
Y = ” IV 1 =
Legend:
Data Bus a
ﬁ = B-Bit Line | | | -
| ® 1-Bit Ling e -:
—
Each of the other registers holds The 16-bit register is called the program counter (PC). It
eight bits (one byte), so the 65C02 specifies the address in memory that contains the instruction]
is called an B-bit processor. | —

the processor is currently carrying out. A sixteen-bit register
can specify any one of 65,536 memory addresses, and so the
65C02 is said to have an address space of 65,536 locations.

r

m m

161 Chapter 2: Memory Organization and Control

Appendix A lists the instructions
the 65C02 can carry out, their use,
and their effects on the registers.
For further information, consult the
pertinent books listed in the
Bibliography.

The five 8-bit registers in the 65C02 are

e The accumulator, or A register. The accumulator is like a
desktop where the processor performs mathematical and
logical operations on information.

e The index registers, X and Y. The processor uses these
registers to modify the address where information is to be
found or placed, and to pass information from one program
to another.

A stack pointer, or S register. The processor uses a
256-byte region of memory—page 1—as an area to stack up
bytes for future use. The stack is empty when the computer
is turned on. Several 65C02 instructions either push (store)
the contents of a register onto the stack, or pull (retrieve) a
byte from the stack and place it in a register. The S register
keeps track of the byte in the stack that is currently ready
for use.

e A processor status register, called the P register. Seven of
the eight bits of this register store flags that record the
outcome of processor activities, and that can be checked by
later instructions to determine what the processor should do
next.

B 2.2 overview of the Address Space

Soft switches are described in
sections 2.4 and 2.5.

The Apple llc's 65C02 microprocessor can address 65,536
(64K) memory locations. All of the Apple lic's RAM, ROM, and
input and output (I/O) devices are accessed using addresses in
this 64K address range. Some functions have the same
addresses—but not at the same time. The Apple llc controls its
shared addresses using soft switches.

Note: When referring to memory space, K stands for 1024,
which is 2 to the tenth power. It is called K because 1024 is
very close to the value 1000, which has long been
abbreviated K for Kilo. Some early computers even saved the
extra 24 locations for spares.

RAM stands for random-access (readable and writable)
memory. ROM means read-only memory. Refer to the
Glossary for further information.

2.2 Overview of the Address Space [17

'Fl

There are two other ROMs in the All input and output in the Apple lic is memory mapped—that is,
Apple lic: one to generate specific memory addresses (all in the $C0 page) are allocated to

characters corresponding to p .
kev;mkea (sactic,'?.r 11_7?: and each 1/O device. In this chapter, the I/O memory spaces are

another to generate characters for described simply as areas of memory. For details of the built-in
display (section 11.9). However, I/O features and firmware, refer to the descriptions in

these ROMs are not addressable Chapt 3 th h o9

by the microprocessor. dpters rougn 3.

El

'Fl

A block of 256 address locations is called a page. A one-byte
address counter or B-bit register can specify one of

256 different locations. Thus, page 0 consists of memory
locations from 0 to 255 (hexadecimal $0 to $FF), inclusive;
page 1 consists of locations 256 to 511 (hexadecimal

$100 to $1FF); and so on. In this manual, all page numbers
(except some of the low-numbered cnes) are given in
hexadecimal format.

IEL

IEL

'Fl

Note: The first two digits of a four-digit hexadecimal address
are the page number. There are 256 pages of 256 bytes each
in the address space. This kind of page is different from the
display areas in the Apple lic, which are sometimes referred
to as Page 1 and Page 2.

Fl E

IF|

PR Memory Map and Memory Switching

Figure 2-2 is a map of the Apple lic's memory address space
and what the major blocks of addresses are used for. As you
can see in the figure, addresses $C000 through $COFF contain
hardware only, and addresses $C100 through $CFFF contain
ROM only. At all other addresses there are two, three or even
five blocks of RAM or ROM locations. At any given time, only
one block of RAM or ROM occupies each set of addresses. As
described later in this chapter, switches in the hardware page
control which blocks the processor is to use.

Pl LRl

IF,

. T Rl

18] Chapter 2: Memory Organization and Control

l .
-
l Figure 2-2. Apple lic Memory Map
o
m Hardware ROM Main RAM Auxiliary RAM
I SFFFF _ ~ -~
B *;j - E [Monitor
— @
=
B
= Applesoft
[T § BASIC
@ Interpreter
E Bank 1 Bank 2 Bank 1 Bank 2
.l $D000 _| a
1/0 Firmware
g $C100 _|
: = -
n $C000 ——
Hardware
- Page
[T
|
[~
[~
l— 2
— g
I v
— =
<+
|
-
..-_-_-_.l. ;gggg = Pages {
- Oand1

=

| #

2.3 Memory Map and Memory Switching 19

[Fl

2.3.1 Main RAM Addresses ($0000-$BFFF and

$D000-$FFFF) L
The area labeled Main RAM in Figure 2-2 is so-called because
some or all of it is present in all models of the Apple Il series of :
computers. The Apple llc has 64K bytes of main RAM. =g
2.3.2 Auxiliary RAM Addresses ($0000-$BFFF and =
$D000-$FFFF)
The Apple lic has another 84K of auxiliary RAM built in. Some -
or all of auxiliary memory is present in an Apple lle with one of
the 80-column cards installed (Appendix F), but there is no 9
auxiliary RAM in the Apple Il or Il Plus. This portion of RAM -
cannot be used simultaneously with main RAM; you must use
the soft switches described in this chapter to select main or 4
auxiliary memory for a given range of addresses. -
2.3.3 ROM Addresses ($C100-$FFFF) B
ROM addresses contain the built-in Apple llc firmware. a
Addresses $C100 through SCFFF belong exclusively to ROM. ol
Addresses $D000 through $FFFF are shared by ROM, main -
RAM, and auxiliary RAM; the selection techniques are described
in section 2.4.2. = |
Pages $C1 through CF (addresses $C100 through $CFFF) =
contain I/O firmware. The following associations apply for the
Apple llc: —
-
e Serial port 1 (RS-232 device) firmware entry points are on
page $C1. L
e Serial port 2 (communication device) firmware entry points =
are on page $C2.
® Video output firmware entry points are on page $C3; the =
enhanced video firmware and miscellaneous 1/O support
routines occupy pages $C8 through $CF. ll
® Mouse firmware entry points are on page $C4. =
® Disk I/O firmware entry points are on page $C6. =
=
—
-

I

201 Chapter 2: Memory Organization and Control

F

Il

Note: This correspondence of ports and entry points does
not imply that all of each port’'s firmware occupies a specific
page. The Apple llic I/O port firmware space is allocated in a
way that provides the best possible performance.

|

11

|
|
=

!

The operation of the Applesoft Pages $DO0 through $F7 (addresses $D000 through $F7FF)

Interpreter firmware is described in contain the Applesoft Interpreter firmware.
the Applesoft BASIC Programmer's PP P

Reference Manual. Pages $F8 through $FF (addresses $F800 through $FFFF)
contain the Monitor, which is described in Chapter 10. Monitor
routines that make various input and output procedures easier
are described in Chapters 3 through 9.

3
|
[=

[l

'R

2.3.4 Hardware Addresses ($C000-$COFF)
Chapters 3 through 9 describe the The Apple lic's built-in input and output functions, and the

e I""F'D“? "‘3'5;"'!3“" g_“dﬂﬂlk_"f“* e switching of blocks of address space, all take place via locations
— tﬂzzgc’,';;ﬁfﬁ:?n ':ddréi: grdgr_ on the $CO page—that is, in the address range $C000 through

l rather than by function. $COFF. This chapter describes the address space (memaory)

| switches.

19

The hardware functions on this page fall into five basic

o

= categories:
- Bit numbering in a byte is ¢ Data inputs. The only data input is location $C000, where
I explained in Appendix H. the low-order seven bits (bits 6 through 0) represent the

keyboard key just pressed. (This data is guaranteed valid
only when bit 7 = 1.)

Flag inputs. Most built-in input locations are single-bit flags
in the high-order (bit 7) position of their respective memory
addresses. Flags have only two values: on (greater than or
equal to 128 or $80) or off (less than 128 or $80).

The switch, hand controller (analog) and button inputs, and
the keyboard strobe, are examples of flag inputs. The
locations for reading soft-switch states are also of this type.

r=

19,

=/

I

'

15,

Strobe outputs. The clear keyboard strobe (Chapter 4) and
paddle timer strobe (Chapter 9) outputs are controlled by
memory locations. If your program reads the contents of one
of these locations, then the function associated with that
location will be activated.

i

= 2.3 Memory Map and Memory Switching [21

e Toggle switches. The Apple lic has only one toggle switch:
the speaker switch. A toggle switch has only one address
assigned to it; each time you access it, it changes to its
other state (on or off).

-l F

Reading the speaker toggle at location $C030 clicks the
speaker once. However, if you write to the speaker location,
the microprocessor activates the address bus twice during
successive clock cycles, causing the speaker toggle to end
up in its original state before the speaker cone can move.
Therefore, you should read, rather than write, to use this
device.

FL Tl

IF\

The processor cannot read the on/off status of the speaker
switch.

Fl

e Soft switches. Soft switches are two-position switches
turned on by accessing one address and turned off by
accessing another address. Most of these switches have a
third address associated with them for reading the state of

IFL

the switch. —_—
There are eight soft switches that select different :
combinations of bank-switched memory (section 2.4). Four of
these eight switches require that your program read them e
twice in succession to activate them. T
1
O - E
2.4 Bank-Switched Memory
The stack and zero page are The memory areas described in this section are called ;
2‘;{}:’;‘:3 :’u‘:fnmgyis‘:hg"a‘ system bank-switched memory (Figure 2-3) because so many banks
bank-switched memory space can (ranges) of addresses—one bank of ROM and up to four banks -
maintain its own stack and zero of RAM—occupy the same group of locations among the upper &
g..asg;o\:ahn.lse LL"TQE;"?.?’S ;h s addresses of memory. Pages $00 and $01, at the low end of
¥ AnenAnaaNen 60 memory, are included here because the two sets of them—one
_ . in main RAM and one in auxiliary RAM—are controlled by the -
Section §.4.1 dlacusang whit same switches as the high-address banks. 1
functions various addresses are
set aside for; section 2.4.2 -
describes how to select the -
memary banks you want. e |
-
|
&

22]

Chapter 2: Memory Organization and Control

Figure 2-3. Bank-Switched Memory

ROM Main RAM Auxiliary RAM
$FFFF 7]
Monitor
$FB00 _| Firmware
$FTFF
-
5]
E
@
=
;-]
2
8 Applesoft
E% BASIC
- Interpreter
5 | seooo
o -
$DFFF
Bank 1 Bank 2 Bank 1 Bank 2
\ $D000 _|
SCFFF I l
| I
scioo | L_______ |
$BFFF | " -

R e e i ST S S~ A

Pages { **°] e e

Oand 1 = $0000 ~

EE R e

2.4 Bank-Switched Memory [23

[El

2.4.1 Page Allocations

Pages zero and one are used by many of the 65C02
instructions. The ROM and RAM addresses in bank-switched
memory are usually occupied by system software such as
interpreters, compilers, and operating systems.

FL K

Page $00 (One-Byte Addresses)

Several of the 65C02 microprocessor's addressing modes—for
example, indirect addressing—require the use of addresses in
page zero, or zero page. However, the Monitor, the interpreters,
and the operating systems all make extensive use of page zero,
too. One way to avoid conflicts is to use only those page-zero
locations not already used by these other programs. But there
is another way.

IEL IEL

| =3

1
)

See Table B-1 in Appendix B. As you can see from Table B-1, page zero is pretty well used
up, except for a few bytes here and there. Rather than trying to
squeeze your data into an unused corner, you may prefer a
safer alternative: turn off interrupts, save the contents of part of
page zero, use that part, then restore the previous contents to
page zero, restore interrupts to their previous state, and then
pass control to another program.

F1

1

Page $01 (The 65C02 Stack)

The 65C02 microprocessor uses page 1 as its stack—a place
where it can store subroutine return addresses, in last-in,
first-out sequence. Programs can also use the stack for
temporary storage of registers (via push and pull instructions).
However, programs should use the stack carefully.

IFl

Fl

IFl

Pages $D0 Through $FF (ROM and RAM)

All these memory banks are The memory address space from $D000 through $FFFF is used
3222’,?323 ;v;g;igg"zﬁ‘wz'*chﬂs for both ROM and RAM. The 12K bytes of ROM in this address
i space contain the Monitor and the Applesoft BASIC interpreter.

| 2\

There are 16K bytes of main RAM in this 12K space, with two
banks occupying the 4K of addresses from $D000 through
$DFFF. The RAM is normally used for storing other languages
such as Pascal, or operating systems such as ProDOS.

Fl

m:"l

There are also 16K bytes of auxiliary RAM in this 12K space,
again with double occupancy in the address range $D000
through $DFFF.

m m

24) Chapter 2: Memaory Organization and Control

gt v

2.4.2 Using Bank Selector Switches

You switch banks of memory in the same way you switch other
functions in the Apple lic: by using soft switches. These soft
switches do four things:

1. Select either RAM or ROM in this memory space.

2. Allow or inhibit (write-protect) writing to the RAM when RAM
is selected.

3. Select the first or second 4K-byte bank of RAM in the
address space $D000 to $DFFF.

4, Select either main RAM or auxiliary RAM.

Warning

Do not use soft switches without careful planning. Careless
switching between RAM and ROM is almost certain to have
catastrophic effects on your program.

Table 2-1 shows the addresses of the soft switches for
selecting all allowed combinations of reading and writing in this
memory space, and the addresses of the locations to read the
switch settings. Figures 2-4 through 2-10 illustrate how to select
the combinations and what the resulting status of each switch
is.

To make sure you do not inadvertently remove write protection
from bank-switched RAM, the four write-enable addresses
require that you read them twice in succession (indicated by RR
in Table 2-1).

Because the ALTZP switch shares the read keyboard address,
you must write (W in Table 2-1) to its locations to change the
switch setting.

To find out which way a switch is set, read the appropriate
location and then check bit 7 (shown as R7 in Table 2-1). If the
bit is a 1, the answer to the question given in the table is
affirmative.

Note: There is no way to check whether write protection is
on or off.

2.4 Bank-Switched Memory [25°

i Table 2-1. Bank Select Switches

{ Action Hex Name Function
Hi
i R $C080 Read RAM; no write; use $D000
i bank 2.
|
| RR sCo81 Read ROM; write RAM; use
(] $D000 bank 2.
'F R $C082 Read ROM; no write; use $D000
| bank 2.
| RA $C083 Read and write RAM; use $D000
i bank 2.
|
| A $C088 Read RAM: no write; use $D000
bank 1.
RR $C089 Read ROM; write RAM; use
$D000 bank 1.
R $CO0BA Read ROM; no write; use $D000
bank 1.
| RR scoee Read and write RAM; use $D000
I bank 1.
| R7 $Co11 RDBNK2 Read whether $D000 bank 2 (1) or
| bank 1 (0).
R7 $C012 RDLCRAM Reading RAM (1) or ROM (0).
| W $C008 ALTZP Off: use main bank, page 0 and
page 1.
w $C009 ALTZP On: use auxiliary bank, page 0
and page 1.
R7 $C016 RDALTZP Read whether auxiliary (1) or
main (0) bank.
261 Chapter 2: Memory Organization and Control

. A Fl AL A M AT T Fl.FlL.Fl

T

1

L A

o

—

Figure 2-4. Read ROM

Bank-Switched Memaory

Selact meamory:

W SCo0B Turn aff ALTZP

R $CO0BZ Read
or R $C0BA Read

ROM, use bank 2*
ROM, use bank 1°

Selact memory
W SC008 Turn on ALTZP
R sCoa2 Read ROM, use bank 2°
or R §Co8A Fead ROM, use bank 1°

ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM
I 1 I 1 I 1 [1 | 1 I 1
/ %
Bank Bank Bank Bank Bank Bank Bank Bank
1 2 1 2 / ; 1 2 1 2
~

Page 1
Page D
Read resulting status: Read rasulting status

RT $C016 Read ALTZP; bit 7 = 0 RT $CO016 Read ALTZP, bt 7 = 1

RT $CO011 *Aead BANKZ: bit 7 = 1or 0 R7T &GO *Aead BANKZ; bit7 = 1or

RT $C012 Read ENLCRAM; Bt 7 =0 R7 $C012 Read ENLCRAM; bit 7 = O
Legend: w = Read mamaory D = |nactiva mamaory R7T = Read, check bit 7 AR = Read twice in succession

m = Write memory R = Read W = Writa

2.4 Bank-Switched Memory

27

rl

Figure 2-5. Read ROM, Write RAM, and Use First $00 Bank

—
Salect mamory: Selact memaory: [_.
| W SCoo8 Turn off ALTZP W SC009 Turn on ALTZP
| ‘; RA $CO08% AR &CO08Y
i
; ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM :
. | | | T 1T 1 | 1 | 1 T 1 =
Il = 7 .
b <] / \
| E i -
I 2 ;
| 2 :
| 5§ \ NN =
i F3 R
1 2 / N s
4 Bank Bank Bank Bank Bank Bank b~ Bank Bank
‘ 5 / : 1 2 1 2 1 Fl 1 2
aL 1N AR |
| i
|
: o
Page TE L
Page 0 -—
1l Read resulting status: Read resulting status:
!| R7 $CO016 Read ALTZP; bit 7 = 0 A7 S$CO16 Read ALTZP bit 7 = 1 —i
| A7 $CO11 Read BANKZ; bit7 = 0 A7 $CO11 Read BANKZ: bit7 = 0 -
_ R7 8C012 Read ENLCRAM; bit7 = 0 RT $C012 RAead ENLGRAM;bit7 =0
Legend: = Read memaory [: = Inactive memary A7 = Aead, check bit 7 BR = Read twice in succession —
i N = Write memory R = Read W= Write
-
I
—
e
B
e
&
1
—
=
28| Chapter 2: Memory Organization and Control F

v

Figure 2-6. Read ROM, Write RAM, and Use Second $D0 Bank

Select memaory: Select memary:
W SCo0s Turn off ALTZP W 5C009 Turn on ALTZP
AR ScCos1 RR §C081
ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM
I 1 I L I 1 1 | 1 I 1
= N
§| P N
E
@
=
2
= b
3 /
a Bank Bank Bank Bank Bank Bank Bank Bank
c 1 2 1 2 2 1 2 3
a
ml / N
| | I
| I] |
| I 1 1 I |
| I |
| | |
1 |)
|
Page 1 E :,
Page 0 [
Read resulting status Read resulting status:
RT %C018 Read ALTZP; bit7 — 0 RT? %cCo018 Fead ALTZP; bit 7 = 1
R7 $CO011 Read BANKZ; bit 7 = 1 R7 SCO11 Read BANKZ; bit 7 = 1
R7 $C012 Read ENLCRAM; bit 7 = 0 R7 sC012 Read ENLCRAM; bit 7 = 0
Legend: 271 = Read memory E Inactive memory R7 = Read, check bit 7 RR = Read twice in succession
m = Write memory R = Read W = Write

2.4 Bank-Switched Memory

[29°

Figure 2-7. Read RAM and Use First $00 Bank

Select memary: Select memory:
W $C008 Turn off ALTZP W $C009 Turnon ALTZP
R $coas R scoss
ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM

Bank-Switched Memory

Read resulting status: Read resulting status:

AT $CO16 Read ALTZP; bit7 = 0 RT &C016 Read ALTZP; bit 7 = 1

RT G011 Read BANKZ; bit 7 =0 R7 $C011 Read BANKZ; bit 7 = 0

RT §Ca12 Read ENLCRAM; bit 7 = 1 R7 §C012 Read ENLCRAM; bit 7 = 1
Legend: = Aead memory |:I = Inactive memory R7 = Read, check bit 7 AR = Read twice In succession

= Write memary B = Read W= Write

Tl Tl Fl_ L

FL

Tl FL 'Fl

5 O |

301 Chapter 2: Memory Organization and Control

4 v ¥V v

Figure 2-8. Read RAM and Use Second $D0 Bank

Select memory: Salect memory:
W $C008 Turn off ALTZP W $C009 Turn on ALTZP
R $cCo80 A $C080

ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM

Bank-Switched Memory

Page 1
Paga 0
Read resulting status: Read resuiting status;

A7 $C016 Read ALTZP: bit7 = 0 A7 SCO16 Read ALTZP; bit7 = 1

AT $CO11 Read BANK2; bit 7 = 1 R7 S&Com Read BANKZ2; bit 7 = 1

R7 $C012 Read ENLCRAM; bit 7 = 1 R7 $C012 Read ENLCRAM; bit 7 = 1
Legend: P77 . Mead memory :l = Inactive memory A7 = Aead, check bit 7 AR = Read twice in succession

R = Write memary A =~ Read W = Write

2.4 Bank-Switched Memory [31

Figure 2-8. Read and Write RAM and Use First §D0 Bank

Fi

Select memary: Select memory, }
W SC008 Turn off ALTZP W SC009 Turn on ALTZP -
RA SCOBB RAR S$CDBB
ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM -
| | T 1 T] I 1 I == [] ——
[
Q
; —
s B
u —
o
=
2
= |
= -
w H-—
- Bank Bank Bank Bank Bank Bank Bank Bank -
= 1 2 1 2 1 2 1 2
[e
Page 1 T
Page 0 &
Read resulting status: Read resulting status:
AT $CO016 Read ALTZP; bit 7 — 0 R7T %C016 Raad ALTZP: bit 7 = 1 —
A7 $CO11 Read BANKZ; bit 7 = 0 RT $CO11 Read BANK2; bit 7 = 0 b-
RT $C012 Fead ENLCRAM: bit 7 = 1 RT $CO012 Read ENLCRAM; bit 7 = 1
Legend: P77R . Read memory [] = nactive memory R7 = Read, check bit 7 RR = Read twice in succession
By = wirite memory AR = Read W= Write

32]

Chapter 2: Memory Organization and Control

e FlaaFl.. Fl

{d) Y

T A 7.

Figure 2-10. Read and Write RAM and Use Second $00 Bank

Select memory: Salact memory:
W Scoos Turn off ALTZP W $CoD9 Turn on ALTZP
RR SC083 RRA $COB3
ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM
I 1 I 1 [|} [1 | 1 | 1
=
=]
&
1]
=
b -]
[
£
2
:3'; / A
x Bank Bank # Bank Bank Bank Bank Bank Bank]
] 1 2 1 2 1 2 1 2
m L]
Page 1
Page 0
Read resulting status; Read resulting status:
R7 $C016 Read ALTZP; bit7 = 0 A7 $CO016 Read ALTZP;bit 7 = 1
RT $Co11 Read BANKZ; bit 7 = 1 AT $C011 Read BANKZ; bit 7 = 1
R7 §C012 Read ENLCRAM; bit 7 = 1 A7 $C012 Read ENLGRAM; bit 7 = 1
Legend: w Read meamory :] Inactive mamory A7 = Read, check bit 7 RA = Aead twice in succession
m = Write memory R = Read W = Write

R

[a3

. 2.4 Bank-Switched Memory

Note: You can't read one RAM bank and write to the other; if
you select either RAM bank for reading, you get that one for
writing as well. However, you can read ROM and write RAM
(Figures 2-5 and 2-6), which makes it easy to transfer
firmware to bank-switched RAM if you want to use it with a
program there.

W 2.5 48k Memory

Section 2.5.1 describes the
memory pages the hardware and
firmware use for various purposes.
Sections 2.5.2 and 2.5.4 explain
how to select main or auxiliary
RAM for read/write and video
storage, respectively. Section 2.5.3
tells you how to use firmware
routines to transfer data or
program control between main and
auxiliary RAM.

341

The 48K memory space (actually, 47-1/2K) extends from
location $200 to location $BFFF (Figure 2-11) in both main and
auxiliary RAM. The amount of storage available in this address
space depends on what language or operating system you are
using, and what video display needs your program has.

Chapter 2: Memory Organization and Control

Fi ¥l F1 A

4 &l

Fil

PPl FlaalPFloJFL [FL L. FloaFaaf e

IFl

-
I Figure 2-11. 48K Memory Map
=S Main RAM Auxiliary RAM
- SFFFF| | T r B
| | | '
= Bank- | . | |
— Switched | | |]
Memory l———a—ﬂ-,-—-——-l e e m—
; | | | |
- I
. $p00o| | | | I i
- - s S— pm———be e g
SCFFF| | | i
ROM/HW i i | |
$C000
- SBFFF
L_.
L
L
- $6000 |
- = $5FFF
<
= HRP2 HRP2X
- 3
- High-) $4000
Resolution 4 —
Pages $3FFF
- HRP1 HRP1X
N 5200[L
| $1FFF
- -
— Text and :g:;g TLP2 TLP2X
Low-Resolution ~ — —]
Pages gg:g; TLP1 = TLPIX
-) |
L" $0200 |
$01FF
1] 1]]
u Pages 0 and soooo | I o ¥
i
Main Memaory Auxiliary Memory
== Screen Holes Screen Holes
L.
- 2.5 48K Memory [35

The term system refers to the
computer and its firmware plus
whatever operating system you are
using.

A buffer is any storage area set
aside for one program or device to
put information into and another o
take information out of at a
different time or rate.

Refer to Appendix D and to the
appropriate programmer and
reference manuals for operating
system use of page 3.

Global storage refers to an area
reserved for information that
programs use in common.
Vectors—the addresses of special
routines—are examples of this
kind of information. Section 2.6
discusses the global storage and
vectors found on page $03.

See Chapter 5.

See section 3.4.6.

361

2.5.1 Page Allocations

Most of the Apple lic's 48K RAM is available for storing your
programs and data. However, a few RAM pages are reserved
for the use of the Monitor firmware, the Applesoft BASIC
interpreter, and whatever video display you may select.

Note: The system does not prevent your using these pages,
but if you do use them, you must be careful not to disturb
the system data they contain.

Page $02 (The Input Buffer)

The GETLN input routine (section 3.2.3) uses page 2 as its
keyboard-input buffer. The size of this buffer (256 bytes) sets
the maximum size of input strings read by Applesoft or the
Monitor. If you know that you won't be typing any long input
strings (more than, say, 30 characters), you can store
temporary data at the upper end of page 2.

Page $03 (Global Storage and Vectors)

The Monitor and operating systems use parts of page 3 for
global storage and vectors. Table 2-7 shows the part of page 3
the built-in firmware uses.

Pages $04 Through $07 (Text and Low-Resolution Page 1)

The most often used display buffer is the Text and
Low-Resolution Graphics Page 1 (TLP1 in Figure 2-11), which
occupies main memory pages $04 through $07. It is not usable
for program and data storage if you are using Monitor routines
or Applesoft, or with almost any other program that uses text
or low resolution display.

Text and Low-Resolution Page 1X (TLP1X) is an identical
display page occupying auxiliary memory pages $04
through $07. This pair of Text and Low-Resolution graphics
pages are used together to produce 80-column text display.

There are 128 locations in pages $04-$07 (64 in main RAM,
64 in auxiliary RAM) that are not displayed on the screen.
These locations are called screen holes.

Chapter 2: Memory Organization and Control

mor Fe FL e FLFL P PPl Pl Fled FRFIEN TR

i

A Warning
The screen holes are reserved for use by the built-in firmware.

v

Pages $08 Through $0B (Text and Low-Resolution Page 2)

The second Text and Low-Resolution Graphics display
buffer, TLP2, occupies main memory pages $08 through $0B.
Most programs do not use Page 2 for displays, but TLP2 is
there for display use if required.

Text and Low-Resolution Page 2X (TLP2X) is an identical
display buffer occupying pages $08 through $0B in auxiliary
memory.

Note: Apple lic firmware does not provide a way to use the
second pair of Text and Low-Resolution graphics pages for
80-column text display.

Page $08 (Communication Port Buffers)

Serial port 2: see Chapter 8. Serial port 2 uses the first half of auxiliary memory page $08
(addresses $0800 through $087F) as a keyboard input buffer,
and the second half of the page (addresses $0880 through
$508FF) as a serial input buffer. These buffers increase the data
transfer rates possible with the serial communication port.
Appendix E explains how to use these features.

If your program does not use this page for buffers, it can use it
as part of TPLX.

{1

Pages $20 Through $3F (High-Resolution Page 1)

[|
I
k

The primary high-resolution-graphics display buffer, called
High-Resolution Page 1 (HRP1), occupies the 32 memory pages
from $20 through $3F (locations $2000 through $3FFF). If your
program doesn't use high-resolution graphics, this area is
usable for programs or data.

K

I
¥

High-Resolution Page 1X (HRP1X) is an identical display page
occupying auxiliary memory pages $20 through $3F.

See Chapter 5 The Apple llc can display double-high-resolution graphics by
interleaving HRP1 and HRP1X.

i

)
IL

2.5 48K Memory (37

For more information about the
display buffers, see Chapter 5.

A

For details, refer to section 2.5.4.

38l

Pages $40 Through $5F (High-Resolution Page 2)

High-Resolution-Graphics Page 2 occupies main memory
pages $40 through $5F (locations $4000 through $5FFF). Most
programs use this area for program or data storage. However,
it is also available as a second high-resolution page.

High-Resolution-Graphics Page 2X (HRP2X) occupies auxiliary
memory pages $40 through $5F.

Note: Apple llc firmware provides high-resolution graphics
routines for HRP1 and HRP2 only. Refer to the Applesoft
BASIC Programmer’s Reference Manual.

2.5.2 Using 48K Memory Switches

Two switches select main or auxiliary RAM in the 48K memory
space (Table 2-2): RAMRD determines which to use for
reading, and RAMWRT determines which to use for writing.
When these switches are on, they select auxiliary memory.
When they are off, they select main memory.

Warning
This discussion assumes that the 80STORE switch, used to
control display memory, is off.

Each switch has three locations assigned to it: one to turn it on,
one to turn it off, and a third to read its state. Because the
memory locations for turning the switches on and off are
shared with keyboard reading functions, you must write to these
addresses to use them for memory switching.

For each switch, you can read bit 7 at its third location to check
whether the switch is on or off. If the switch is on, bit 7 is 1; if
the switch is off, bit 7 is 0.

Figures 2-12 and 2-13 illustrate how the switches work.

Chapter 2: Memory Organization and Control

1 D) =1 S| = W | =i W | <IN =t N | = W | =l W | = W | WO | =i W 1 W | =1 WO | S| = O 2

Il

]

L EF &6 B

kl

kl

1Y% Bt ¥ Y Y Y T Y

Ll il

Table 2-2. 48K Memory Switches. Note: B0STORE must be off to switch all
memory in this range, including display memory (Table 2-6).

Action Hex

w $C002
W $C003
R7 $C013
w $C004
W $C005
RY SC014

Figure 2-12. 48K RAM Selection: Split Pairs

Select memory:

Name
RAMRD
RAMRD
RDRAMRD

RAMWRT
RAMWRT
RDRAMWRT

Function

Off: read main 48K RAM.
On: read auxiliary 48K RAM.

Read whether main (0) or auxiliary
(1

Off: write to main 48K RAM.
On: write to auxiliary 48K RAM.

Read whether main (0) or auxiliary
(1)

Select memory:

= Read memory

N = Write memory R = Read

W =

W $Co00 Turn off BOSTORE W $C000 Turn off B0STORE
W $Co02 Read from main memory W $C003 Read from auxiliary memory
W $C005 Write to auxiliary memory W $C004 Write to main memory
Main RAM Auxiliary RAM Main RAM Auxiliary RAM
I 1 I 1 I 1 [1
) ey [pe———=s Jrr—
i I [] i
= S . T T3
|__._J.__..|I I.__,J___i - — 4 — -
> /4 §\ %&0& //
N R Z
= //HFIPE‘ R TR L HRP2XA
x ///,(//, N '\\ NN = \\1:.\\ N 7
¥ %4 HRP1X N HRP 1%
Z \\\\\\ \\\\§ 2
e N\ N .
727 7 et % jor ThRaK %\\\\\ 3~ TLP2 77 e ¥
L S TLP SSeeeSN TLP1X ghhphgle \-n_p“ & "'-.'n_p1x
I : R
Read resulting status: Read resulting status:
R7 $C018 Read B0STORE; bit7 = 0 R7 $Coia Read 80STORE; bit7 = 0
R7 $C013 Read RAMRD; bit7 =0 R7 $C013 Read RAMRD; bit 7 = 1
R7 $C014 Read RAMWRT; bit 7 = 1 R7T $C014 Read RAMWRT: bit7 =0
Legend: D = |nactive memory R7 = Read, check bit 7

Write

2.5 48K Memory

(39

Figure 2-13. 48K RAM Selection: One Side Only

Select memaory:

Select memory:

w $C000 Turn off B0STORE W $C000 Turn off B0STORE
W $co02 Read from main memaory W 3%C003 Read from auxiliary memory
W $C004 Write to main memory w $Co005 Write to auxiliary memory
Main RAM Auxiliary RAM Main RAM Auxiliary RAM
r=———" e ettt oy o'/ i A S
I I] I I I
T T T~ T -
1 1 P P
=
3
o HRP2X HRP2 RP2
§
HRP1X HRP1 HRP 1X
|~ TLP2X |~ TLP2 TLP2X
" ™ TLP1X ™~ TLP1 TLP1X
b e e — — N |
Read resulting status: Read resulting status:
R7 $C018 Read B0STORE; bit7 = 0 R7 $Co018 Read BOSTORE; bit 7 = 0
R7 $C013 Read RAMRD; bit7 = 0 R7 $C013 Read RAMRD; bit7 =1
R7 $C014 Read RAMWRT; bit7 =0 R7 $CO014 Read RAMWRT; bit7 = 1
Legend: P77 — Read memory [] = inactive memory R7 = Read, check bit 7
N = Write memaory R = Read W = Write
40 Chapter 2: Memory Organization and Control

Tl Fl _IFl I IFL FLIFL Pl T L T T Lo Y b o [R I

IFl

—_— e e]

A

2.5.3 Transfers Between Main and Auxiliary Memory

If you want to write assembly-language programs that use
auxiliary memory but you don't want to manage the auxiliary
memory yourself, you can use the built-in 48K RAM transfer
routines. These routines make it possible to move between
main and auxiliary memory without having to manipulate the
soft switches described in Section 2.5.2.

Note: The routines described below make it easier to use
auxiliary memory, but they do not protect you from errors.
You still have to plan your use of auxiliary memory to avoid
catastrophic effects on your program.

Table 2-3. 48K RAM Transfer Routines

Action Hex Name Function

JSR $C31 MOVEAUX Moves data blocks between main
and auxiliary 48K memory.

JMP $C314 XFER Transfers program control

between main and auxiliary
48K memory.

Transferring Data

In your assembly-language programs, you can use the built-in
routine named MOVEAUX to copy blocks of data from main
memory to auxiliary memory or from auxiliary memory to main
memory. Before calling this routine, you must put the data
addresses into byte pairs in page zero and set or clear the
carry bit to select the direction of the move.

Warning

Don't try to use MOVEAUX to copy data in bank-switched
memory (page zero, page one or pages $D0 through $FF).
MOVEAUX uses page zero all during the copy.

The pairs of bytes you use for passing addresses to this routine
are called A1, A2, and A4, and they are used for parameter
passing by several of the Apple llc's built-in routines. The
addresses of these byte pairs are shown in Table 2-4.

2.5 48K Memory [41

Table 2-4. Parameters for MOVEAUX Routine

MName Location Parameter Passed

Carry 1 = Move from main to auxiliary
memory
0 = Move from auxiliary to main
memaory

A1L $3C Source starting address, low-order
byte

A1H $3D Source starting address, high-order
byte

A2L $3E Source ending address, low-order
byte

AZH $3F Source ending address, high-order
byte

A4L 42 Destination starting address,

low-order byte

AdH $43 Destination starting address,
high-order byte

xYA These registers are preserved

Put the addresses of the first and last bytes of the block of
memory you want to copy into A1 and A2. Put the starting
address of the block of memory you want to copy the data to
into A4.

The MOVEAUX routine uses the carry bit to select the direction
to copy the data. To copy data from main memory to auxiliary
memory, set the carry bit (SEC instruction); to copy data from
auxiliary memory to main memory, clear the carry bit

(CLC instruction).

When you make the subroutine call to MOVEAUX, the
subroutine copies the block of data as specified by the

A register and the carry bit. When it is finished, the accumulator
and the X and Y registers are just as they were when you called
it.

Transferring Control

You can use the built-in routine named XFER to transfer control
to and from program segments in auxiliary memory. You must
set up three parameters before using XFER: the address of the
routine you are transferring to, the direction of the transfer, and
which page zero and stack you want to use.

Chapter 2: Memory Organization and Control

Fl

1 L Fl FL O FLLFL PPl FleadlE]

] &

Fi

T Tl Fl |

Il

e e e e e e L

e

=

-
-
e
]
e
L
]
!
|
=
e
—
-

Refer to Appendix E for
instructions on how to do this.

A

Table 2-5. Parameters for XFER Routine

Name or

Location Parameter Passed

Carry 1 = Transfer from main to
auxiliary memory
0 = Transfer from auxiliary to
main memaory

Overflow 1 = Use page zero and stack in

auxiliary memory
0 = Use page zero and stack in
main memory

$3ED Program starting address,
low-order byte

S3EE Program starting address,
high-order byte

XY A These registers are preserved.

Put the transfer address into the two bytes at locations $3ED
and $3EE, with the low-order byte first, as usual. The direction
of the transfer is controlled by the carry bit: set the carry bit to
transfer to a program in auxiliary memory; clear the carry bit to
transfer to a program in main memaory.

Use the overflow bit to select which page zero and stack you
want to use: clear the overflow bit to use the main memory,; set
the overflow bit (cause an overflow condition) to use the
auxiliary memory.

After you have set up the parameters, pass control to the XFER
routine by a jump instruction, rather than a subroutine call.

Warning

It is your responsibility as the programmer to save the current
stack pointer before using XFER and to restore it after
regaining control. Failure to do so will cause program errors.

2.5.4 Using Display Memory Switches

Section 2.5.2 discusses how to select main or auxiliary RAM
for the 48K memory space. However, under many
circumstances your program may want to control reading and
writing to display pages separately. The switches discussed in
this section override the effects of RAMRD and RAMWRT for
display pages only.

2.5 48K Memory [4a3

One of the switches, BOSTORE,
shares its on and off addresses
with a keyboard reading function.
As a result, your program must
write to these locations to turn the
switch on and off.

44

Three switches are involved in the display page selection
process. Each of them has three locations assigned to it: one to
turn it on, one to turn it off, and a third to read its state

(Table 2-6).

For each switch, you can read bit 7 at its third location to check
whether the switch is on or off. If the switch is on, bit 7 is 1; if
the switch is off, bit 7 is 0.

Here is how these switches work for reading and writing.

e If HIRES is off, then PAGE2 switches between Text and
Low-Resolution Graphics (TLP) pages only. If HIRES is on,
then PAGE2 switches between TLP pages and
High-Resolution Graphics (HRP) pages.

e If 80STORE is off, RAMRD and RAMWRT (Table 2-2)

determine whether main or auxiliary RAM locations are used.

PAGE?2 selects pages for display (Chapter 5), but not for
reading and writing.

e |f BOSTORE is on, it overrides RAMRD and RAMWRT with
respect to the display pages selected by HIRES and PAGEZ2
(Figures 2-15 and 2-16).

Chapter 2: Memory Organization and Control

IFl_ FleaFleal]

A

m e P FLOFLOFL TFLLOTPLLPLLY

Tl

1 Y Y ¢ Y

See Chapter 5 for a discussion of
text and high-resolution page and
the high-resolution pages.

Table 2-6. Display Memory Switches

Action

W

W

R7

R7

R7

Hex

$C000

$C001

$C018

$C054
$C055

$5C01C

3C056

3C057

3C01D

2.5 48K Memory

Name

BOSTORE

BOSTORE

RDBOSTORE

PAGE2
PAGE2

RDPAGE2

HIRES

HIRES

RDHIRES

Function

Off; RAMRD and BAMWRT
determine RAM locations.

On: PAGE2 switches between
TLP1 and TLP1X, and (if HIRES
on) between HRP1 and HRP1X.

Read whether BOSTORE on (1) or
off (0)

Off: select TLP1 and HRP1.

On: if BOSTORE off, switch to
TLPZ2, and {if HIRES on) to HRP2.
If BOSTORE on, switch to TLP1X,
and (if HIRES on) to HRP1X.

Read whether PAGE2 on (1) or
off (0)

Off: display text and
low-resolution page.

On: display high-resolution pages;
make PAGE2 switch between
high-resolution pages.

Read whether HIRES on (1) or
off (0)

[45

Figure 2-14. PAGEZ Selections With B0STORE On and HIRES Off

Select memory: Select memory:
W $C001 Turn on BOSTCRE W $C001 Turn on 80STORE
R $CO056 Turn off HIRES R $C058 Turn off HIRES
R $C054 Turn off PAGE2 R $CO055 Turn on PAGE2
Main RAM Auxiliary RAM Main RAM Auxiliary RAM
b i B i i o
e s e i . s sl —
RP2 HRP2X HRP2 HAP2X
High-Resolution lllﬂinli “ I “II [T %ﬁ””
Graphics P
S = HRP 1 HRP1X iy HRP1X
Text and
Low-Resolution
Graphics Pages s
Read resulting status: Read resulting status:
R7 $Co18 Read B0STORE; bit7 = 1 R7 £C018 Read BOSTORE; bit 7 = 1
R7 $cCO1D Read HIRES; bit7 =0 R7 $CO01D Read HIRES; bit7 =0
R7 $CO1C Read PAGE@; bit7 =0 R7 $CO1C Read PAGE2; bit 7 = 1
Lagend [//] ~ Read memory D = Inactive memory R = Read
W = Write

Write memory

(I - Senirelied by RAMRD and
RAMWRT (See Figs. 2-12and 2-13) R7 = Read, check bit 7

Chapter 2: Memory Organization and Control

Tl

.

FL ML ML L ML M M m Mmoo F

Tl

L R

Figure 2-15. PAGEZ Selections With BOSTORE On and HIRES On

Select memory: Select memory:
W $CO001 Turn on B0STORE W $Coo1 Turn on BOSTORE
R $CO057 Turn on HIRES R $CO57 Turn on HIRES
R 5%C054 Turn oft PAGE2 R $C055 Turn on PAGE2
Main RAM Auxiliary RAM Main RAM Auxiliary RAM
= | —— R AT | PEalcraiome
]] I 1] 1
T e T 7
],___I___.. '___I_.,__.{ |__.I......__= l___l___.l
) . HRP2X HRP2 HRP2X
High-Resolution [LT L LU
Graphics Pages
HRP1 HRP1X HRP1 HRP1X
Text and TLP2 TLP2X TLPZ TLP2X
Low-Resolution I: & = & e
GrﬂpthSPEgBS |1|!|'|IIJI.-‘\\|T'LP1 I-ul||L|L||l""«-"'1_P1x]1111|11rl-|""\-‘|'LP1 ||||||||“|\TLP1X
Read resulting status: Read resulting status:
R7 $CO018 Read B0OSTORE; bit7 = 1 R7 $CO018 Read BOSTORE; bit7 = 1
R7 $C01D Read HIRES; bit7 = 1 R7 $C01D Read HIRES; bit7 = 1
R7 $CO01C Read PAGEZ; bit7 = 0 R7 §Co1C Read PAGE2; bit 7 = 1
Legend: F77 — Read memory D Inactive memory R = Read
W = Write
g _ ; Controlled by RAMRD and
NN = write memory [[IIID] RAMWRT (See Figs. 2-12 and 2-13) R7 = Read, check bit 7

Y Y ¥ o B ¢ O ¥ ¥ ¥ ¢ O

B 2.5 48K Memory 47

W 2.6 The Reset Routine

Figure 2-16. Reset Routine Flowchart

A procedure called the reset routine (Figure 2-16) puts the
Apple llc into a known state when it has just been turned on or
you hold down while pressing (RESET). The reset
routine puts the Apple llc into its normal operating mode and
restarts the program indicated at locations $3F2

and $3F3 (Table 2-7).

Power O (&)~ [cONTROL | - [RESET) (CONTROL] - [RESET)
Cold Start) (Forced Cold Star) (Warm Start)

)

‘Wirlie irash in one location
pef memory page (including
power-up validity byte)

3

— Read write main 48K RAM

— Read ROM, write main bank-
switched AAM, use bank 2

— Display 40-cobumn text page 1,
primary characier sot, normal
formal, cursor at bottom lefl

— Enable access 1o DHIRES switch

— WO links: keyboard input (KSW).
display outpul (CEW)

— Porta: slariup sattings (See
Tables 7-3, B-3, and 9-1)

— Glaar keybourd strobe

— Sound the speakor

Power-up
byte valid?

T

Clear screen; display
Apple 11c. load reset
wecior and power-up byts;
initiate disk startup
firmwarg

Load n
operating system
1D hooks
ot yel loaded)

Display
Check Diak Drive;
turn off disk motor

Raset
weior paints
o

Festar program wilh
variables intact
Rastart Applesolt
o Integer BASIC
Do wihat it
says o do

Load 17D hoaks
and rest af
Operating system
TUR prograsm

Aun Applesatt;
no operating system

When you initiate a reset, hardware in the Apple llc sets the
memory-controlling soft switches to normal: main ROM and

RAM are enabled, auxiliary RAM is disabled and the

bank-switched memory space is set up to read from ROM and
write to RAM, using the second bank at $SD000.

Chapter 2: Memory Organization and Control

i Tl Fl Fl. FLAFTFL TP P Pl L.l

FiL

Fl

'l

™

The reset vector validity check is
described in section 2.6.4.

The reset routine sets the display-controlling soft switches to
display 40-column text Page 1 using the primary character set,
then sets the display window equal to the full 40-column
display, puts the cursor at the bottom of the screen, and sets
the text display format to normal.

The reset routine also sets the keyboard and display as the
standard input and output devices (Chapter 3). It masks mouse
interrupts and sets mouse defaults (Table 9-1). Finally, it
enables DHIRES switch access (by turning on IOUDIS), clears
the keyboard strobe, and sounds the speaker.

The Apple llc has three types of reset: power-on reset, also
called cold-start reset; warm-start reset; and forced cold-start
reset. The procedure described above is the same for any type
of reset. What happens next depends on the reset vector. The
reset routine checks the reset vector to determine whether it is
valid or not. If the reset was caused by turning the power on,
the vector will not be valid, and the reset routine will perform
the cold-start procedure. If the vector is valid, the routine will
perform the warm-start procedure.

2.6.1 The Cold-Start Procedure (Power On)

If the reset vector is not valid, either the Apple llc has just been
turned on or something has caused memory contents to be
changed. The reset routine clears the display and puts the
string Apple //c at the top of the display. It loads the reset
vector and the validity-check byte as described in section 2.6.1,
then initiates the startup routine that resides in the disk
controller firmware. The bootstrap routine then loads whatever
operating system resides on the disk in the built-in drive. When
the operating system has been loaded, it displays other
messages on the screen. If there is no disk in the disk drive,
the drive motor keeps spinning for a brief time. Then the
firmware shuts it off and displays the message Check Disk
Driwve at the bottom of the screen.

If you press (CONTROL)-(RESET) again before the startup
procedure is completed, the reset routine continues without
using the disk, and passes control to the Applesoft BASIC
interpreter.

2.6 The Reset Routine [49

2.6.2 The Warm-Start Procedure (CONTROL-RESET)

Whenever you press (CONTROL HRESET) when the Apple lic has
already completed a cold-start reset, the reset vector is still
valid and it is not necessary to reinitialize the entire system. The
reset routine simply uses the vector to transfer control to the
program it points to, which at power-up is the Applesoft
interpreter.

If the vector does point to the Applesoft interpreter, your
Applesoft program and variables are still intact. If you are using
DOS or ProDOS™, that operating system is the resident
program and it restarts the BASIC interpreter you were using
when you pressed (CONTROL - RESET).

Note: A program residing only in bank-switched RAM cannot
use the reset vector to regain control after a reset, because
upon reset the hardware selects the ROM for reading in the
bank-switched memory space.

2.6.3 Forced Cold Start ((3-CONTROL-RESET)

If a program has set the reset vector to point to its own
warm-start address, as described below, pressing

(ConTROL -(RESET) causes transfer of control to that program. If
you want to stop such a program without turning the power off
and on, you can force a cold-start reset by holding down

and (&), then pressing and releasing (RESET).

Note: When you want to stop a program unconditionally—for
example, to start up the Apple llc with some other
program—you should use the forced cold-start reset,

(& HConTROL H(RESET), instead of turning the power off and
on.

The forced cold-start reset works as follows. First, it destroys
the program or data in memory by writing two bytes of arbitrary
data into each page of main RAM. The two bytes that get
written over in page 3 are the ones that contain the reset
vector. The warm-start reset routine finds the error, and so
performs a normal cold-start reset.

Chapter 2: Memory Organization and Control

Tl T Fl Fl A Tl M IRl FL.FL_TI

Fi

Fi

¥ g 1= |

Tl

mwimime e

i
3

I

14

ittt

Note: If you press both (&) and (&) during power-up or
(ConTROL - RESET), built-in exercise code is executed. This
code is for production and has no end-user value.

2.6.4 The Reset Vector

The cold-start reset routine stores the starting address of the
built-in Applesoft interpreter, low-order byte first, in the reset
vector address at locations $3F2 and $3F3. It then stores a
validity-check byte, also called the power-up byte, at

location $3F4. The validity-check byte is computed by
performing an exclusive-OR of the second byte of the vector
with the constant 165 (hexadecimal $AS). Each time you reset
the Apple llc, the reset routine uses this byte to determine
whether the reset vector is still valid.

You can change the reset vector so that the reset routine will
transfer control to your program instead of to the Applesoft
interpreter. For this to work, you must also change the
validity-check byte to the exclusive-OR of the high-order byte of
your new reset vector with the constant 165 (3AS5). If you fail to
do this, then the next time you reset the Apple lic, the reset
routine will determine that the reset vector is invalid and
perform a cold-start reset, eventually transferring control to the
disk bootstrap routine or to Applesoft.

There is a subroutine that generates the validity-check byte for
the current reset vector. This subroutine, called SETPWRC, is at
location $FB6F. When your program finishes, it can return the
Apple llc to normal operation by restoring the original reset
vector and again calling the subroutine to fix up the
validity-check byte.

2.6 The Reset Routine [51

Table 2-7. Page 3 Vectors

Vector Address

§3F0
B3F1

$3F2
$3F3

$3F4

$3F5
$3F6
$3F7

S3F8
$3F9
$3FA

S3FB
$3FC
$3FD

$3FE
$3FF

Vector Function

Address of the subroutine that handles BRK requests
(normally $59, SFA).

Reset vector (see text).

Power-up byte (see text).
Jump instruction to the subroutine that handles Applesoft &
commands (normally $4C, §58, $FF).

Jump instruction to the subroutine that handles user

(CoNTROL H¥) commands.

Jump instruction to the subroutine that handles
non-maskable interrupts (not used on Apple lic).

Interrupt vector (address of the subroutine that handles
interrupt requests (Appendix E).

Chapter 2: Memory Organization and Control

Tl Wl Pl T O IFL Pl IrL (P

IF\

Fl A T IRl

s o

0/1 3| 3yddy o3 uorpanposyuy

e T

c 1ejdeuyo

This chapter is an introduction to the input/output capabilities of
the Apple lic; the next six chapters discuss these capabilities in
detail. The remainder of this chapter outlines the common
elements of I/O processing—standard I/O links and features,
standard port entry points, protocols and storage locations, and
direct 1/O.

W 3.1 The Standard 1/0 Links

When you call one of the character I/O subroutines (COUT and
RDKEY), the first thing that happens is an indirect jump to an
address stored in programmable memory. Memory locations
used for transferring control to other subroutines are sometimes
called vectors. In this manual, the locations used for
transferring control to the I/O subroutines are called the

1/0 links.

In an Apple lic running without an operating system, each

I/0 link is normally the address of the standard input or output
subroutine. An operating system will typically place addresses
of its own 1/O routines in these link locations instead.

By calling the 1/O subroutines that jump to the link addresses
instead of calling the standard subroutines directly, you ensure
that your program will work properly in conjunction with other
software, such as the operating system or a device driver. The
I/O links contain the addresses of KEYIN and COUT1 if the
enhanced video firmware is off (flashing checkerboard cursor),
and of C3KEYIN and C3COUT1 if that firmware is on (inverse
solid cursor).

3.1 The Standard I/O Links [55

The Monitor is discussed in

Chapter 10.

561

3.1.1 Changing the Standard I/O Links

The standard /O links are two pairs of locations in the Apple llc
that are used for controlling character input and output.

Note: Not all operating systems use the standard |/O links.
For example, Apple Pascal does not use them.

The link at locations $36 and $37 is called CSW, for character
output switch. Individually, location $36 is called CSWL (CSW
Low) and location $37 is called CSWH (CSW High). This link
holds the starting address of the subroutine the Apple lic is
currently using for single-character output. This address is
normally $FDFO, the address of routine COUT1.

When you issue a PR#n from BASIC or an n CONTROL-P from
the Monitor, the Apple lic changes this link address to the first
address in the ROM memory space allocated to port n. That
address has the form $Cn00. Subsequent calls for character
output are thus transferred to the firmware starting at that
address. When it has finished, the firmware executes an RTS
(return from subroutine) instruction to return control to the
calling program. Sometimes a PR#n will cause both input and
output switches to be changed (as in the 80-column firmware).

A similar link at locations $38 and $39 is called KSW, for
keyboard input switch. Individually, location $38 is called KSWL
(for KSW low) and location $39 is called KSWH (KSW high).
This link holds the starting address of the routine currently
being used for single-character input. This address is normally
SFD1B, the starting address of the standard input routine
KEYIN.

When you issue an IN#n command from BASIC or an

n CONTROL-K from the Monitor, the Apple lic changes this link
address to $Cn00, the beginning of an I/O firmware subroutine.
Subsequent calls for character input are thus transferred to that
firmware. The firmware puts the input character, with its high bit
set, into the accumulator and executes an RTS (return from
subroutine) instruction to return control to the program that
requested input.

When a disk operating system (DOS or ProDOS) is running, one
or both of the standard I/O links hold addresses of the disk
operating system's input and output routines. The operating
system has internal locations that hold the addresses of the
character input and output routines that are currently active.

Chapter 3: Introduction to Apple llc 1/O

FlaFle Tl

Il

IEL

| /W | S W S R < S

1 =1 =1 T | =1 S | 1S | W 41

sl

e

Refer to the section on input and
output link addresses in the
operating system manuals for
further details.

Warning

If a program that is running with DOS or ProDOS changes the
standard link addresses, either directly or via IN# and PR#
commands, the operating system may be disconnected from the
system. To avoid this, BASIC programs should issue an empty
PRINT statement with a carriage return (to be sure that what
follows begins a new line), then another PRINT statement
containing CONTROL -D and the IN# or PR# command.

After changing CSW or KSW, assembly-language programs
running under DOS should call the subroutine at location $3EA.
This subroutine transfers the link address to a location inside
the operating system and then restores the operating system
link address in the standard link location.

M 3.2 standard Input Features

GETLN also provides on-screen
editing features: see section 3.2.5.

The Apple lic's firmware includes two different subroutines for
reading from the keyboard. One subroutine is named RDKEY
(read key). It calls the current character input routine (that is,
the one whose address is stored at KSW). This is normally
KEYIN or C3KEYIN, which accepts one character from the
keyboard. The other subroutine is named GETLN (get line).
GETLN accepts a sequence of characters terminated with a
carriage return. Thus GETLN allows line-oriented input using the
current input routine.

3.2.1 RDKEY Input Subroutine

A program gets a character from the keyboard by making a
subroutine call to RDKEY at memory location $FDOC. RDKEY
passes control via the input link KSW to the current input
subroutine, which is normally KEYIN.

RDKEY displays a cursor at the current cursor position, which
is immediately to the right of whatever character you last sent
to the display (normally by using the COUT routine, described
below).

3.2 Standard Input Features [57

Section 3.2.5 describes other
features of GETLN.

58]

3.2.2 KEYIN Input Subroutine

KEYIN is the standard input subroutine. When called, it displays
a cursor, waits until the user presses a key, then returns to the
calling program with the ASCII code of the key pressed in the
accumulator.

If the enhanced video firmware is inactive, KEYIN displays a
cursor by alternately storing a checkerboard block in the cursor
location, then storing the original character, then the
checkerboard again. If the firmware is active, C3KEYIN inverts
the character at the cursor position.

KEYIN also generates a random number. While it is waiting for
the user to press a key, KEYIN repeatedly increments the 16-bit
number in memory locations $4E and $4F. This number keeps
increasing from 0 to $FFFF (65535), then starts over again at 0.
The value of this number changes so rapidly that there is no
way to predict what it will be after a key is pressed. A program
that reads from the keyboard can use this value as a random
number or as a seed for a pseudo-random number routine.

When the user presses a key, KEYIN accepts the character,
stops displaying the cursor, and returns to the calling program
with the character in the accumulator.

3.2.3 GETLN Input Subroutine

Programs often need strings of characters as input. While it is
possible to call RDKEY repeatedly to get several characters
from the keyboard, there is a more powerful subroutine you can
use. This routine is named GETLN, which stands for get line,
and it starts at location SFD6A. Using repeated calls to RDKEY,
GETLN accepts characters from the standard input
subroutine—usually KEYIN—and puts them into the input buffer
located in the memory page from $200 to $2FF. GETLN also
provides the user with on-screen editing and control features.

The first thing GETLN does when you call it is to display a
prompting character, called simply a prompt. The prompt
indicates to the user that the program is waiting for input.
Different programs use different prompt characters, helping to
remind the user which program is requesting the input. For
example, an INPUT statement in a BASIC program displays a
question mark (?) as a prompt. The prompt characters used
by the different programs on the Apple lic are shown in

Table 3-1.

Chapter 3: Introduction to Apple lic I/O

1l T

L Tl

N FL.W N T N

Fi

ElL_. El_ElL.EL

LB e eI

Control characters echoed by
GETLN are not executed.

GETLN uses the character stored at memory location $33 as
the prompt character. In an assembly-language program, you
can change the prompt to any character you wish. In BASIC,
changing the prompt character has no effect, because both
BASIC interpreters and the Monitor restore it each time they
request input from the user.

Note: Applesoft uses GETLN1 (§FD6F) when a program is
executing. GETLN1 does not print a prompt.

Table 3-1. Prompt Characters

Prompt
Character Program Requesting Input
? User's BASIC program (INPUT statement)

| Applesoft BASIC (Appendix D)
Integer BASIC (Appendix D)

Firmware Monitor (Chapter 10)

As the user types each character, GETLN sends the character
to the standard output routine—normally COUT1—which
displays it at the current cursor position and then advances the
cursor to indicate the next character position.

GETLN stores the characters in its buffer, starting at memory
location $200 and using the X register to index the buffer.
GETLN continues to accept and display characters until the
user presses (RETURN) (or (ConTROL HX) to cancel the line). Then
it clears the remainder of the line the cursor is on, stores the
carriage-return code to mark the end of the buffer, places the
cursor at the beginning of the next line, and returns.

The maximum line-length that GETLN can handle is

255 characters. If the user types more than this, GETLN sends
a backslash (\) and a carriage return to the display, cancels the
line it has accepted so far, and starts over. To warn the user
that the line is getting full, GETLN sounds a bell (tone) at every
keypress after the 248th.

Note: The Applesoft interpreter accepts only 239 characters.

3.2 Standard Input Features [59

—

S

=T

3.2.4 Escape Codes With GETLN

GETLN has many special functions that you invoke by typing
escape codes on the keyboard. An escape code is obtained by
pressing (Esc), releasing it, and then pressing some other key,
as shown in Table 3-2.

Note: Be sure to release right away. If you hold it too
long, the auto-repeat mechanism will begin, which may
cancel the ESC.

In escape mode, you can keep using the arrow keys and the
cursor-motion keys (1), (1), (K), and (m) without pressing
again. This enables you to perform repeated cursor moves by
holding down the appropriate key.

When GETLN is in escape mode, it displays an inverse plus
sign as the cursor. You leave escape mode by typing any key
other than a cursor-motion key.

Note: The escape codes with the arrow keys are the
standard cursor-motion keys on the Apple llc. The escape
codes with (1), (1), (K), and (m) are the standard
cursor-motion keys on the Apple Il and Il Plus, and are
present on the Apple llc for compatability.

Table 3-2. Escape Codes With GETLN. (1} Cursor-control key: see text. (2) This
code functions only when the enhanced video firmware is active.

Escape Code Function Notes
(Esc) Clears the window and homes the

cursor (places it in the upper-left
corner of the screen), then exits
from escape mode.

or (a) Moves the cursor right one line
and exits from escape mode,

(esc) (B) or () Moves the cursor left one line and
exits from escape mode.

(E5c) (©) or (&) Moves the cursor down one line
and exits from escape mode.

(Esc) (D) or (d) Moves the cursor up one line; exits
from escape mode.

() or Clears to the end of the line; exits
from escape mode.

(Ese) (P or (D) Clears to the bottom of the
window, exits from escape mode.

Chapter 3: Introduction to Apple llc I/O

Tl

L Tl

T ' T

T\

T Tl

FlL T

'Fi

Fi

FlOFL

L Fl

AR

Table 3-2—Continued. Escape Codes With GETLN

Escape Code

(E5c) (D or (O
or (Esc) (1)

0 @ or @
or (Esc) (=)

(€50) () or)
or (es6) (=)

(Esc) (w) ar (m)
or (Esc) (1)

Eo®

(Esc) (8)

(EsC) (ConTRoLHD)

(ESC) (CONTROL HE)

ESC) (CONTROL H Q)

Function

Moves the cursor up one line;
remains in escape mode.

Moves the cursor left one space;
remains in escape mode.

Moves the cursor right one space;
remains in escape mode.

Moves the cursor down one line;
remains in escape mode.

Switches to 40-column mode;
activates the enhanced video
firmware; sets links to C3KEYIN
and C3COUT1; restores normal
window size (Table 3-5); exits from
escape mode.

Switches to 80-column mode;
activates the enhanced video
firmware; sets links to C3KEYIN
and C3COUT1; restores normal
window size (Table 3-5); exits from
escape mode.

Disables control characters; only
carriage return, line feed, BELL,
and backspace have an effect
when printed.

Reactivates control characters.

Deactivates the enhanced video
firmware; sets links to KEYIN and
COUT1Y; restores normal window
size (Table 3-5): exits from escape
mode.

Notes

Escape sequences can be used in the middle of an input line to
change the appearance of the screen. They have no effect on

the input line.

3.2 Standard Input Features

(61

For an introduction to editing with

these features, refer to the
Applesoft Tutorial.

The cursor moves even if the
deleted character is an (invisible)
control character. Thus it is
possible for screen alignment and
buffer alignment to be different.

See section 3.2.4.

62]

3.2.5 Editing With GETLN

Subroutine GETLN provides the standard on-screen editing
features used by the BASIC interpreters and the Monitor. Any
program that uses GETLN for reading the keyboard has these
features.

Cancel Line

Any time you are typing a line, pressing causes
GETLN to cancel the line. GETLN displays a backslash (\) and
issues a carriage return, then displays the prompt and waits for
you to type a new line. GETLN takes the same action when you
type more than 255 characters, as described above.

Backspace

When you press (=) (or (CoNTROL H{H)), GETLN moves its buffer
pointer back one space, effectively deleting the last character in

its buffer. It also sends a backspace character to routine COUT,
which moves the cursor back one space. If you type another
character now, it will replace the character you backspaced
over, both on the display and in the line buffer.

Each time you press (=), it moves the cursor left and deletes
another character, until you are back at the beginning of the
line. If you then press (=) one more time, you have effectively
canceled the line, and GETLN issues a carriage return and
displays the prompt.

Retype

(=) (or (ConTROL)HU)) has a function that is complementary to
the backspace function. When you press (=), GETLN picks up
the character under the cursor just as if it had been typed on
the keyboard. You can use this procedure to pick up characters
that you just deleted by backspacing across them. You can use
the backspace and retype functions with the cursor-motion
functions to edit data on the display.

Chapter 3: Introduction to Apple llc 1/O

[o WL WL I L & L L YL L L = Y o W 9|

IFl

R

M 3.3 standard Output Features

The standard output routine is named COUT (pronounced
C-out) which stands for character output. COUT normally calls
COUT1 or C3COUT1, which sends one character to the display,
advances the cursor position, and scrolls the display when
necessary. COUT1 and C3COUT1 restrict their use of the
display to an active area called the text window, described
below.

3.3.1 COUT Output Subroutine

Your program makes a subroutine call to COUT at memory
location $FDED with a character in the accumulator. COUT then
passes control via the output link CSW to the current output
subroutine, normally COUT1 or C3COUT1, which takes the
character in the accumulator and writes it out. If the
accumulator contains an uppercase or lowercase letter, a
number, or a special character, COUT1 or C3COUT1 displays it;
if the accumulator contains a control character, COUT1 or
C3COUT1 either performs one of the special functions
described below or ignores the character.

Each time you send a character to COUT1 or C3COUT1, it
displays the character at the current cursor position, replacing
whatever was there, and then advances the cursor position one
space to the right. If the cursor position is already at the
right-hand edge of the window, COUT1 or C3COUT1 moves it
to the leftmost position on the next line down. If this would
move the cursor position past the end of the last line in the
window, COUT1 or C3COUT1 scrolls the display up one line
and sets the cursor position at the left end of the new bottom
line.

The cursor position is controlled by the values in memory
locations $24 and $25. These locations are named CH, for
cursor horizontal, and CV, for cursor vertical. COUT1 and
C3C0UT1 do not display a cursor, but the input routines
described above do, and they use this cursor position.
However, changing CV directly will not change the cursor's
vertical position until the next carriage return or reaching the
end of the current line causes a call to VTAB (for setting the
base address within windows). If some other routine displays a
cursor, it will not necessarily put it in the cursor position used
by COUT1 or C3COUT1.

3.3 Standard Output Features (63

Escape codes are described in
section 3.2.4.

Escape Codes: see section 3.2.4.

™

Warning

When the video firmware is set for 80-column display, the value
of CH is kept at 0 and the true horizontal position is stored

at $578. When the 80-column video firmware is active, use
8578 instead of CH.

3.3.2 Control Characters With COUT1

COUT1 does not display control characters. Instead, the
control characters listed in Table 3-3 are used to initiate some
action by the firmware. Other control characters are ignored.
Most of the functions listed here can also be invoked from the
keyboard, either by typing the control character listed or by
using the appropriate escape code. The stop-list function,
described separately, can only be invoked from the keyboard.

Table 3-3. Control Characters With COUTT.

Control ASCII Apple lic

Character Name Name Action Taken by COUT1

CONTROL-G BEL bell Produces a 1000 Hz tone for
0.1 second.

CONTROL-H BS backspace Moves cursor position one space
to the left; from left edge of
window, moves to right end of
line above.

CONTROL-J LF line feed Moves cursor position down to
next line in window; scrolls if
needed.

CONTROL-M CR return Moves cursor position to left end

of next line in window; scrolls if
needed.

3.3.3 Control Characters With C3COUT1

C3COUT1 does not display control characters. Instead, the
control characters listed in the two parts of Table 3-4 are used
to initiate some action by the firmware. Other control
characters are ignored. Most of the functions listed here can
also be invoked by using the appropriate escape code. The
stop-list function, described separately, can only be invoked
from the keyboard.

Chapter 3: Introduction to Apple lic I/O

£ 0 R { o YO Y Y o O O O (I O

R

Table 3-4. Control Characters With C3COUT]1. (1) Only available when enhanced
video firmware is active. (2) Only works from the keyboard. (3) Doesn't work
from the keyboard.

Control
Character

CONTROL-G

CONTROL-H

CONTROL-J

CONTROL-K

CONTROL-L

CONTROL-M

CONTROL-N
CONTROL-O
CONTROL-Q
CONTROL-R
CONTROL-S

CONTROL-U

CONTROL-V

CONTROL-W

CONTROL-X

CONTROL-Y

CONTROL-Z

ASCII
Name

BEL

BS

LF

VT

FF

CR

SO
Sl
DCH
DC2
DC3

NAK

SYN

ETB

CAN

EM

sSuB

Apple lic
Name

bell

backspace

line feed

clear EQS

home
and clear

return

narmal

inverse

40-column

B0-column

stop-list

quit

scroll

scroll-up

disable

MouseText

home

clear line

3.3 Standard Output Features

Action Taken by C3COUT1

Produces a 1000 Hz tone for
0.1 second.

Moves cursor position one
space to the left; from left
edge of window, moves to
right end of line above.

Moves cursor position down
to next line in window;
scrolls if needed.

Clears from cursor position
to the end of the screen.

Moves cursor position to
upper-left corner of window
and clears window.

Moves cursor position to left
end of next line in window,
scrolls if needed.

Sets display format normal.
Sets display format inverse.
Sets display to 40-column.
Sets display to 80-column.

Stops listing characters on
the display until another key
is pressed.

Deactivates enhanced video
firmware.

Scrolls the display down one
line, leaving the cursor in the
current position.

Scrolls the display up one
line, leaving the cursor in the
current position.

Disable MouseText
character display; use
inverse uppercase.

Moves cursor position to
upper-left corner of window
(but doesn't clear).

Clears the line the cursor
position is on.

Notes

1,3

1.3

1.3
1.3
1.3
1.3

13

1,3

1,3

1,3

1,3

[65

661

Table 3-4—Continued. Control Characters With C3COUT1

Control ASCIl Apple lic
Character Name Name Action Taken by C3COUT1 Notes
CONTROL-| ESC enable Map inverse uppercase
MouseText characters to MouseText
characters.
CONTROL-", FS fwd. space Moves cursor position one 13

space to the right; from right
edge of window, moves it to
left end of line below.

CONTROL-] GS clear EOL Clears from the current 13
cursor position to the end of
the line (that is, to the right
edge of the window).

CONTROL-_ us up Moves cursor up a line, no
scroll.

3.3.4 The Stop-List Feature

When you are using any program that displays text via COUT1
or C3COUT1, you can make it stop updating the display by
pressing (that is, by holding down
while pressing (8)). Whenever COUT1 or C3COUT1 gets a
carriage return from the program, it checks for (conTrOLH(S). If
it has been pressed, COUT1 or C3COUT1 stops and waits for
another keypress. Then it continues normally. The character
code of the key you pressed to resume displaying is ignored
unless it is (ConTROL H C). COUT1 or C3COUT1 passes
CONTROL-C back to the program; if it is a BASIC program,
this enables you to terminate the program while in stop-list
mode.

3.3.5 The Text Window

After you start up the computer or perform a reset, the
firmware uses the entire display. However, you can restrict
video activity to any rectangular portion of the display you
wish. The active portion of the display is called the text
window. COUT1 or C3COUT1 puts characters only into the
window; when it reaches the end of the last line in the window,
it scrolls only the contents of the window.

Chapter 3: Introduction to Apple lic I/O

Li

[l

il Bl TA. T Th. T "B Bl B b B ED KD

R R

You can set the top, bottom, left side, and width of the text
window by storing the appropriate values into four locations in
memory. This enables your programs to control the placement
of text in the display and to protect other portions of the screen
from being written over by new text.

Memory location $20 contains the number of the leftmost
column in the text window. This number is normally 0, the
number of the leftmost column in the display. In a 40-column
display, the maximum value for this number is 39

(hexadecimal $27); in an 80-column display, the maximum value
is 79 (hexadecimal $4F).

Memory location $21 holds the width of the text window. For a
40-column display, this value is normally 40 (hexadecimal $28);
for an B0-column display, it is normally 80 (hexadecimal $50).

Warning

Be careful not to let the sum of the window width and the
leftmost position in the window exceed the width of the display
you are using (40- or 80-columns). If this happens, it is possible
for COUTT or C3COUTT to put characters into memory
locations outside the display page, possibly destroying
programs or data.

Memory location $22 contains the number of the top line of the
text window. This is normally 0, the topmost line in the display.
Its maximum value is 23 (hexadecimal $17).

Memory location $23 contains the number of the bottom line of
the screen, plus 1. It is normally 24 (hexadecimal $18) for the
bottom line of the display. Its minimum value is 1.

Table 3-5 summarizes the memory locations and the possible
values for the window parameters.

Warning
Pascal does not use this method of supporting window widths.

3.3 Standard Output Features (67

Table 3-5. Text Window Memory Locations

Window

Parameter

Left Edge
Width
Top Edge

Bottom
Edge

Both these display character sets

80col.

Dec
32
33
34
35

Hex

$20
521
§22
§23

are described in Chapter 5.

68/

Minimum Normal Values: Maximum Values:

Location Value 40col. 40col. 80col.
Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex
0 50 0 50 0 §0 39 $27 79 B4F
0 50 40 $28 80 $50 40 528 80 §50
0 $0 0 $0 0 &0 23 $17 23 817
1 $1 24 $18 24 §18 24 18 24 $18

3.3.6 Normal, Inverse, and Flashing Text

The form of a displayed character depends on two things: what
value is stored in zero page location $32 (the inverse flag), and
whether the enhanced video firmware is off or on. The effects
of the inverse flag are discussed in the next two subsections.

If the enhanced video firmware is off, the Apple lic displays
what is called the primary character set; if the video firmware is
on, the Apple llc displays what is called the alternate character
set.

The primary character set includes normal (light on dark),
inverse (dark on light), and flashing (alternating normal and
inverse) characters. Lowercase inverse characters are not
included in this set.

The alternate character set includes normal and inverse
characters (including lowercase inverse), and a set of icons
called MouseText. Flashing characters are not included in this
set.

To display a character, load it in the accumulator, and then
jump to the character-output subroutine COUT. For example, to
display the character corresponding to $C8

LDA #%C8
JSR COUT

Primary Character Set Display

Subroutine COUT1 (the standard output link when enhanced
video firmware is off) can display text in normal, inverse, or
flashing format, but cannot display inverse or flashing lowercase
text.

Chapter 3: Introduction to Apple lic I/O

O S Y L Y T 5 W T 3 YL O L ¥ O O

'Fi

=" R

'El

a & e e EEiT

R R R EE

For a brief explanation of logical
functions, refer to Appendix H.

MouseText: see Chapter 5.

See section 5.2.2.

If the value of the character is greater than or equal to $A0, the
value is logically ANDed with the value of the inverse flag (at
location $32), then displayed.

If the inverse flag value is 255 (hexadecimal $FF), the character
is displayed in normal format; if the value is 63

(hexadecimal $3F), the character is displayed in inverse format.
If the value is 127 (hexadecimal $7F) the character is displayed
in flashing format.

Note: To avoid unusual character display results, use only
the three values $3F, $7F and $FF.

Character values from $80 through $9F are interpreted as
control characters and are executed, if possible.

Character values from $00 through $7F are all display
characters, not control characters.

Alternate Character Set Display

Subroutine C3COUT1 (the standard output link when the
enhanced video firmware is active) can display characters in
normal or inverse format, and can display a set of icons called
MouseText.

If the character is in the range $00 through $1F or $80 through
$9F, it is interpreted as a control character and not displayed.
Values $20 through $7F and $AO through $FF are displayed.

If inverse flag (location $32) bit 7 is 1, the character value is left
alone. If inverse flag bit 7 is 0, the character value is ANDed
with $7F (turning off bit 7) to make it display as an inverse
character.

If MouseText has not been turned on, then the values

$40 through $5F are mapped to values $00 through $1F, so
they display as the inverse uppercase set. If MouseText has
been turned on, the values $40 through $5F are left unchanged,
and they display as MouseText icons.

Warning
Use only $3F, 8§7F or $FF in location $32. Other values will
cause unpredictable results.

3.3 Standard Output Features (69

W 3.4 Port 10

701

Apple lic is a member of the Apple Il family of computers;

however, unlike the Apple I, Il Plus and lle, the Apple llc does

not have peripheral connector slots. In place of these, it has
ports—the eqguivalent of firmware interface cards installed in
slots.

3.4.1 Standard Link Entry Points

To maintain compatibility with existing software and its
protocols, each port's I/O firmware has the same standard
entry points (§Cn00) as its equivalent slot would have.
Table 3-6 shows these equivalents, as well as listing the
chapter where each port is described.

Section 3.1 describes under what conditions these entry
addresses are placed in CSW and KSW. For example, issuing
PR#n or IN#n changes the output and input links,
respectively, so that subsequent output or input is handled by
the firmware starting at address $Cn00, and thus goes to or
comes from the selected device.

Table 3-6. Port Characteristics

Entry Port

Port Point Connector Use Chapter

1 $C100 Serial port 1 Printers 7

2 $C200 Serial port 2 Communication B

3 $C300 Video connectors Enhanced video 5
firmware

4 $C400 Mouse Mouse 9

5 $C500 Reserved

6 $CE00 Disk drives Built-in and 6
external drives

¥ $C700 No device External drive 6
startup (under
ProDOS only)

Note: The addresses shown in Table 3-6 are not entry points
in the sense that you can send characters to be printed by
sending them to JSR $Cn00.

Chapter 3: Introduction to Apple llc I/O

L TLMBOTLM MM TR 'Rl FLF

Tl

T T

R R R

3.4.2 Firmware Protocol

Besides the standard link address, there is also a standard
firmware protocol that provides a table of device identification
and entry points to standard and optional firmware subroutines
(Table 3-7).

Each table begins with identification bytes. Then, starting with
address $Cn0D, each byte in the table represents the low-order
byte of the entry-point address of a firmware routine. The
high-order byte of the address is $Cn, where n is the port
number. Using these byte values, a program can construct its
own jump table for subroutine calls.

On entry, all routines require that the X register contain $Cn
(n is the port number), and that the Y register contain $n0.

On exit, all routines return an error code in the X register

(0 means no error occurred; 3 means the request was invalid).
The carry bit in the program status register usually contains a
reply to a request code (0 means no; 1 means yes).

All of the Apple llc ports except the disk port conform to this
protocol.

3.4 Port I/O 71

.

P ————— 1T

721

Table 3-7. Firmware Protocol Locations

Address Value
$Cn05 $3s
$Cn0O7 $18
$Cn0B 501
§Cn0C Sci
$Cn0OD i
$CnOE r
SCnOF WW
$Cn10 S5
SCnit

Description

Pascal firmware card/port identifier

Pascal firmware card/port identifier

Generic signature byte of a firmware card/port

Device signature byte: /is an identifier (not
necessarily unique).

¢ = device class (not all used on the Apple lic):

$0 reserved

$1 printer

52 hand control or other X-Y device

83 serial or parallel I/O card/port

$4 modem

$5 sound or speech device

56 clock

s7 mass-storage device

58 80-column card/port

59 network or bus interface

$A special purpose (none of the
above)

$B-F reserved

$Cnii is the initialization entry address (PINIT).

$Cnrr is the read routine entry address (PREAD).

(Returns character read in A register)

$Cnww is the write routine entry address
(PWRITE). (Enter with character to write in
A register)

$Cnss is the status routine entry address
(PSTATUS). (Enter with request code in A
register: 0 to ask “Are you ready to accept

output?” or 1 to ask "Do you have input ready?")

$00if additional address bytes follow;
nonzero if not

Chapter 3: Introduction to Apple lic I/O

AR TN AN TNINTNMTN N A BA

Y Y Y v v

For more information, refer to the
hardware page memory map in
Appendix B.

3.4.3 Port I/O Space

By a convention used in other Apple Il series machines, each
port or slot has exclusive use of sixteen memory locations of
the form $C080 + #n0, where n is the port or slot number.
These locations are set aside for data input and output.
Table 3-8 lists the port I/O space used in the Apple llc.

Table 3-8. Fort I/O Locations

Port Locations

1 $CO090-3C09F
2 SCOAD-SCOAF
6 $COEQ-$COEF
3.4.4 Port ROM Space

In the Apple Il and lle, one 256-byte page of memory space is
allocated to each slot. This space is used for read-only memory
(ROM or PROM) with driver programs that control the
operation of input/output devices, as outlined in Table 3-7. On
the Apple llc, this space is dedicated to port firmware.
However, |/O ROM space in the Apple llc is used as efficiently
as possible, and so there is not a strict correspondence
between firmware for port n and the $Cn00 space, except as
regards entry points.

3.4.5 Expansion ROM Space

The 2K-byte memory space from $C800 to $CFFF in the

Apple llc—called expansion ROM space on Apple Il, Il Plus
and lle—contains the enhanced video firmware and port and
memory transfer subroutines. Unlike the Apple II, Il Plus, or lle,
the Apple llc always has this space switched in.

3.4.6 Port Screen-Hole RAM Space

There are 128 bytes of memory (64 in main memory, 64 in
auxiliary memory) allocated to the ports, eight bytes per port,
as shown in Table 3-9. These bytes are reserved for use by the
system, except as described in Chapters 4 through 9.

These addresses are unused bytes in the RAM memory
reserved for text and low-resolution graphics displays, and
hence they are sometimes called screen holes. These particular

3.4 Port 1/O 73

741

locations are not displayed on the screen and their contents are
not changed by the built-in output routines. In other words, they
are used by the output routines but they are not part of the
video display.

Warning

All the screen holes in auxiliary memory, and many of them in
main memory, are reserved for special use by Apple lic
firmware—for example to store initialization information. Do not
use any locations marked reserved in this manual.

Chapter 3: Introduction to Apple lic I/O

Il

fheTl

i S o S SN f W o WL o W o YL ' {5 S O f W W

R R

Table 3-9. Port Screen-Hole Memory Locations

Base
Address Ports
1 2 3 4 5 6 T

50478 $0479 $047A $S047B 3047C 047D BO4T7E $O4TF
$04F8 $04F9 SD4FA S04FB SO04FC S04FD SO04FE SO4FF
50578 $0579 S057A $057B $057C S057D $0S7E $OS7F
$05F8 $05F9 $05FA $05FB $OS5FC $05FD SOSFE BOSFF
$0678 0679 $067A S0B7B $067C $067D $O67E SO67F
B06F8 $06F9 $06FA SOBFB $0BFC S06FD $O06FE $O6FF
0778 $0779 SO77A $077B S077C $077D SO77E $O77F
$07F8 $07F9 $07FA SO7FB SO7FC SO7FD SO7FE $O7FF

Port firmware use of these RAM locations and their assigned
hardware addresses appear in the six chapters that follow this
one.

. 3.5 Interrupts

Appendix E gives a full description
of interrupt handling on the
Apple lic.

When the IRQ line on the 65C02 microprocessor is activated,
the 65C02 transfers control through the vector in locations
SFFFE-SFFFF of ROM or whichever bank of RAM is switched in
(Chapter 2). If ROM is switched in, this vector is the address of
the Monitor's interrupt handler, which determines whether the
request is due to an interrupt that should be handled internally.
If so, the Monitor handles it and then returns control to the
interrupted program.

If the interrupt is due to a BRK ($00) instruction, control is
transferred through the BRK vector ($33F0-§3F1). Otherwise,
control is transferred through the IRQ vector (33FE-$3FF).

3.5 Interrupts [75

1ayeadg pue pieogAay

A Y

18a1deyo

This chapter describes how to use two of the Apple llc's built-in
devices: the keyboard and the speaker.

W s1ke yboard Input

Game input switches: see
Chapter 9.

Table 4-1 describes the overall characteristics of the keyboard.
Monitor keyboard support includes the three standard input
routines described in Chapter 3.

Table 4-1. Keyboard Input Characteristics

Port Number

Commands

Initial
Characteristics

None

Keyboard is always on, in the sense that any keypress
generates a KSTHRB.

Reset routine clears the keyboard strobe and sets the
keyboard as the standard input device (that is, sets KSW to
point to RDKEY).

Hardware

Locations Description

$C0O00 Keyboard data and strobe

$CO010 Any-key-down flag and Clear-strobe switch

$C060 40-column switch status on bit 7; 1 = 40-column display
switch down

BCO61 (@) status on bit 7; 1 = pressed (also game input switch 0)

$C062 {w) status on bit 7; 1 pressed

4.1 Keyboard Input (77

GETLN, GETLN1, and RDKEY: see
Chapter 3.

781

Table 4-1—Continuved. Keyboard Input Characteristics

Monitor Firmware Routines

Location

SFDBA
$FD&7

BFDGBF

$FD1B
$FD3s
$FDOC

Use of Other
Pages

Page 2

Name
GETLN
GETLNZ

GETLN1

KEYIN
RDCHAR
RDKEY

Description

Gets an input line with prompt.

Gets an input line with preceding carriage
return.

Gets an input line, but with no preceding
prompt.

The keyboard input subroutine
Gets an input character or escape code.

The standard character input subroutine

The standard character string input buffer (see GETLN

description)

Chapter 4: Keyboard and Speaker

PO W 0 O O O O O O O 1 O

R EEEEEEEEEE R

4.1.1 Reading the Keyboard

The keyboard encoder and ROM generate all 128 ASCII codes,
so all the special character codes in the ASCII character set are
available from the keyboard. Machine-language programs obtain
character codes from the keyboard by using RDKEY, which
reads a byte from the keyboard-data location shown in

Table 4-1.

Here is how reading the keyboard is done:

1. To see if a key has been pressed, test bit 7 at
address $C000.

2. When that bit goes to a 1, the low-order seven bits are the
character.

3. Clear the high bit at $C000 by reading or writing anything to
address $C010.

$C010 has another function: its high bit is a 1 while a key is
pressed (except the Apple keys, (CONTROL), (SHIFT), (CAPS-LOCK),
and (RESET)). Bit 7 at this location is therefore called
any-key-down.

Any time you read the any-key-down bit at $C010, you also
clear the keyboard strobe bit at $C000. If your program needs
to read both the flag and the strobe, it must read the strobe bit

first.
For a description of how the After the keyboard strobe has been cleared, it remains low until
keyboard strobe works, refer to another key is pressed.

Appendix E.

4.1 Keyboard Input [79

Codes are shown here in
hexadecimal; to find the decimal

equivalents, refer to section H.6.

80l

Table 4-2 shows the ASCII codes for the keys on the Apple llc

keyboard. If the strobe bit is set, add $80 to these values.

Table 4-2. Keys and ASCIl Codes

5%
6"
7&
ge
9

Normal
7F
08
09
0A
oB
oD
15
1B
20
27
2C
20
2E
2F
30
31
32
a3
34
35
36
37
38
39
3B
3D
58
5C
50
60

Char
DEL
BS
HT
LF
VT
CR
NAK
ESC
SP

w0 @™ ~N @® o A W M

Control

TF

Char
DEL
BS
HT
LF
vT
CR
NAK
ESC
SP

us

ESC
FS
GS

Chapter 4: Keyboard and Speaker

Shift

7F
08
09
0A
0B
oD
15
1B
20
22
ac
5F
3E
3F
29
21

40
23
24
25
5E
26
2A
28

3A
2B
7B
7C
7D
TE

Char
DEL
BS
HT
LF

CR
NAK
ESC
SP

iﬁq*@—'

-

Both

7F
08

0A
0B
0D
15
1B
20
22
3c
1F
3E
3F

21
00
23
24
25
1E
26
2A
28
3A
2B
1B
ic
1D
7E

Char

DEL
BS
HT
LF

CR
NAK
ESC
&P

ESC
FS
GS

o WL W W B

- T A TN T

LEr i

[

Er 7 6 EFFT T

Table 4-2—Continved. Keys and ASCIl Codes

Key Normal
81
62
63
64
65
66
67
68
69
BA
6B
6C
60
6E
6F

I o M m o O @ >

70
71
72
73
74
75
76
77
78
79
TA

N-CXE{Cﬂm:UD"UOZEI_K‘—

4.1 Keyboard Input

Char
a

b

2 T 0 =3

-

Control
01
02
03
04
05
06
o7
08
09
0A
0B
oc
oD
DE
OF
10
1h
12
13
14
15
16
17
18
19
1A

Char
SOH
STX
ETX
EOT
ENG
ACK
BEL
BS
HT
LF
VT
FF
CR
S0
Sl
DLE
DC1
oCc2
DC3
DC4
NAK
SYN
ETB
CAN
EM
5UB

Shift
41
42
43
44
45
46
47
48
49
4A

g
m

4C
4D
4E
aF
50
51
52
53
54
55
56
57
58
59
5A

Char

I o m m o O m >

N < X 5 <« C 4 60 23 0D TV O 2 2@ X &

Both

01
02
03
04
05
06
07
o8
a9
0A
0B
oc
oD
0E
OF
10
1
12
13
14
15
16
17
18

1A

Char

SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
S|
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
suB

Keystrokes can also generate
interrupts: see Appendix E.

This restarting process is called
the reset routine, and is described
in Chapter 2.

For information on how to have
programs interpret keystrokes in a
standard way, refer to the

Apple Il Design Guidelines listed in
the Bibliography.

82]

There are several special-function keys that do not generate
ASCI| codes. For example, you cannot read (CONTROL), (SHIFT),
and directly, but pressing one of these keys alters
the character codes produced by the other keys. Programs can
also read the status of (&) and (&) when checking keyboard
input, and, if one or both of them is pressed, branch to a
special routine, such as a help program.

Another key that doesn't generate a code is (RESET), located at
the upper-left corner of the keyboard; it is connected directly to
the Apple llc's circuits. Pressing (RESET) with (CONTROL)
depressed normally causes the system to stop whatever
program it's running and restart itself.

4.1.2 Monitor Firmware Support

Chapter 3 describes the three standard Monitor input routines
serving the keyboard: GETLN, READKEY and KEYIN. This
section discusses the three other Monitor routines available.

GETLNZ

GETLNZ (at address $FD67) is an alternate entry point for
GETLN that sends a carriage return to the standard output,
then continues into GETLN.

GETLN1

GETLN1 (at address $FD6F) is an alternate entry point for
GETLN that does not issue a prompt before it accepts the input
line. However, if the user cancels the input line with too many
backspaces or with (CONTROL H{X), then GETLN1 issues the
prompt at location $33 when it gets another line.

RDCHAR

RDCHAR (at address $FD35) is a subroutine that gets
characters from the standard input subroutine, and also
interprets the escape codes listed in Chapter 3.

If the enhanced video firmware is active, (=) ((CONTROL HU))
causes a character to be read from the screen location and
returned.

Chapter 4: Keyboard and Speaker

Bl FLOBL ™ ™ O'MORO'R R RL ELLFL

'El

Th E

RN

T Speaker Output

Electrical specifications of the
speaker circuit appear in
Chapter 11.

The Apple lic has a speaker mounted toward the front of the
bottom plate. The speaker is connected to a soft switch that
toggles; it has two states, off and on, and it changes from one
to the other each time it is accessed. Table 4-3 describes the
speaker output characteristics.

Table 4-3. Speaker Output Characteristics

Port Number None

Commands Some programs sound the speaker in response to
CONTROL-G.

Initial

Characteristics Reset routine sounds the speaker.

Hardware

Location Description

SC030 Toggle speaker (read only)

Monitor Firmware Routines

Location Name Description

SFBDD BELL1 Sends a beep to the speaker.

SFF3A BELL Sends CONTROL-G to the current output

4.2.1 Using the Speaker

If you switch the speaker once, it emits a click; to make longer
sounds, you access the speaker repeatedly. You should always
use a read operation to toggle the speaker. If you write to this
soft switch, it switches twice in rapid succession. The resulting
pulse is so short that the speaker doesn’t have time to
respond; it doesn't make a sound.

The switch for the speaker uses memory location $C030. You
can make various tones and buzzes with the speaker by using
combinations of timing loops in your program.

4.2 Speaker Output (83

See Chapter 3.

841

4.2.2 Monitor Firmware Support

The Monitor supports the speaker with one simple routine,
BELL1. A related routine, BELL, supports the current output
device—the one that CSW points to.

BELL1

BELL1 (at address $FDBB) makes a beep through the speaker
by generating a 1 kHz tone in the Apple lic's speaker for
0.1 second. This routine scrambles the A and X registers.

BELL

The Monitor routine BELL (at location $FF3A) writes a bell
control character (ASCIl CONTROL-G) to the current output
device. This routine leaves the accumulator holding $87.

Chapter 4: Keyboard and Speaker

e ThaBhaillha'Th Th Th Th TL T TL_E b bl e

0§ Y O O O 5 O£ O O O O s o

nding Aejdsig oapigp

Y AT L YT Y T % < 6 €

NTSC stands for National
Television Standards Committee, a
group that formulates broadcast
and reception guidelines used by
the USA and several other
countries.

G 1e81deyo

The primary output device of the Apple lic is the video display.
You can use any ordinary video monitor, either color or
monochrome, to display video information from the Apple llc.
An ordinary monitor is one that accepts composite video
compatible with the standard set by the NTSC. If you use
Apple llc color graphics with, for example, a black-and-white
monitor, the display will appear as black, white, and three
shades of gray.

If you are only using 40-column text and graphics modes, you
can use a television set for your video display. If the TV set has
an input connector for composite video, you can connect it
directly to your Apple lic; if it does not, you must attach an RF
video modulator between the Apple lic and the television set.

Note: The Apple llc can produce an 80-column text display.
However, if you use an ordinary color or black-and-white
television set, 80-column text will be too blurry to read. For a
clear B0-column display, you must use a high-resolution video
monitor with a bandwidth of 14 MHz or greater.

Chapter 5: Video Display Output [87

88]

Table 5-1 is a summary of the video output port's
characteristics and a guide to other information in this chapter.

Table 5-1. Guide to the Information in This Chapter

Port Number
Commands

Initial Characteristics

Hardware Locations
Monitor Firmware Routines

1/O Firmware Entry Points

Chapter 5: Video Display Output

Qutput port 3
Figure 5-3

Figure 5-2

Note: If a program is to use the
enhanced video firmware, it should
turn it on and then immediately check
the 80/40 switch. If the switch is in
the 40 position, the program should
issue a CONTROL-Q.

See Table 5-7
See Table 5-8
See Table 5-9

—

—

BB DL L[

™

-

T

'

e Bl Bl P EA 'L 'FL PR OB OELTL TAT

U

M5 Specifications

Table 5-2 summarizes the specifications for the video display,
and provides a further guide to other information in this chapter.

Table 5-2. Video Display Specifications

Display modes 40-column text; map: Figure 5-5

80-column text; map: Figure 5-6

Low-resolution color graphics;
map: Figure 5-7

High-resolution color graphics;
map: Figure 5-8

Double-high-resolution ceolor graphics,
map: Figure 5-9

24 lines by 80 columns (character
positions)

Text capacity

Character set 96 ASCI characters (uppercase and

lowercase)

Display formats Normal, Inverse, Flashing, MouseText

(Table 5-3)

Low-resolution graphics 16 colors (Table 5-4) 40 horizontal by

48 vertical, map: Figure 5-7

High-resolution graphics 6 colors (Table 5-5) 140 horizontal by

192 vertical (restricted);

black-and-white: 280 horizontal by
192 vertical; map: Figure 5-8

Double-high-resolution graphics 16 colors (Table 5-6) 140 horizontal

by 192 vertical (no restrictions);

black-and-white: 560 horizontal by
192 vertical; map: Figure 5-9

The video signal produced by the Apple lic is NTSC-compatible
composite color video. It is available at two places: the
RCA-type phono jack on the back of the Apple lic, and the
15-pin D-type connector on the back panel. Use the RCA-type
phono jack to connect a video monitor or the DB-15 connector
for an external video modulator; use the 15-pin connector to
attach video expansion hardware (section 11.9.5).

Either of the two text modes can display all 96 ASCI
characters: uppercase and lowercase letters, numbers, and
symbols.

[89

5.1 Specifications

. 5.2 Text Modes

MouseText: see section 5.2.2.

90|

The text characters displayed include the uppercase and
lowercase letters, the ten digits, punctuation marks, and special
characters. Each character is displayed in an area of the screen
that is seven dots wide by eight dots high. The characters are
formed by a dot matrix five dots wide (with a few exceptions,
such as underscore), leaving two blank columns of dots
between characters in a row. Except for lowercase letters with
descenders, the characters are only seven dots high, leaving
one blank line of dots between rows of characters.

The normal display has white (or other monochrome color) dots
on a dark background. Characters can also be displayed as
black dots on a white background; this is called inverse format.

5.2.1 Text Character Sets

The Apple llc can display either of two text character sets: the
primary set and an alternate set (Table 5-3). The forms of the
characters in the two sets are actually the same, but the
available display formats are different. The display formats are

normal, with white dots on a black screen
@ inverse, with black dots on a white screen
e flashing, alternating between normal and inverse.

With the primary character set, the Apple lic can display
uppercase characters in all three formats: normal, inverse, and
flashing. Lowercase letters can only be displayed in normal
format. The primary character set is compatible with most
software written for the Apple Il and Il Plus, which can display
text in flashing format but don't have lowercase characters.

The alternate character set sacrifices the flashing format for a
complete inverse format. With the alternate character set, the
Apple lic can display uppercase letters, lowercase letters,
numbers, and special characters in either normal format or
inverse format. It can also display MouseText.

You select the character set by means of the alternate-text soft
switch, described in section 5.6. Table 5-3 shows the character
codes in decimal and hexadecimal for the Apple lic primary and

alternate character sets in normal, inverse, and flashing formats.

Chapter 5: Video Display Output

B T hc Th. Th "B i Whic Th ‘Th B! Ehund B Blami Bl TI

L L LI

To identify particular characters
and values, refer to Table 4-2.

Each character on the screen is stored as one byte of display
data. The low-order six bits make up the ASCII code of the
character being displayed. The remaining two (high-order) bits
select format and the group within ASCII (section 3.3.6).

Table 5-3. The Display Character Sets

Primary Character Set Alternate Character Set
Hex Values Character Type Format Character Type Format
$00-51F Uppercase letters Inverse Uppercase letters Inverse
$20-53F Special characters Inverse Special characters Inverse
$40-85F Uppercase letters Flashing MouseText
(section 5.2.2)

BB0-87F Special characters Flashing Lowercase letters Inverse
$80-39F Uppercase letters Mormal Uppercase letters Normal
$A0-5BF Special characters Normal Special characters Normal
$CO0-$DF Uppercase letters Normal Uppercase letters Normal
$EO-$FF Lowercase letters Normal Lowercase letters MNormal
5.2.2 MouseText

The character-generator ROM can display 32 graphics
characters called MouseText in place of the inverse uppercase
series from $40 through $5F. These graphics are especially
convenient to use with a mouse, since they can be generated
by character codes instead of groups of high-resolution byte
values, and they can be moved around quickly. To use
MouseText characters, do the following:

1. Turn on the enhanced video firmware: issue PR#3 or
ESC 8 or ESC 4.

2. Set inverse mode: use the INVERSE command or put $3F in
location $32, or print CONTROL-O.

3. Turn on the MouseText feature: PRINT CHR$(27); or
pass $1B to COUT in the accumulator.

4. Print the uppercase letter (or other ASCII character in the
range $40-8$5F: @ [\ |~ or _) that corresponds to the
MouseText character you want, using COUT1.

5.2 Text Modes 19_1

92]

5. Turn off the MouseText feature: PRINT CHR$(24); or
pass $18 to COUT1 in the accumulator.

6. Set normal mode: use the NORMAL command or put $FF in
location $32, or print a CONTROL-N.

Here is a sample Applesoft program that prints all the
MouseText characters:

10 D$=CHR$(4)

20 PRINT PRINT D$;"PR#3"

30 INVERSE

40 PRINT

CHR$(27);"@ABCDEFGHI JKLMNOPQRSTUVKWXYZINI"_";
50 PRINT CHR$(24);

60 NORMAL

Simulated MouseText characters and their corresponding ASCII
characters are shown in Figure 5-1.

Figure 5-1. MouseText Characters

« ¢ Xv¥d=
CL. VT T dR K
XA -L2RER
Co | & 43|

Y

Chapter 5: Video Display Output

DT Th T Bha Tl Tl Bha Eha'th. Thathe [

_TLT X

1% [T T T T % ¥ A 4 4

14

17

197,

k! ok k]

5.2.3 40-Column Versus 80-Column Text

The Apple lic has two modes of text display: 40-column and
80-column. The number of dots in each character does not
change, but the characters in 80-column mode are only half as
wide as the characters in 40-column mode. Compare the two
displays in Figure 5-2. On an ordinary color or black-and-white
television set, the narrow characters in the 80-column display
blur together; you must use the 40-column mode to display text
on a television set.

5.2 Text Modes 93

94|

Figure 5-2. 40-Column and 80-Column Text Display
(With Alternate Character Set)

Chapter 5: Video Display Output

!

3

Fle Pl E B

IF-&

B L L L L

Figure 5-3 illustrates the methods of switching text display
modes, and the characteristics of each.

Figure 5-3. Text Mode Characteristics and Switching

Power On (Esc)(conTroL){Q)
Resets full
40-column window

Cursor; checkerboard
Input Hook: KEYIN
Qutput Hook: COUT1
Window: 40 columns,
24 lines
Character Set: primary

40 Columns,
“Apple 11" Video

(EsC) 8
40 Columns, 80 Columns,
Enhanced Video (Do not affect 1/0 hooks) 4(Enhanced Video
Firmware < Firmware
(Esc) 4

Cursor: square box Cursor: narrow box
Input Hook: C3KEYIN Input Hook: CAKEYIN
Qutput Hook: C3COUT1 Output Hook: C3COUT1
Window: 40 columns, Window: 80 columns,
24 lines 24 lines
Character Set: alternate Character Set: alternate
5.2 Text Modes [95

K Graphics Modes

The Apple lic can produce video graphics in any of three
different modes. Each graphics mode treats the screen as a
rectangular array of spots. Normally, your programs will use
the features of some high-level language to draw graphics
dots, lines, and shapes in these arrays; this section describes
the way the resulting graphics data are stored in the Apple lic's
memaory.

5.3.1 Low-Resolution Graphics

In the low-resolution graphics mode, the Apple lic displays an
array of 48 rows by 40 columns of colored blocks. Each block
can be any one of sixteen colors, including black and white. On
a black-and-white monitor or television set, these colors appear
as black, white, and two shades of gray. There are no blank
dots between blocks; adjacent blocks of the same color merge
to make a larger shape.

Data for the low-resolution graphics display is stored in the
same part of memory as the data for the 40-column text
display. Each byte contains data for two low-resolution graphics
blocks. The two blocks are displayed one atop the other in a
display space the same size as a 40-column text character,
seven dots wide by eight dots high.

Half a byte—four bits, or one nibble—is assigned to each
graphics block. Each nibble can have a value from 0 to 15, and
this value determines which one of sixteen colors appears on
the screen. The colors and their corresponding nibble values
are shown in Table 5-4. In each byte, the low-order nibble sets
the color for the top block of the pair, and the high-order nibble
sets the color for the bottom block. Thus, a byte containing the
hexadecimal value $D8 produces a brown block atop a yellow
block on the screen.

Chapter 5: Video Display Output

I

(i

j o 1 W

EiE T Te-Thalth. Th. The Bhe Th-T)

R R

Colors may vary, depending upon
the contrals on the monitor or
television set.

Table 5-4. Low-Resolution Graphics Colors

Nibble Value Nibble Value
Decimal Hex Color Decimal Hex Color
0 50 Black 8 &8 Brown
1 Magenta 9 §9 Orange
2 52 Dark Blue 10 SA Gray 2
3 353 Purple 11 $B Pink
4 54 Dark Green 12 $C Light Green
5 §5 Gray 1 13 %D Yellow
6 856 Medium Blue 14 $E Aquamarine
7 &7 Light Biue 15 §$F White

As explained in section 5.5, the text display and the
low-resolution graphics display use the same area in memaory.
Most programs that generate text and graphics clear this part
of memory when they change display modes, but it is possible
to store data as text and display it as graphics, or vice versa.
All you have to do is change the mode switch, described in
section 5.6, without changing the display data. This usually
produces meaningless jumbles on the display, but some
programs have used this technique to good advantage for
producing complex low-resolution graphics displays quickly.

5.3.2 High-Resolution Graphics

In the high-resolution graphics mode, the Apple llc displays an
array of colored dots in 192 rows and 280 columns. The colors
available are black, white, purple, green, orange, and blue,
although the colors of the individual dots are limited, as
described below. Adjacent dots of the same color merge to
form a larger colored area.

Data for the high-resolution graphics displays is stored in
either of two 8192-byte areas in memory. These areas are
called high-resolution Page 1 and Page 2; think of them as
buffers where you can put data to be displayed. Normally, your
programs will use the features of some high-level language to
draw graphics dots, lines, and shapes to display; this section
describes the way the resulting graphics data are stored in the
Apple llc's memory.

The Apple lic high-resolution graphics display is bit-mapped:
each dot on the screen corresponds to a bit in the Apple lic's
memaory. The seven low-order bits of each display byte control

5.3 Graphics Modes (97

a row of seven adjacent dots on the screen, and forty adjacent
bytes in memory control a row of 280 (7 times 40) dots. The
least significant bit of each byte is displayed as the leftmost dot
in a row of seven, followed by the second-least significant bit,
and so on, as shown in Figure 5-4. The eighth bit (the most
significant) of each byte is not displayed; it selects one of two
color sets, as described below.

On a black-and-white monitor, there is a simple correspondence
between bits in memory and dots on the screen. A dot is white
if the bit controlling it is on (1), and the dot is black if the bit is
off (0). On a black-and-white television set, pairs of dots blur
together; alternating black and white dots merge to a
continuous grey.

On an NTSC color monitor or a color television set, a dot
whose controlling bit is off (0) is black. If the bit is on, the dot
will be white or a color, depending on its position, the dots on
either side, and the setting of the high-order bit of the byte. Call
the left-most column of dots column zero, and assume (for the
moment) that the high-order bits of all the data bytes are off (0).
If the bits that control them are on, dots in even-numbered
columns, 0, 2, 4, and so forth, are purple, and dots in
odd-numbered columns are green—but only if the dots on
either side are black. If two adjacent dots are both on, they are
both white.

You select the other two colors, blue and orange, by turning the
high-order bit (bit 7) of a data byte on (1). The colored dots
controlled by a byte with the high-order bit on are either blue or
orange: the dots in even-numbered columns are blue, and the
dots in odd-numbered columns are orange—again, only if the
dots on either side are black. Within each horizontal line of
seven dots controlled by a single byte, you can have black,
white, and one pair of colors. To change the color of any dot to
one of the other pair of colors, you must change the high-order
bit of its byte, which affects the colors of all seven dots
controlled by the byte.

Chapter 5: Video Display Output

Il

T el The. Th. The Bhe B Thic Ehe [BhaEhclBhc Thu Tl

Y L 1Y 0 Y Y v

Colors may vary, depending on the
adjustment of the monitor or
television set.

For more details about the way the
Apple llc produces color on a TV
set, see Chapter 11. For a table of
reversed bit patterns, refer to
Appendix H. For information about
the way NTSC color television
works, see the magazine articles
listed in the Bibliography.

In other words, high-resolution graphics displayed on a color
monitor or television set are made up of colored dots, according
to the following rules:

® Dots in even columns can be black, purple, or blue.
® Dots in odd columns can be black, green, or orange.
e If adjacent dots in a row are both on, they are both white.

® The colors in each row of seven dots controlled by a single
byte are either purple and green, or blue and orange,
depending on whether the high-order bit is off (0) or on (1).

These rules are summarized in Table 5-5. The blacks and
whites are numbered to remind you that the high-order bit is
different.

Table 5-5. High-Resolution Graphics Colors

Bits 0-6 Bit 7 Off Bit 7 On
Adjacent columns off Black 1 Black 2
Even columns on Purple Blue
Odd columns on Green Orange
Adjacent columns on White 1 White 2

The peculiar behavior of the high-resolution colors reflects the
way NTSC color television works. The dots that make up the
Apple lic video signal are spaced to coincide with the frequency
of the color subcarrier used in the NTSC system. Alternating on
and off dots at this spacing cause a color monitor or TV set to
produce color, but two or more on dots together do not.

5.3 Graphics Modes [o9

1001

Figure 5-4. High-Resolution Display Bits

Bits in Data Byte

[6| 5|4|3]2]1]0

[0 | 2|13|4|5]6

Dots on Graphics Screen

5.3.3 Double-High-Resolution Graphics

Double-high-resolution graphics is a bit-mapping of the
low-order seven bits of the bytes in the two high-resolution
graphics pages. The bytes in the main-memory and
auxiliary-memory pages are interleaved in exactly the same
manner as the characters in 80-column text: of each pair of
identical addresses, the auxiliary-memory byte is displayed first,
and the main-memory byte is displayed second. Horizontal
resolution is 560 dots when displayed on a monochrome
monitor.

Unlike high-resolution color (section 5.3.2),
double-high-resolution color has no restrictions on which colors
can be adjacent. Color is determined by any four adjacent dots
along a line. Think of a 4-dot-wide window moving across the
screen: at any given time, the color displayed will correspond to
the four-bit value from Table 5-6 that corresponds to the
window's position (Figure 5-9). Effective horizontal resolution
with color is 140 (560 divided by four).

To use the table, divide the column number by 4, and use the
remainder to find the correct column: ab0 is a byte residing in
auxiliary memory corresponding to a remainder of 0

(byte 0, 4, 8, and so on), mb1 is a byte residing in main memory
corresponding to a remainder of 1 (byte 1, 2, 9, and so on), and
similarly for ab2 and mb3.

Chapter 5: Video Display Output

l

R e P Tt T Th The Fha Thos (b E haE b Eheml

I

R

Colors may vary, depending upon
the controls on the monitor or
television set.

Table 5-6. Double-High-Resolution Graphics Colors

Repeated Bit

Color ab0 mb1 ab2 mb3 Pattern
Black $00 $00 $00 $00 0000
Magenta $08 g1 $22 544 0001
Brown $44 $08 11 §22 0010
Orange $4C 19 $33 $66 0011
Dark Green §22 S44 208 $11 0100
Gray 1 $2A §55 B2A £455 0101
Green $66 54C §19 $33 0110
Yellow $BE §5D 3B $77 0111
Dark Blue $11 F22 544 $08 1000
Purple $19 £33 $66 $4C 1001
Gray 2 §55 B2A $55 $2A 1010
Pink $5D $3B §77 $6E 1011
Medium Blue $33 $66 $4C $19 1100
Light Blue 33B 577 $6E 35D 1101
Agua 877 $6E $5D §3B 1110
White $7F $7F $7F $7F 1

B vousean

Bits in Data Byte

Memory 7 6 5 4 3 2 1 0|7 65432 10|766 432 10|76543210

i abD i mbt h abz h moa |
Display |0 1 2 3Jo 1 2 3fa 1 2 3afo 2 3Ja 1 23 12 3jo 1 2 3

[[I I I | |
Dots on Graphics Screan

5.3 Graphics Modes 101

B 5.4 Mixed-Mode Displays

Any of the graphics displays can have four lines of text, either
40-column or 80-column, at the bottom of the screen. Graphics
displays with text at the bottom are called mixed-mode
displays. To use them, the TEXT switch must be off (read
$C050) and the MIXED switch on (read $C053).

Note: You cannot display 40-column text with
double-high-resolution graphics.

To determine what appears where in mixed-mode displays,
refer to the upper five-sixths (down to the heavy horizontal line)
in the appropriate graphics display (Figures 5-7 to 5-9); then
refer to the bottom sixth of the appropriate text display

(Figure 5-5 or 5-6).

Hss Display Pages

1021

The Apple llc generates its video displays using data stored in
specific areas in memory. These areas, called display pages,
serve as buffers where your programs can put data to be
displayed. Each byte in a display buffer controls an object at a
certain location on the display: a character, a colored block, or
a group of adjacent dots.

The 40-column-text and low-resolution-graphics modes use two
display pages of 1024 bytes each. These are called Text Page 1
and Text Page 2, and they are located at $400-$7FF and
$800-$BFF in main memory. Normally, only Page 1 is used, but
you can put text or graphics data into Page 2 and switch
displays instantly. Either page can be displayed as 40-column
text, low-resolution graphics, or mixed-mode (four rows of text
at the bottom of a graphics display).

The 80-column text mode displays twice as much data as the
40-column mode—1920 bytes—but it cannot switch pages
when the enhanced video firmware is active. The B0-column
text display uses a combination page made up of Text Page 1
in main memory plus another page in auxiliary memory. This
additional memory is not the same as Text Page 2—in fact, it is
Text Page 1X, and it occupies the same address space as Text
Page 1 (see Figure 2-11). The built-in firmware I/O routines

Chapter 5: Video Display Output

Rl TlaeThaTh. T\ T Th. ThoTl. Tha Thailhmifbnlhall

Y e U

B

described in Chapter 3 take care of this extra addressing
automatically; that is one reason to use these routines for all
normal text output.

Note: The built-in video firmware always displays Page 1 text.
You cannot write text to Page 2 unless you do it yourself.

The high-resolution graphics mode also has two display pages,
but each page is 8192 bytes long. In the 40-column text and
low-resolution graphics modes each byte controls a display area
seven dots wide by eight dots high. In high-resolution graphics
mode each byte controls an area seven dots wide by one dot
high. Thus, a high-resolution display requires eight times as
much data storage, as shown in Table 5-7.

The double-high-resolution graphics mode interleaves the two
high-resolution Pages (1 and 1X) in exactly the same way as
80-column text mode interleaves the text pages: column 0 and
all subsequent even-numbered columns come from the auxiliary
page; column 1 and all subsequent odd-numbered columns
come from the main page.

Table 5-7. Video Display Page Locations. (1) This is not supported by firmware,
for instructions on how to switch pages, refer to section 5.6. (2) See
section 5.3.3.

Display Lowest Address Highest Address

Display Mode Page

40-column text, 1 $400 1024 $7FF 2047

low-resolution 2(1) $800 2048 $BFF 307

graphics

BO-column text 1 $400 1024 $7FF 2047
2(1) $800 2048 $BFF 3om

high-resolution 1 $2000 8192 $3FFF 16383

graphics 2 $4000 16384 $5FFF 24575

double-high- 1(2) $2000 8192 S3FFF 16383

resolution 2(2) $4000 16384 $5FFF 16383

graphics

5.5 Display Pages 103

W 5.6 Dispiay Mode Switching

104]

Table 5-8 shows the reserved locations for the soft switches
that control the different display modes. The left column of the
table, labelled Action, indicates what to do to activate or read a
switch setting: R means read the location, W means write
anything to the location, R/W means read or write, and

R7 means read the location and then check bit 7.

Table 5-9 lists the display modes that the firmware can set up
automatically. In the 40-column modes, the contents of the
standard |/O hooks KSW and CSW (Chapter 3) determine
whether the enhanced video firmware features are available or
not. The firmware also takes care of setting or clearing
ALTCHAR.

Table 5-10 lists other display modes available but not supported
by firmware. For modes that display Page 2 with the 80COL
switch on, your program may have to turn BOSTORE off after
the firmware has turned it on.

Double-low-resclution shows on the display screen when HIRES
is off and both 80COL and DHIRES are on. It is the
low-resolution graphics equivalent of 80-column text, and it
uses the same map (Figure 5-6).

The IOUDIS switch must be on for locations $C0O5E and $C05F
to change DHIRES. The firmware in fact leaves it on—and your
program should, too—unless it wants to use locations $CO5E
and $CO5F to change mouse values (Chapter 9).

Chapter 5: Video Display Output

DD TaThoTh Th TL T T Tl Th ThallhmelEhedb sl lonll

|

BN

Table 5-8. Display Soft Switches. (1) The firmware normally leaves IOUDIS on.
See also note 2. (2) Reading or writing any address in the range §CO70-$C07F
also triggers the paddie timer and resets VBLINT (Chapter 9).

Action Hex Name

w $COOE ALTCHAR
w SCO0F ALTCHAR
R7 SCO1E RDALTCHAR
W $CO0C BOCOL

W $CO0D 8OCOL
R7 SCOF RDBOCOL
W §C000 80STORE
W $C001 BOSTORE
R7 $C018 RDS0OSTORE
RwW 8C054 PAGE2
RW $C055 PAGE2

R7 $C01C RDPAGE2
R/W §CO50 TEXT
R/W 8C051 TEXT

R7 $CO1A RDTEXT
R/W 8C053 MIXED
R/W 8C054 MIXED

R7 $CO1E RDMIXED
R/W $CO057 HIRES
R/W $C058 HIRES

R7 $C01D RDHIRES

5.6 Display Mode Switching

Function Note

Off: display text using primary
character set

On: display text using alternate
character set

Read ALTCHAR switch (1 on)

Off: display 40 columns
On: display 80 columns

Read BOCOL switch (1 = on)

Off: cause PAGE2 on to select
auxiliary RAM

On: allow PAGE2 to switch main
RAM areas

Read BOSTORE switch (1 = on)

Off: select page 1

On: select page 1X (BOSTORE
on) or 2

Read PAGE2 switch (1 = on)

Off: display graphics or (if
MIXED on) mixed

On: display text
Read TEXT switch (1 on)

Off: display only text or only
graphics

On: (if TEXT off) display text and
graphics

Read MIXED switch (1 = on)

Off: (if TEXT off) display
low-resclution graphics

On: (if TEXT off) display
high-resolution or (if DHIRES on})
double-high-resolution graphics

Read HIRES switch (1 on)

[105

106

Table 5-8—Continued. Display Soft Switches

Action

w

R7

R/wW

R/W

R7

Hex

$CO7E

SCO7F

HCOTE

$COSE

SCO5F

$CO7F

Name

10UDIS

I0UDIS

RDIOUDIS

DHIRES

DHIRES

RDDHIRES

Function

On: disable 10U access for
addresses $C058 to $CO5F;
enable access to DHIRES switch

Off: enable 10U access for
addresses $C058 to $CO5F;
disable access to DHIRES
switch

Read IOUDIS switch (1 = off)

On: (if IOUDIS on) turn on
double-high-resclution

Off: (if IOUDIS on) turn off
double-high-resolution

Read DHIRES switch (1 = on)

Chapter 5: Video Display Output

Note

]

(1

(2)

2

Ti

EL_T1

T

'Fi

Tl 'R 'RLOFLO'RLOPRL FL TR

Tl

TL Tl

Y

Table 5-9. Display Modes Supported by Firmware (Including Applesoft). (1) B0STORE is set by the firmware when
B0COL is turned on.

Display Switches

Col/Res Type Page BOCOL BOSTORE PAGE2 TEXT MIXED HIRES DHIRES
40-column text 1 off off on off off off
80-column text 1 on (1) on

low-res graphics 1 off off off off off off
40/low mixed 1 off off off on off

80/low mixed 1 on n off oft an oft off
hi-res graphics 1 oft off off off on

hi-res graphics 2 off on off off on

40/high mixed 1 ofi off off on on

BO/high mixed 1 on (1) off off an on off

Table 5-10. Other Display Modes. (1) BOSTORE is set by the firmware when 80COL is turned on, and must be turned off
to use the second 80-column or double-high-resolution page. This means that you cannot use firmware routines such as
COUT when displaying Page 2 modes not supported by firmware.

Display Switches
Col/Res Type Page 80COL BOSTORE PAGE2 TEXT MIXED HIRES DHIRES
40-column text 2 off on on
80-column 2 on off on on
low-res graphics 2 off on off off off
40/low mixed 2 off on off on off
80/low mixed 2 on off on off an off off
dbl-low graphics 1 on (1) off off off off on
dbl-low graphics 2 on off on off off off on
80/dbl-low mixed 1 on (1) off off on off on
80/dbl-low mixed 2 on off on off on off on
40/high mixed 2 off on off on on
80/high mixed 2 on off on off on on off
dbl-high graphics 1 on (1) off off off an on
dbl-high graphics 2 on off on off off on on
80/dbl-high mixed 1 on (1) off off on on on
80/dbl-high mixed 2 on off on off on on on

5.6 Display Mode Switching 107

For example, to switch to mixed 80-column and
double-high-resolution display Page 1, you can use these
instructions:

STA $C00D Turn on 80COL,; firmware then turns on
B80STORE

LDA $C054 Turn off PAGE2; you could also have
done a STA

STA $C050 Turn off TEXT, that is, turn on graphics
mode

STA $C053 Turn on MIXED: it works now that TEXT
is off

STA $C057 Turn on HIRES: it works now that TEXT is
off

STA $CO7E Make sure IOUDIS is on so you can
access DHIRES

LDA $COS5E Turn on DHIRES:; it works now that

N, Display Page Maps

You should never have to store directly into display memory.
Most high-level languages enable you to write statements that
control the text and graphics displays. Similarly, if you are
programming in assembly language, you should be able to use
the display features of the built-in I/O firmware.

A Warning

Never call any firmware with 80COL on or with 80STORE and
PAGEZ both on. If you do, the firmware will not function
properly. As a general rule, always leave PAGEZ off.

1081 Chapter 5: Video Display Output

e s B B Wb TR B Bl XL T

TLTL T Tl T M

R R RS

For more details about the way the
displays are generated, see
Chapter 11.

The display memory maps are shown in Figures 5-5

through 5-9. All the different display modes use the same basic
addressing scheme: characters or graphics bytes are stored as
rows of 40 contiguous bytes, but the rows themselves are not
stored at locations corresponding to their locations on the
display. Instead, the display address is transformed so that
three rows that are eight rows apart on the display are grouped
together and stored in the first 120 locations of each block of
128 bytes ($80 hexadecimal). For a full description of the way
the Apple llc handles its display memory, refer to

section 11.9.2.

The high-resolution graphics display is stored in much the same
way as text, but there are eight times as many bytes to store,
because eight rows of dots occupy the same space on the
display as one row of characters. The subset consisting of all
the first rows from the groups of eight is stored in the first
1024 bytes of the high-resolution display page. The subset
consisting of all the second rows from the groups of eight is
stored in the second 1024 bytes, and so on for a total of

8 times 1024, or 8192 bytes. In other words, each block of
1024 bytes in the high-resolution display page contains one row
of dots out of every group of eight rows. The individual rows
are stored in sets of three forty-byte rows, the same way as the
text display.

The display maps show addresses only for each Page 1. To
obtain addresses for text or low-resolution graphics Page 2,
add 1024 ($400); to obtain addresses for high-resolution
Page 2, add 8192 ($2000).

The 80-column display works a little differently. Half of the data
is stored in the normal text Page 1 memory, and the other half
is stored in the auxiliary memory text Page 1. The display
circuitry fetches bytes from these two memory areas
simultaneously and displays them sequentially: first the byte
from the auxiliary memory, then the byte from the main
memory. The main memory stores the characters in the odd
columns of the display, and the auxiliary memory stores the
characters in the even columns (starting with column 0 on the
left).

To store display data in auxiliary memory, first turn on the
B0STORE soft switch by writing to location $C001. With
80STORE on, the page-select switch PAGE2 selects between
the portion of the 80-column display stored in Page 1 of main

5.7 Display Page Maps [109

memory and the portion stored in the auxiliary memory. To
select auxiliary memory, turn the PAGE2 soft switch on by
reading or writing at location $C055.

The double-high-resolution graphics display stores information
in the same way as high-resolution graphics, except there is an
auxiliary memory location as well as a main memory location
corresponding to each address. The two sets of display
information are interleaved in a manner similar to the
interleaving of two 40-column displays to create an 80-column
text display (Figure 5-9).

Figure 5-5. Map of 40-Column Text Display

Row
0 $400

1 $480
2 $500
3 $580
4 $600
5 $680
6 $700
7 $780
8 3428
9 B4AB
10 $528
11 $5A8
12 $628
13 $6A8
14 §728
15 §7A8
16 $450
17 $4D0
18 550
19 $5D0

1024
1152
1280
1408
1536
1664
1792
1920
1064
1192
1320
1448
1576
1704
1832

1104
1232
1360
1488

0 %00

$01

2 %02

3 503

4 504

5 %05

6 $06

7 807

8 so08

9 %09

10 $0A
11 $0B
12 30C
13 $0D
14 $0E
15 $0F
16 $10
17 811
18 %12
19 $13
20 $14

1

315
22 %16
23 817
24 318
25 8§19
26 S$1A
27 §1B
28 §$1C
20 §1D
34 $22
35 §23
36 %24
37§25
38 $26
39 g27

30 $1E
31 $1F
32 $z20
a3 21

21

20 $650
21 $6D0
22 $750
23 $700

ol

1616
1744
1872
2000

Chapter 5: Video Display Output

Tl

T T\ EL\.Tl

Th

L. T TL T T

0 B B (W '

e e e

Figure 5-6. Map of 80-Column Text Display

Row
0 $400

1 $4B0
2 $500
3 $580
4 $600
5 5680
6 $700
7 $780
8 $428
9 $4A8
10 528
11 $5A8
12 $628
13 $6A8
14 $728
15 $7A8
16 $450
17 $4D0
18 $550
19 $5D0

1024
1152
1280
1408
1536
1664
1792
1920
1064
1192
1320
1448
1576
1704
1832
1960
1104
1232
1360
1488

Main Memory
$00 $01 $02 $03 $04 §$05 $06

1

2

—3—

f R)

&8

$24 $25 $26 se:rJ

3837 3839

20 $650
21 $6D0
22 §$750
23 $7D0

1616
1744
1872
2000

1

2

3

$20 $21 $22 $23 $24 $25 $26 $27

a3

34

35

36

a7

a8 39

$00 $01 $02 $03 $04 $05 $06 $07,
0 4 5 8 7 32

Auxiliary Memary [

5.7 Display Page Maps

111

Figure 5-7.

3
£

$400
; $480
| $500
| $580
| $600
1 seao
15 | §700
15 | $780
18 | s428
18 1 gan8
20 1 g528
23 | $5A8
23 | s628
27 | seas
2 | $728
31 | $7A8
32 | s450
a5 | $4D0
37 | $550
39 | $5D0

DR E&EEDENSO

Map of Low-Resolution Graphics Display

1024
1152
1280
1408
1536
1664
1792
1920
1064
1192
1320
1448
1576
1704
1832
1960
1104
1232
1360
1488

[= B o
(==
Lo
(=T

[
[=]
w
o

@ nwrR~Ro<L<DOO @
3323388333883
@ o ~NM e

L ol — -

15 SOF
16 $10
17§14
18 $12
19 $13
20 %14

$15
22 $16
23 $17
24 $18
25 $19
26 $1A
27 $1B
28 $1C
29 %1D
30 $1E
31 §$1F
32 $20
33 21
34 $22
35 %23
36 524
37 $25
38 $26
39 $27

21

by
4
43 | $6D0
45 | 750
46
47 | $7D0

112

1616
1744
1872
2000

Chapter 5: Video Display Output

EhEL_TI

T OO WM T M ORI

Tl

L. Tl

R

Figure 5-8. Map of High-Resolution Graphics Display
835838858838 38852502222222502005853883888
o e 8 TR R R R R
0 $2000 8192
1 $2080 8320
2 $2100 8448
3 $2180 8576
4 $2200 B704
5 $2280 8832
6 $2300 8960
7 $2380 9088
8 $2028 8232
9 $20A8 8360
10 $2128 8488 B
11 $21A8 8616 ~L_|_|
12 $2228 B744 \ |
13 $22A8 8872 \ + 0 +$0000
14 $2328 9000
15 $23A8 9128 +1024 +30400
16 $2050 8272 \ +2048 -+$0800
17 $20D0 8400 \
18 $2150 8528 +3072 -+$0C00
19 $21D0 8656 \
20 $2250 5784 +4096 +$1000
21 $22D0 8912
e +5120 +$1400
23 32900 B168 \ +6144 +$1800
\ +7168 +$1C00

5.7 Display Page Maps

113

T

Figure 5-9. Map of Double-High-Resolution Graphics Display

Row
0 $2000

1 $2080
2 $2100
3 $2180
4 $2200
5 $2280
6 $2300
7 $2380
8 $2028
9 $20A8
10 $2128
11 $21A8
12 $2228
13 $22A8
14 $2328
15 $23A8
16 $20350
17 $20D0
18 $2150
19 $21D0
20 $2250
21 $22D0
22 $2350
23 $2300

1141

8192
8320
8448
8576
8704
8832
8960
9088
8232
8360
8488
8616
8744
8872
9000
9128
8272
8400
8528
8656
8784
B912
9040
9168

$00 $01 $02 $03 304 $05 $06 807

0

1 2 3 4 5 [:1 i
Auxiliary Memory [~

Chapter 5: Video Display Output

+ 1024

+2048

+3072

+4086

+5120

+6144

+7168

+50000

+§0400

+$0800

+$0C00

+$1000

+51400

+$1800

+51C00

;AL TARTLTLTI MMM T T T T T BTl T

RN

W 5.3 Monitor Firmware Support

Table 5-9 summarizes the addresses and functions of the video
display support routines the Monitor provides. Except for
COUT and COUT1, which are explained in Chapter 3, these
routines are described in the subsections that follow.

Table 5-11. Monitor Firmware Routines

Location Name Description

$FCOC CLREOL Clears to end of line from current
cursor position

$FCIOE CLECLZ Clears to end of line using
contents of Y register as cursor
position

SFC42 CLRECP Clears to bottom of window

$FB32 CLRSCR Clears the low-resolution screen

$FB36 CLRTOP Clears top 40 lines of
low-resolution screen

$FDED couTt Calls output routine whose address
is stored in CSW (normally COUT1,
Chapter 3)

$FDFO couT1 Displays a character on the screen
(Chapter 3)

SFD8E CROUT Generates a carriage return
character

SFD8B CROUT1Y Clears to end of line, then
generates a carriage return
character

EFB19 HLINE Draws a horizontal line of blocks

SFC58 HOME Clears the window and puts cursor

in upper-left corner of window

5.8 Monitor Firmware Support [115

Table 5-11—Continued. Monitor Firmware Routines

Location Name Description

$F800 PLOT Flots a single low-resolution block
on the screen

SF94A PRBL2 Sends 1 to 256 blank spaces to
the output device whose address is
in CSW

$FDDA PRBYTE Prints a hexadecimal byte

S§FF2D PRERR Sends ERR and CONTROL-G to

the output device whose output
routine address is in CSW

$FDE3 PRHEX Prints 4 bits as a hexadecimal
number

SFa41 PRTAX Prints contents of A and X in
hexadecimal

EFB71 SCRN Reads color value of a

low-resolution block on the screen

$F864 SETCOL Sets the color for plotting in
low-resolution

SFC24 VTABZ Sets cursor vertical position
(Setting CV at location §25 does
not change vertical positon until a
carriage return.)

£F828 VLINE Draws a vertical line of
low-resolution blocks

CLREOL

CLREOL clears a text line from the cursor position to the right
edge of the window. This routine destroys the contents of A

and Y.

CLEOLZ

CLEOLZ clears a text line to the right edge of the window,
starting at the location given by base address BASL indexed by
the contents of the Y register. This routine destroys the
contents of A and Y.

CLREOFP

CLREOP clears the text window from the cursor position to the
bottom of the window. This routine destroys the contents of A

and Y.

Chapter 5: Video Display Output

o U O O S) W O, O, (O O 5 T O o S f W { O i

R

CLRSCR

CLRSCR clears the low-resolution graphics display to black. If
you call this routine while the video display is in text mode, it
fills the screen with inverse-mode at-sign (@) characters. This
routine destroys the contents of A and Y.

CLRTOP

CLRTOP is the same as CLRSCR, except that it clears only the
top 40 rows of the low-resolution display.

court

COUT calls the current character output subroutine

(section 3.3.1). The character to be sent to the output device
should be in the accumulator. COUT calls the subroutine
whose address is stored in CSW (locations $36 and $37),
which is usually the standard character output COUT1.

coutt

COUT1 (section 3.3.2) displays the character in the
accumulator on the display screen at the current cursor
position and advances the cursor. It places the character using
the setting of the inverse mask (location $32). It handles these
control characters: carriage return, line feed, backspace, and
bell. When it returns control to the calling program, all registers
are intact.

CROUT

CROUT sends a carriage return to the current output device.

CROUT1

CROUT?1 clears the screen from the current cursor position to
the edge of the text window, then calls CROUT.

HLINE

HLINE draws a horizontal line of blocks of the color set by
SETCOL on the low-resolution graphics display. Call HLINE
with the vertical coordinate of the line in the accumulator, the
leftmost horizontal coordinate in the Y register, and the
rightmost horizontal coordinate in location $2C. HLINE returns
with A and Y scrambled and X intact.

5.8 Monitor Firmware Support [117

HOME

HOME clears the display and puts the cursor in the upper-left
corner of the screen.

PLOT

PLOT puts a single block of the color value set by SETCOL on
the low-resolution display screen. Call PLOT with the vertical
coordinate of the line in the accumulator, and its horizontal
position in the Y register. PLOT returns with the accumulator
scrambled, but X and Y intact.

PRBL2

PRBL2 sends from 1 to 256 blanks to the standard output
device. Upon entry, the X register should contain the number of
blanks to send. If X = $00, then PRBLANK will send

256 blanks.

PRBYTE

PRBYTE sends the contents of the accumulator in hexadecimal
to the current output device. The contents of the accumulator
are scrambled.

PRERR

PRERR sends the word ERR, followed by a bell character, to
the standard output device. On return, the accumulator is
scrambled.

PRHEX

PRHEX prints the lower nibble of the byte in the accumulator
as a single hexadecimal digit. On return, the contents of the
accumulator are scrambled.

PRTAX

PRTAX prints the contents of the A and X registers as a
four-digit hexadecimal value. The accumulator contains the first
byte printed, and the X register contains the second. On return,
the contents of the accumulator are scrambled.

Chapter 5: Video Display Output

. BTl T

'Fi

Fi

T\

L Tl

T L 'R

M L. T L T

¥ 0

SCRN

SCRN returns the color value of a single block on the
low-resolution display. Call it with the vertical position of the
block in the accumulator and the horizontal position in the

Y register. The block’s color is returned in the accumulator. No
other registers are changed.

SETCOL

SETCOL sets the color used for plotting in low-resolution
graphics to the value passed in the acumulator. The colors and
their values are listed in Table 5-4.

VLINE

VLINE draws a vertical line of blocks of the color set by
SETCOL on the low-resolution display. Call VLINE with the
horizontal coordinate of the line in the Y register, the top
vertical coordinate in the accumulator, and the bottom vertical
coordinate in location $2D. VLINE returns with the accumulator
scrambled.

5.8 Monitor Firmware Support 119

M5 I/O Firmware Support

120]

Apple llc video firmware conforms to the I/O firmware protocol
(section 3.4.2). However, it does not support windows other
than the full 80-by-24 window in 80-column mode, and the full
40-by-24 window in 40-column mode. The video (port 3)
protocol table is shown in Table 5-12.

Table 5-12. Port 3 Firmware Protocol Table

Address
$C30B

$SC3oc
$C30D

$C30E

$C30F

$C310

Chapter 5: Video Display Output

Value

501

588
Sii

Brr

Sww

Sss

Description

Generic signature byte of firmware
cards

80-column card device signature

$C3il is entry point of initialization
routing (PINIT).

SC3rr is entry point of read routine
(PREAD).

$C3ww is entry point of write
routine (PWRITE).

$C3ss is entry point of the status
routine (PSTATUS).

T, TL.FL T

'Fi

i

-

T T T.T T

T

T\

T Eh

Tl

(!

e e I

PINIT

PINIT does the following:

@ Sets a full B0-column window
Sets B0STORE ($C001)

Sets 80COL ($C00D)

Switches on ALTCHAR ($COOF)

Clears the screen; places cursor in upper-left corner

Displays the cursor.

PREAD

PREAD reads a character from the keyboard and places it in
the accumulator with the high bit cleared. It also puts a zero in
the X register to indicate IORESULT = GOOD.

PWRITE

PWRITE should be called after placing a character in the
accumulator with its high bit cleared. PWRITE does the
following:

® Turns the cursor off.

e |f the character in the accumulator is not a control character,
turns the high bit on for normal display or off for inverse
display, displays it at the current cursor position, and
advances the cursor; if at the end of a line, does carriage
return but not line feed. See Table 5-13.

@& Carries out control functions as shown in Table 5-10.

5.9 I/O Firmware Support 121

Table 5-13. Pascal Video Control Functions

CONTROL- Hex Function performed

Eore $05 Turns cursor on (enables cursor
display)

Forf S06 Turns cursor off (disables cursor
display)

Gorg 507 Sounds bell (beaps)

Horh F08B Moves cursor left one column. If

cursor was at beginning of line,
moves it to end of previous line

Jorj $0A Moves cursor down one row;
scrolls if needed

Kork $0B Clears to end of screen

Lorl $0C Clears screen; moves cursor to
upper-left of screen

Morm s0D Moves cursor to column 0

N orn S0E Displays subsequent characters in

normal video. (Characters already
on display are unaffected.)

Ooro $OF Displays subsequent characters in
inverse video. (Characters already
on display are unaffected.)

Vorvw $16 Scrolls screen up one line; clears
bottom line

Worw $17 Scrolls screen down one line;
clears top line

Y ory $19 Moves cursor to upper-left (home)
position on screen

Zorz B1A Clears entire line that cursor is on

lar % $1C Moves cursor right one column; if

at end of line, does CONTROL-M

| or | $1D Clears to end of the line the cursor
is on, including current cursor
position; does not move cursor

or 6 $1E GOTOxy: initiates a GOTOxy
sequence; interprets the next two
characters as x+32 and y-+32,
respectively

= S1F If not at top of screen, moves
cursor up one line

122 Chapter 5: Video Display Qutput

kl

T TPl Te T T T T T T FL R Tk

| ¥

When PWRITE has completed this, it

® turns the cursor back on (if it was not intentionally turned
off).

® puts a zero in the X register (IORESULT = GOOD) and
returns to the calling program.

PSTATUS

A program that calls PSTATUS must first put a request code in
the accumulator: either a 0 (meaning “Ready for output?” or a 1
(meaning “Is there any input?”). PSTATUS returns with the reply
in the carry bit: 0 (No) or 1 (Yes). If the request was not 0 or 1,
PSTATUS returns with a 3 in the X register

(IORESULT = ILLEGAL OPERATION); otherwise, PSTATUS
returns with a 0 in the X register (IORESULT = GOOD).

5.9 I/O Firmware Support [123

indyng pue jnduj ysiq

R R

The external disk drive connector
is described in section 11.10.

g 1@1deuyo

The Apple llc supports both its built-in disk drive and an
optional external drive; both drives use single-sided, 35-track,
16-sector format. The disk 1/O port characteristics are

summarized in Table 6-1.

The firmware resides in the $C600 address space. It supports
the built-in drive as if it were slot 6 drive 1, and the external
drive as if it were slot 6 drive 2. If disk startup is unsuccessful,
the firmware shuts off the disk drive motor and displays the
message, Check Disk Driwve on the display screen.

Table 6-1. Disk I/O Characteristics

Port Number

Commands

Initial
Characteristics

Hardware Location

$COEQ-EF

Monitor Firmware
Routines

/O Firmware Entry
Paoints

Use of Screen Holes

/O Port 6 Drive 1 (built-in drive)
I/O Port 6 Drive 2 (external drive)

IN#6 or PR#6

CALL -151 (to get to the Monitor
from BASIC), then (&) (%) or
(&)

All resets except (CONTROL - RESET)
with a valid reset vector eventually
pass control to the built-in disk drive.
Description

Reserved

Mone

$CB00 (port 6)

Port & main and auxiliary memory
screen holes are reserved,

Chapter 6: Disk Input and Output [125

Ms Startup

A power-on startup, an (&){CONTROL)-(RESET) startup, or a
(CoNTROL H RESET) startup that does not find a valid reset vector
results in a cold start. The cold-start routine first sets a number
of soft switches (see Chapter 2) and then passes control to the
program entry point at $C600. This code turns on the internal
drive motor, recalibrates the read/write head at track zero, then
reads sector zero from that track. The sector contents are
loaded and decoded starting at address $800; then program
control passes to $801. This loaded program varies depending
on the operating system or application program on the disk.

To restart the system, issue a PR#6 command from BASIC,

(8) from Monitor command mode, or
JMP $C600 from a machine-language program.

M 5.2 External Drive Startup

The ProDOS operating system (but not the DOS or Pascal
operating systems) supports startup using the external disk
drive. This ProDOS feature makes it possible to start the

Apple llc with a diagnostic program in the event that the built-in
drive does not work.

To restart using the external drive, insert a ProDOS disk in the
external drive, then invoke the Monitor (CALL -151) and issue

(@) (CONTROLH(P).

Remember: External drive startup works with ProDOS-based
programs, but not with Pascal 1.1 or 1.0, or with DOS.

126 Chapter 6: Disk Input and Output

LN INITNTTTNTTT T TN L

S T

| 10 g/] |euss

Y L U

e

If you need to change port
characteristics from a program,
read section 7.6 for the methods to
use.

'\

If you change port 1 to a
communication port, refer to the
descriptions in Chapter 8, and
use 1 instead of 2 for the port
number when required.

 1aydeyo

Serial port 1 is the first of two serial I/O ports available on the
Apple llc. It is intended primarily as an output port for RS-232
devices, such as printers and plotters. It can be changed to a
serial communication port (like port 2) using the System Ultilities
Disk.

Warning

Although the Apple llc serial ports are similar to the Apple lle
Super Serial Card, there are many important differences. Refer
to Appendix F for a summary of these differences.

Table 7-1 summarizes the characteristics of this port if used as
a printer/plotter port, and is a guide to the other information in
this chapter.

The serial port back panel connectors are described in
section 11.11.

Chapter 7: Serial 1/O Port 1 [129

Table 7-1. Serial Port 1 Characteristics

l? Port Number Serial port 1
4 Commands Keyboard command
| PR#1
BASIC command
PR#1

Monitor command
1 CONTROL-P (does not work
if there is an operating system

in RAM)
All other commands
Table 7-2
; . Initial Characteristics Table 7-3
:; Hardware Page Locations Table 7-4
‘ Monitor Firmware Routines None
| 1/O Firmware Entry Points Table 7-5
! Use of Screen Holes Table 7-6
I Use of Other Pages None

LI B T Tl B.F1l T

| W 7.1 using Serial Port 1

| You can access the firmware from BASIC in the usual way—
g that is, by issuing CONTROL-D (if DOS or ProDOS is in RAM)
“ and PR#1. Subsequent output is directed to the printer (or
other device) connected to serial port 1.

Refer to Table 7-5 for the standard To direct Pascal output to the printer, you can use either #6:

firmware entry points that or PRINTER: .
Pascal 1.1 and 1.2 use.

Table 7-2 lists the commands you can use with serial port 1,
either from a program or from the keyboard, after you issue
PR#1. Each command must be preceded by CONTROL-I (the
command character). As soon as you issue the command
character, the serial port firmware displays a flashing question
mark cursor to indicate it is awaiting a command.

You do not have to press after commands.

Note; The commands themselves are letter commands, not
control characters.

1301 Chapter 7: Serial I/O Port 1

m m

Tl

[FL

N

Table 7-2. Printer Port Commands

Command Description

nnn Set new line width of nnn (from 1 through 255). This command
must be followed by N (see below) or by a carriage return.
nnB Set baud rate to value corresponding to nn:
nn Rate nn Rate
¥ 50 a 1800
2 75 10 2400
3 110 (109.92) " 3600
4 135 (134.58) 12 4800
5 150 13 7200
B 300 14 8600
7 600 15 19200
8 1200
nD Set data format to values corresponding to n:
n Data Bits Stop Bits
0 8 1
1 7 1
2 6 1
3 5 1
4 8 2
5 7 2
6 6 2
7 5 2
| Echo printer output on the screen.
K Disable automatic line feed after carriage return.
L Generate line feed after carriage return.
nnnh Change line width to nnn (from 1 through 255; nnn is optional); do
not echo printer output on the screen. Note: ON does not disable
automatic generation of carriage return; to do so, use Z command,
put O directly in location $579 or use System Utilities Disk.
7.1 Using Serial Port 1 [131

132]

Table 7-2—Continued. Printer Port Commands
Command Description
nP Set parity corresponding to n:

n Parity

0 MNone
Odd

—y

None
Even
None
MARK (1)
None
SPACE (0)

-l @ th & W M

Reset port 1 {Table 7-3) and exit from serial port 1 firmware.

Send a 233 millisecond BREAK character (used with some printers
to synchronize with serial ports).

7 Zap (ignore) further command characters (until (ConTROL or
PR#1). Do not format output or insert carriage returns into output
stream.

The command character starts off as CONTROL-| for the printer
port. You can change it to a different control character by
typing the current control character followed immediately by the
new control character you want. This is useful if you want to be
able to send CONTROL-| to the printer without firmware
intervention. For example, to change the command character
from CONTROL-I to CONTROL-V, simply press
(ConTROL H(V). (CONTROL-V and CONTROL-W are the
recommended substitute control characters.) To change the
command character back again, press
(CONTROLHD.

Do not use (CONTROLHA), B, &), -(B), (1), (L), -(M) or (¥
Apple lic firmware may intercept these control characters,
causing unpredictable results.

Chapter 7: Serial I/O Port 1

BTl T T T T B BTl TheFl. Tl

-lrn[rim I! i! i! I[If IE l[If Itnrn[n[rltr

The following are examples of valid commands and command
sequences.

Echo output to the display screen:

(ConTROLHD) (D

Set line width 72, disable line feed, and echo:
(ConTRED-(D
Change control character to CONTROL-V:

((CONTROL (1) (CONTROL (RETURN)

An example of how you can send CONTROL-I as part of a
character stream:

CONTROL HV) (command)

. 7.2 Characteristics

at Startup

After power-up, the printer firmware sets the configuration given
in Table 7-3. These values are stored in the auxiliary-memory
screen holes (Table 7-6).

Table 7-3. Initial Characteristics of Printer Port

9600 baud

Eight data bits, no parity bits, two stop bits

80-column line width; no echo to display screen
Firmware supplies line feed after carriage return
Command character is set to CONTROL-I (see below).

You can change some of these settings from the keyboard by
typing PR#1, the command character, and one of the
commands listed in Table 7-2. Section 7.6 describes how port
characteristics change as a result of various activities.

Note: You can type more than one command on a line, but
each must be preceded by the command character.

7.2 Characteristics at Startup [133

M 7.3 Hardware Page Locations

Table 7-4 lists for serial port 1 the addresses and bit
ACIA stands for Asynchronous assignments of its hardware registers on page $C0. The

Communication Interface Adapter. ragisters are internal to a 6551 ACIA; their bit assignments are
a serial I/O chip. Note in

Chapter 11 that some of the bit dESC”bEd in SBCﬁDn 1 111.

assignments for this port diffe

fror:'tgthcse for |r:pnrtl 2? il Table 7-4. Serial Port 1 Hardware Page Locations
Location Description

$C090-5C097 Reserved

$C098 ACIA transmit/receive data register
$C099 ACIA status register

$C09A ACIA command register

$C098 ACIA control register

$C09C-$CO9F Reserved

W 7.4 /0 Firmware Support

Table 7-5 lists the locations and values of the I/O firmware
protocol table. This standardized protocol is available for use
by any application program. Section 3.4.2 describes how to use
this protocol.

Table 7-5. Port 1 I/O Firmware Protocol

Address Value Description

$C105 538 Pascal ID byte

$C107 $18 Pascal ID byte

$C10B 501 Generic signature byte of firmware
cards

sC10C 531 Same ID as for Super Serial Card

sC10D Sil $C1ii is entry paint of initialization
routine (PINIT).

SC10E Srr $C1rr is entry point of read routine
(PREAD).

SC10F Sww SCiww is entry point of write

routine (PWRITE).

sC110 Bss $C1ss is entry point of the status
routine (PSTATUS).

sC111 non-0 Mo optional routines

1341 Chapter 7: Serial I/O Port 1

NI AR EKETATARAOaTATTNRNHR LTS T AL R

. 7.5 Screen Hole Locations

Table 7-6 lists the screen hole locations that serial port 1 uses.
The ACIA register bits are defined Note that the auxiliary-memory locations are reserved for
In Chapier 11. startup value settings, which are listed and interpreted in the
table.

Table 7-6. Serial Port 1 Screen Hole Locations
Auxiliary Memory Screen Holes (firmware loads at power-up reset):
Location Description

5478 38E (ACIA control reg: 8 data + 2 stop bits, 9600 baud)
$479 $0B (ACIA command reg: no parity)

$ATA $40 (flags: no echo, auto LF after CR, serial port)
Bit Interpretation

7 Echo output on display (0 = no echo)

6 Generate LF after CR (0 = no LF)
Always = 0 (reserved)

1 = communication port; 0 = serial printer

port

5478 350 (printer width: 80 columns)

Bit Interpretation

7-0 Printer width (0 = do not insert CR)
Main Memory Screen Holes:
Location Description
$479 Reserved
$4F9 Reserved
$579 Printer width (1 - 255; 0 = disable formatting)
$5F9 Temporary storage location
$679 Bit 7 = 1 while the firmware is parsing a command string.
$6F9 Current command character (initially CONTROL-I)
§779 Bit 7 1 if echo to display is on; bit 6 = 1 if firmware is

to generate a line feed after carriage return.

£7F9 Current printer column

7.5 Screen Hole Locations |135

BRI

W s Changing Port Characteristics

Figure 7-1 is a diagram of where the port characteristics are
stored and moved under different circumstances. As you can
see from the figure:

e When the power is first turned on, the Monitor reset
firmware moves the predefined set of port characteristics
listed in Table 7-3 from ROM into the auxiliary memory
screen holes listed in Table 7-6.

e If you specify new characteristics using the System Ultilities
Disk, the SUD software changes the values in the auxiliary
memory screen holes.

e The values stored in the auxiliary memory screen holes are
affected by power-on reset, but not by either
(&){CONTROL)HRESET) Or a simple (CONTROL H{ RESET). This
feature is provided so that a port that has been
reconfigured will remain that way while some other program
(such as an application program) is started up.

e PR#1 causes the firmware to move the characteristics
stored in the auxiliary memory screen holes into the main
memory screen holes.

e A program can change values in the main memory screen
holes directly. However, the only value guaranteed to be in
the same place for the entire Apple Il series is the line
length in main memory location $579.

e The firmware uses the port as it is defined in the main
memory screen holes at any given time. You should use the
commands listed in Table 7-2 to change them.

Chapter 7: Serial 1/O Port 1

\'ﬂfﬂ'ﬂ'ﬂfﬂ'ﬂ'ﬂ'ﬂ‘ﬂ'ﬂ'ﬂ'ﬂ’ﬁ'ﬂ’ﬂ’ﬂ’ﬂ

R R

Figure 7-1. Port Characteristics

Port 1
Values in
Firmware Locations
(See Table 7-3)

Direct Control
of Interrupt Features
{See Appendix E)

Optional Direct
Program Control

Systemn Litilities Disk Printer Port
PIN Number Selection Commands
(See Appendix H) (See Table 7-2)

Power On
Reset “

Port 1 Port 1
Auxiliary RAM Main RAM
Screen Holes Screen Holes
(See Table 7-6) (See Table 7-6)

" Line Width = 0| Reserved Screen Holes

(CONTROL)-(RESET)

Power On
Reset

7.6.1 Data Format and Baud Rate

Serial data transfer consists of a string of ones and zeros sent
down a wire at a prearranged rate of speed, called the baud
rate. With most equipment, baud simply equals the number of
bits per second.

Before transfer begins, both sender and receiver look for a
continuous value of 1: this is called the carrier (Figure 7-2).
When the value goes to zero, the receiver presumes it is a start
bit—that is, the bit that designates the beginning of a character
of data. If it lasts longer than a bit could possibly last, it is
considered a BREAK signal, which some printers use for
synchronization.

If the first zero proves to be a bit, it is interpreted as the start
bit. Next come the 7 or 8 data bits (6 is seldom used with
computers), low-order bit first. If parity is on, it comes next in
the message. Finally, one or two stop bits (with a value of 1)
appear. The stop bits have a value of 1, like the carrier. The
next start bit begins transfer of the next character of data.

7.6 Changing Port Characteristics 137

138

The parity bit provides a simple check of data validity. Odd
parity means the sender counts the number of ones among the
data bits, and sends the appropriate parity bit to make the total
number of ones odd. With even parity, the sender adds the
appropriate parity bit to make the total number of one-bits even.
MARK parity is always a 1 bit; SPACE parity is always a zero.
The receiver can then check that the parity bit is correct.

If the baud rate is 300, and the data format is 1 start bit plus
7 data bits plus 1 parity bit plus 1 stop bit, then the actual
transfer rate is about 30 characters per second.

Figure 7-2. Data Format

No
= 1or MARK 7 Odd 1
i = 1 Start + Data +4 Even Parity + Stop

— 0or SPACE 8 MARK 2
SPACE

LSB MSB Carrier
T T T SR
| 1]loe|l1 1]lo ofl1]o] t |
i P L
Start Odd Stop Next
Bit Parity Bit Start

Bit
ASCIl letter M = $4D; sent as 8 data, odd parity, 1 stop bit.

7.6.2 Carriage Return and Line Feed

If you are using a typewriter and you push the carriage all the
way to the right (in other words, position the printing
mechanism at the left margin), you have performed a carriage
return. On the other hand, turning the platen so the paper
moves to the next line (or using the index key on an electric
typewriter) is called a line feed. Most typewriters perform a line
feed automatically after a carriage return, and so the two seem
to be one—but they are not.

Carriage return and line feed are separate ASCI| codes.
Carriage return is sometimes denoted CR; it is ASCII

code 13 ($0D). Line feed, sometimes denoted LF, is ASCII
code 10 ($0A). (3) on the Apple llc keyboard generates a LF.

Chapter 7: Serial 1/0 Port 1

1 W N W | WY, < .

e Tl The T L TEi L LT

|

R U U U

Some printers can supply a line feed automatically after
detecting a carriage return; others cannot. If the printer does
not supply a line feed after a carriage return and it is not
supplied in the data stream, the printer will keep printing over
on the same line. On the other hand, if both the printer and the
Apple lic firmware supply LF after CR, double line-spacing will
result.

If the print head keeps moving too far to the right across the
page and then prints many characters on top of one another on
the right, then the firmware should be instructed to furnish CR
after a certain line width has been reached. If the printer prints
too short a line before moving to the next line, then probably
the firmware is using too small a line width.

If the printer misses characters at the beginning of each line but
otherwise prints correctly, there is probably not enough time for
the print mechanism to return to the left margin in response to
CR. You must use a lower baud rate with such a printer.

7.6.3 Sending Special Characters

If you want to send special characters (control characters) to
the printer without having them intercepted and executed by the
Apple lic firmware, use the Z command. If the only special
character that causes a problem is the command character
(normally CONTROL-I for port 1), you can change just the
command character instead of using the zap (Z) command. If
you use the zap command, the firmware does no formatting;
that is, it does not check line width or insert carriage returns or
line feeds. This may be necessary to send graphics to a printer
or plotter.

7.6.4 Displaying Output on the Screen

You can display printer output on the screen, but if the printer
line width exceeds the 40 or 80 columns you have selected for
display, you should turn off video display.

7.6 Changing Port Characteristics 139

Z 10d 0/] [euas

R R

'R

la1deyo

8

Serial port 2 is the second of two serial I/O ports available on
the Apple llc. It is intended primarily as a communication port
for modems. You can change it to a serial printer port (like
port 1) using the System Utilities Disk. If you need to change
port characteristics from a program, read section 8.6.

Warning

Although the Apple llc serial ports are similar to the Apple
Super Serial Card, there are many important differences. Refer
to Appendix F for a summary of these differences.

Chapter 8: Serial 1/O Port 2 [141

TR D

If you change port 2 to a serial
printer port, refer to the
descriptions in Chapter 7, and
use 2 instead of 1 for the port
number when required.

142]

Table B-1 summarizes the characteristics of this port and is a
guide to the other information in this chapter.

The serial port connectors are described in section 11.11.

Table 8-1. Serial Port 2 Characteristics

Port Number Serial Port 2

Commands Keyboard commands
IN#2 before Table 8-2
commands

IN#2 to accept port 2 input
PR#1 to echo input to printer
PR#2 to echo input back to
port 2

BASIC commands
(same)

Monitor command

@ (This command
works only if there is no
operating system in RAM.)

All other commands

Table 8-2
Initial Characteristics Table 8-3
Hardware Page Locations Table 8-4
Monitor Firmware Routines None
/O Firmware Entry Points Table 8-5
Use of Screen Holes Table B-6
Use of Other Pages In terminal mode, firmware uses

auxiliary memory locations $800-$87F
to store keyboard input, and
$BBO-$8FF as a serial input buffer.

Chapter 8: Serial I/O Port 2

. FLOELELROROERLO'RLOELRLORLOELO'EL EL ELLEL |

[

R .

Hs Using Serial Port 2

Refer to Table 8-5 for the standard
firmware entry points that
Pascal 1.1 and 1.2 use.

You can access the firmware from BASIC in the usual way—
that is, by issuing CONTROL-D (if DOS or ProDOS is in RAM)
followed by IN#2 or PR#2. Subsequent input and output are
routed through the modem (or other device) connected to serial
port 2.

Note: In terminal mode, the modem port commands listed in
Table 8-2 must follow CONTROL-D and IN#2 (nof PR#2)
and the command character (which is usually CONTROL-A).

To transfer files to the modem under Pascal, specify REMOUT:
or #8: . To transfer files from the modem under Pascal, specify
REMIN: or #7: .

Table 8-2 lists the commands you can use with serial port 2,
either from a program or from the keyboard, after you issue
IN#2. Each command must be preceded by CONTROL-A (the
command character). As soon as you issue the command
character, the serial port firmware displays a flashing question
mark cursor to indicate it is awaiting a command. If you press
(RETURN), you get the current video cursor again.

You do not have to press after commands.

Note: The commands themselves are letter commands, not
control characters.

8.1 Using Serial Port 2 143

Table 8-2. Modem Port Commands

Command Description

! nnn Set new line width of nnn (from 1 through 255); this must be
i followed immediately by N (see below) or by carriage return.
nnB Set baud rate to value corresponding to nn:
I nn Rate nn Rate
.- 1 50 9 1800
2 75 10 2400
| 3 110 (109.92) 1 3600
I 4 135 (134.58) 12 4800
' 5 150 13 7200
| 6 300 14 9600
{ 7 600 15 19200
l 8 1200
‘ nD Set data format to values corresponding to n:
l n Data Bits Stop Bits
0 8 1
| 1 7 1
| 2 6 1
3 5 1
4 8 2
5 7 2
. 6 6 2
| 7 5 2

144] Chapter 8: Serial 1/O Port 2

T T TL T T P T Pl F L [E e FlandFl

T eI

Table 8-2—Continued. Modem Port Commands
Command Description

| Echo output on the screen.

K Disable automatic line feed after carriage return.
L Generate line feed after carriage return.
nnniN Set line width to nnn (from 1 through 255); do not echo output on

the screen. Note: ON does not turn off automatic generation of
carriage return; to do so, use Z command, put 0 directly in
location $57A, or use the System Utilities Disk.

nkP Set parity corresponding to n:
n Parity
0 None
1 Odd
2 Naone
3 Even
4 None
5 MARK (1)
:] None
7 SPACE (0)
Q Quit terminal mode.
R Reset port 2 (Table 8-3) and exit from serial port 2 firmware.
] Send a 233 millisecond BREAK character,
T Enter terminal mode. Use this command after IN#2 only. Also, if

you follow this command by PR#2, the Apple lic will echo input to
output. (If the other device does so too, the first character entered

will loop endlessly, locking up the system. Use to
get out.)

Z Zap (ignore) further command characters until (GonTRoL H REseT). Do
not format output or insert carriage returns into output stream.

(contrRoL HT) This command from a remote device puts the Apple Ilc in terminal

mode if IN#2 is already in effect. It is the same as
typed locally.

(conTROLH(R) This command from a remote device undoes the terminal mode
command. If IN#2 and PR#2 are in effect, the remote keyboard
and display become the input and output devices of the local
Apple llc. It is the same as (ConTrRoL HA) (@) typed locally.

8.1 Using Serial Port 2 145

The command character starts off as CONTROL-A for the
communication port. You can change it to a different control
character by typing the current control character followed
immediately by the new control character you want. This is
useful if you want to be able to send CONTROL-A to the output
device without firmware intervention.

For example, to change the command character from
CONTROL-A to CONTROL-V, simply press
(CONTROLHV). (CONTROL-V and CONTROL-W are the
recommended substitute control characters.) To change the
command character back again, press
(CONTROLH(A).

Warning

Do not use (ConTROL){B), {©), {H), D, {D. O, M) or {3

Apple llc firmware may intercept these control characters,
causing unpredictable resuits.

The following are examples of valid commands and command
sequences.

Enable echo to the screen:
@®
Send a BREAK character to a remote device:

Change the control character to CONTROL-V (For example, so
you can send CONTROL-A as part of a character stream.):

(CONTROL }-(A) (CONTROL }-(V) ((CONTROL (V) (command)

Chapter 8: Serial 1/O Port 2

BT b Thos FhowThee A Th T Wl B B B b B e B b e E

R R

Ns: Characteristics at Startup

After power-up, the firmware sets the configuration given in
Table 8-3. These values are stored in the auxiliary-memory
screen holes (Table 8-6).

Table 8-3. Initial Characteristics of Communication Port

300 baud

Eight data bits, no parity bits, one stop bit

Firmware does not supply line feed after carriage return,
Firmware does not insert carriage returns into output stream.
Firmware does not echo output to the display screen.

Command character is set to CONTROL-A.

You can change some of these settings from the keyboard
using the command character followed by one of the commands
listed in Table 8-2. Section 8.6 describes how port
characteristics change as a result of various activities.

If you change any of these values using keyboard commands or
commands from a program, subsequent accesses to the port
firmware (even by another program) use the new settings
instead of the power-up values. This allows you to change the
settings once at system startup, and get the desired
configuration for subsequent uses. Refer to section 8.6 for a
complete description of these processes.

8.2 Characteristics at Startup 147

. 8.3 Hardware Page Locations

ACIA stands for Asynchronous
Communication Interface Adapter,
a serial 1/O chip. Note in

Chapter 11 that some of the bit
assignments for this port differ
from those for port 1.

Table 8-4 lists for serial Port 2 the addresses of its hardware
registers on page $CO0. The registers are internal to a
6551 ACIA; their bit assignments are described in section 11.11.

Table 8-4. Serial Port 2 Hardware Page Locations

Location
$COAD-$COAT7
$C0A8
$COAZ
SCOAA
$3COAB
$COAC-SCOAF

Description

Reserved

ACIA transmit/receive data register
ACIA status register

ACIA command register

ACIA control register

Reserved

M 5.4 //0 Firmware Support

Table B-5 lists the values in the I/O firmware protocol table for
serial port 2. This standardized protocol is available for use by
any application program. Section 3.4.2 describes how to use

1481

this protocol.

Table 8-5. Port 2 I/Q Firmware Frotocol

Address

$C205
sca07
$C208

$C20C
$C200

$C20E

SC20F

sCc210

§C211

Value Description

$38 Pascal ID byte

$18 Pascal ID byte

$01 Generic signature byte of firmware
cards

$31 Same ID as for Super Serial Card

Bii $C1ii is entry point of initialization
routine (PINIT).

$rr $C1rr is entry point of read routine
(PREAD).

Fww $C1ww is entry point of write

routine (PWRITE).

Sss $C1ss is entry point of the status
routine (PSTATUS).

non-0 No optional routines

Chapter B: Serial 1/O Port 2

Ehond B b B b B b Tl Tl

\

| (W (W, (W,

'E

Fl'EA

El

.

e e e T

. 8.5 Screen Hole Locations

The ACIA register bits are defined Table 8-6

in Chapter 11

lists the screen hole locations that serial port 2 uses.

Note that the auxiliary-memory locations are reserved for

startup value settings, which are listed and interpreted in the

table.

Table 8-6. Serial Port 2 Screen Hole Locations

Location

Description

Auxiliary Memory Screen Holes (firmware loads values at power-up):

$47C
547D
$47E

S4TF

§16 (ACIA control reg: 8 data + 1 stop bit, 300 baud)
$08B (ACIA command reg: no parity)

$01 (flags: no echo, no auto LF after CR, communication port)

Bit Interpretation

7 Echo output on display (0 = no echo)

6 Generate LF after CR (0 = no LF)

5-1 Always = 0 (reserved)

0 1 communication port; 0 = serial printer

port
300 (line length: do not add any CR to output stream)
Bit Interpretation

7-0 Line length (0 = do not insert CR)

Main Memory Screen Holes:

547 A
B4FA
$57A
$5FA
$67A

S6FA
$T7A

B7FA

8.5 Screen Hola Locations

Reserved

Reserved

Line length (1 - 255; 0 = disable formatting)
Temporary storage location

Bit 7 = 1if and only if the firmware is currently parsing a
command string.

Current command character (initially CONTROL-I)

Bit 7 1 it echo to display is on; bit 6 = 1 if firmware is to
generate a line feed after carriage return.

Current column

149

HMss Changing Port Characteristics

1501

Figure 8-1 is a diagram of where the port characteristics are
stored and moved under different circumstances. As you can
see from the figure:

e When the power is first turned on, the Monitor reset
firmware moves the predefined set of port characteristics
listed in Table 8-2 from ROM into the auxiliary memory
screen holes listed in Table 8-6.

e If you specify new characteristics using the System Utilities
Disk, the utility software changes the values in the auxiliary
memory screen holes.

e The values stored in the auxiliary memory screen holes are
affected by power-on reset, but not by either
(& HCONTROL)-(RESET) or a simple (CONTROL H(RESET). This
feature is provided so that a port that has been
reconfigured will remain that way while some other program
(such as an application program) is started up.

e IN#2 causes the firmware to move the characteristics
stored in the auxiliary memory screen holes into the main
memory screen holes.

® A program can change values in the main memory screen
holes directly. However, the only value guaranteed to be in
the same place for the entire Apple Il series is the line
length in main memory location $57A.

e The firmware uses the port as it is defined in the main
memory screen holes at any given time. You should use the
commands listed in Table 8-2 to change these
characteristics.

Chapter B: Serial 1/O Port 2

Pl B Wb Bl Thc T A D e B T bl e b s E

{1 ¢

¢

-1

Figure 8-1. Port 2 Characteristics

System Utilities Disk

Communication Port

Port 2
Values in
Firmware Locations
{See Table 8-3)

Direct Control

(See Appendix E)

of Interrupt Features

PIN Number Selection Commands
(See Appendix H) (See Table 8-2)
Power On PR#2 or
Port 2
Port 2 Main RAM
Auxiliary RAM Screen Holes
Screen Holes (See Table B-6)
(See Table 8-6) e e R
s eserved Screen Holes
o
\?q?"
&
=
£
(&)
(CONTROL)-{RESET)
Reset

8.6.1 Data Format and Baud Rate

Section 7.6.1 describes data format and baud rate, and
explains how they apply to printers. Refer to that section or to
the Glossary for the definition of terms.

A noteworthy characteristic of data communication is its
strangeness: sometimes the oddest changes make a given
communication arrangment work or not work. You must keep
this notion firmly in mind when working with serial port 2. For
example, modem communication involves quite a few elements
(Figure 8-2):

e the Apple llc and its firmware, with the baud rate, data
format, and other characteristics you have selected

® the cable from the Apple llc to the modem

® the modem

® possibly an acoustic coupler for a telephone handset

8.6 Changing Port Characteristics

e the telephone lines, with their switching equipment, boosters,
and noise

® some combination of modem, cable, and computer or

Figure 8-2. Devices in a Typical Communication Setup

Printer

terminal on the other end.

888
agoa
ooaQ
' Telephone =
and Modem Mainframe
L J 1 J 1]l J 1 —
Local DTE Local DCE Transmission Line Remote DCE Remote DTE
{Data Terminal (Data Communication
Equipment) Equipment)

152]

As you can imagine, some method is required for success. If
you have problems, change only one variable at a time, and
then cycle through the other variables one at a time. Take
nothing for granted. The data format advertised for an
information service, for example, may be different from the one
you end up using with the Apple llc.

8.6.2 Carriage Return and Line Feed

If you are communicating with a computer or terminal, carriage
return and line feed may or may not be involved. Start off
without generating them, and turn on automatic generation only
as needed. They are described as used with printers in

section 7.6.2.

Chapter 8: Serial 1/O Port 2

Tho FhaeBhaeFL_"FL 'FL 'S, AL TFL A 'FL_'EL_'E_ELFl.[Fl

"

R

8.6.3 Routing Input and Output

This section discusses the possible ways that serial port 2 can
route information. Sometimes the cause of communication
problems is that information is not going where you think it is,
or it is and you cannot see evidence of the fact. Figures 8-3
through 8-6 show some of the patterns of information flow you
can select. This section and the following subsections tell you
how to use them.

It is best to read all of this material as a unit: questions that
arise while you read one description may be answered
elsewhere.

8.6 Changing Port Characteristics 153

Figure 8-3. Effect of IN¥2

Display

Printer

ey

Remote
Communication P4 Communication
i

— Device Device

vid 2 L

Port 1

Fw

Remote
Terminal

MON |—’ or Computer

Keyboard

For a further description of what
terminal mode does and how to
get into and out of it, refer to the
last section of this chapter.

1541

The simplest serial port 2 command is IN#2 (Figure 8-3).

Port 2 becomes the input device. Data coming into the port
gets passed to the input buffer (page 2 of main memory).
Applesoft firmware and system software can see the data and
carry out commands in the normal way.

Of course, you can also use just the PR#2 command—for
example, if you want to send a listing to the modem.

To use port 2 for data communication, you ordinarily put it into
terminal mode. Following IN#2, typing gets the
attention of the port 2 firmware, which displays a blinking
guestion mark (?) as a prompt. Now type to put the
computer in terminal mode. In this mode, the firmware displays
a blinking underscore character () as a prompt.

In the discussion that follows, local refers to your Apple lic.
Remote refers to some other device, usually in a distant
location and at the other end of a communication link. The
remote device can be any ASCIl-generating unit: a terminal or a
computer.

Chapter 8: Serial I/O Port 2

. Tl T TN T N T A TR Thallall

R R E RS

If a remote computer is another Apple lic or an Apple Il series
machine with a Super Serial Card in it, then most of the
commands described here apply to it as well.

Half Duplex Operation

In half-duplex operation, information can flow from A to B or
from B to A, but in only one direction at a time. In a half-duplex
setup, the host does not echo back to the terminal what the
terminal sends it. For half-duplex operation, use IN#2 and

(Figure 8-4) whether the Apple llc is the host
or the terminal.

Figure 8-4. Effect of IN#2 and T Command (Half Duplex)

Printer

Display
R t
Communication £ ernq ¢ i
2 Communication
/r Device :
Device
1 vid I 2 'S
‘!‘:PHJH} t--_‘
1 m 31y Y
POt 1 i e o o o Port 2
FwW FW
(' Remote
Terminal
MON | / or Computer
Keyboard

IN#2 plus is the best way to set up the
computer for auto-answer operation. The T command allows
port 2 firmware to exchange information with the local modem
without interference from the local firmware or system
software. (The remote device can always cancel the

T command with (CoNTROL -{R) if necessary, and restore

8.6 Changing Port Characteristics 155

terminal mode with (CoNTROL -(T).) Avoiding PR#2 at this point
means that the Apple lic can operate as a half-duplex terminal,
half-duplex host, or full-duplex terminal. (The remote device
can also issue PR#2 if PR#2 is required at the
local computer.)

In half-duplex operation, the output hook is available for other
uses. For example, you can issue PR#1 to print incoming

messages from port 2. Use the (conTrROL HA) (1) command to
display information on the screen.

Full Duplex Operation

In full-duplex operation, information can flow from A to B and
from B to A simultaneously. Typically, one of the computers (the
host computer) echoes its input to output, so the other
computer (the terminal) can easily verify that the communication
is taking place.

Figure 8-5 shows the flow of information when the Apple lic is a
full-duplex terminal. (The setup commands, IN#2 and
(T), are the same as for half duplex.)

If your Apple lic is the terminal in full-duplex operation, use the
N command to turn off echoing input to the screen. If the

Apple llc does echo input to the screen in this setup, everything
you type will appear twice: once from the Apple lic and once
from the host computer.

In this mode of operation, if you echo input to the printer you
can get a printed record of both sides of the communication

session: the input from the host, and the Apple llc output as

echoed by the host.

Chapter 8: Serial 1/O Port 2

™ ™. 'EL 'FLO'ELORLOPELOP'ELO'RLRUO'RLO'RLO'RL TELLEL L

o

RS

Figure B-5. Effect of IN#2 and T Command (Full Duplex Terminal)

=

Printer

Display

ﬁ | Communication
f Device
1 vid []2

N

t{PHrﬂj 'L?”--‘
1 I

Port 1 (b m===—= Port 2

Fw r/ FwW

MON |t—

Keyboard

Le

Cid

Remote
Communication
Device

Y

e

Remote
Terminal
or Computer

cho

Figure 8-6 shows the flow of information when the Apple lic is
a full-duplex host. In this case, the local Apple llc must echo
input to output for the remote device. The setup commands
include PR#2 in this case.

8.6 Changing Port Characteristics

|15?

A Warning

If the Apple llc echoes input to output and the other computer
does too, then the first subsequent keypress will echo back and
forth endlessly and lock up the Apple llc. This will require a

(CONTROL }{ RESET) to get out.

If you echo input to output when using an information service,
the host will end up seeing the echo of what it sent you as
though you had typed it.

In this arrangement, the local output hook is not available for
using the printer or other device. To display keyboard and

port 2 input on the screen, issue (.

Figure 8-6. Effect of IN#2, PR#2 and T Command (Full Duplex Host)

Communication
Device

P4

Display
Printer
1 vid 2
.l f
---‘
o
Port 1 Port 2
FW r' FW
jichu
MON
-
Keyboard
158

Chapter 8: Serial I/O Port 2

o

Remote
Communication
Device

i

(No Echo)

Remote
Terminal
or Computer

Tl

Th Thall

T

Ti

T T TL T MM T T T T

R

Terminal Mode

Terminal mode makes the Apple lic act like a dumb terminal—
one that just sends and receives information, but does not
process it. Input and output flow through special serial I/O
buffers on page 8 of auxiliary memory. Applesoft firmware and
system software cannot see or interpret the data: only the serial
port 2 firmware deals with it.

In most terminal mode setups, the firmware will not display

port 2 input unless you use the () command.

Warning

When using terminal mode, $800-$8FF of auxiliary RAM is used
for buffering. Any data stored there will be overwritten when
terminal mode is enabled.

{(CONTROL H &) turns on terminal mode, and (@)

turns it off.

The remote device can go into terminal mode, and then turn off
the local Apple lic’'s terminal mode with the (CONTROL -(R)
command. If it then issues PR#2, local output will
go to the remote device. The remote keyboard and display then
become the input and output devices of the local Apple lic
processor. This is remote mode.

In remote mode, the local Apple llc does not use the serial /O
buffers (as it does in terminal mode); therefore, local firmware
and system software detect and interpret all input and output
data. So, for example, if you type CATALOG at the remote
device keyboard, the local Apple llc will execute the command
and list the disk catalog on the remote device's display. (In
terminal mode, the local computer would simply display the
word CATALOG on its screen.)

The remote device can turn the local Apple lic's terminal mode
back on with (CONTROL)-(T). (CONTROL HA) typed at the
remote device only turns on the remote device's terminal mode,
unless the command character there has already been changed
to something else.

8.6 Changing Port Characteristics 159

induy awerx) pue asnojy

e e e e e e

Section 9.1.6 gives an example of
how to use the mouse as a hand
control.

6 1lay1deyo

This chapter describes the mouse port and hand control (game)
input capabilities of the Apple llc. The mouse and hand controls
use the same 9-pin connector on the back panel; the firmware
uses the port as directed by keyboard or program commands.

A program can tell if a hand control is connected (section 9.2)
but not if a mouse is connected, unless the computer user
moves it.

Chapter 9: Mouse and Game Input 161

. 9.1 Mouse Input

A

1621

Table 9-1 is a summary of the characteristics of the mouse port
and a guide to the other information in this part of the chapter.

Warning

If you want to ensure compatibility with mouse operation on the
Apple lle and other Apple Il series computers, always use the
I/O firmware entry points listed in Tables 9-4 and 9-5, rather
than dealing with mouse hardware and RAM locations directly.

The mouse back panel connector is described in section 11.12.

Table 9-1. Mouse Input Port Characteristics

Port Number Mouse Input Port 4

BASIC commands Turn on mouse:
PRINT CHR$(4)"PR#4"™:PRINT
CHR$C1)

Turn off mouse interrupts:
PRINT"PR#4":PRINT CHRS$(CD)
Turn on graphics character set: see
section 5.2.2.

Initial Characteristics After a reset, all mouse interrupts are
off, and the rising edge of X0 and Y0
are selected for interrupts.

Hardware Page Locations Table 9-2

Monitor Firmware Routines None

1/O Firmware Entry Points Table 9-3 and Table 9-4
Use of Screen Holes Table 9-5

9.1.1 Mouse Connector Signals

The mouse uses the same 9-pin D-type miniature connector as
the hand controls. However, the interpretation of the signals
arriving on the pins differs depending on the commands and
signals received. The names of the pin assignments when a
mouse is connected are shown in Figure 11-37.

Chapter 9: Mouse and Game Input

T

THATONTOTTTHTRHRTTORTMNTT QLI

.

[

Section 5.2.2 contains
recommendations for using
MouseText characters with a
mouse.

9.1.2 Mouse Operating Modes

Later sections of this chapter describe how to set various
modes for mouse operation. This section tells what the modes
are for.

In all the interrupt modes—that is, all but transparent mode—
the user program should call the SERVEMOUSE routine to
determine the source of an interrupt as soon as it receives one.

Transparent Mode

In this mode, a program must read screen holes to check for
mouse movement. In reality, however, an interrupt routine in the
Apple lic firmware updates mouse position counters each time
the mouse is moved, then returns control to the main program
task.

This is the only mouse mode available to BASIC programs.

Movement Interrupt Mode

On the Apple llc, a signal called VBLINT can interrupt the
processor whenever a video vertical blanking signal occurs.
This provides for efficient program coordination of the mouse
cursor with mouse movement.

In movement interrupt mode, the mouse firmware arms VBLINT
whenever the mouse is moved at least one count in any
direction. When VBLINT occurs, program control passes to the
vector address contained at locations $3FE and $3FF; the
interrupt handler can then update the cursor smoothly to its
next screen position.

The receiving interrupt handler must first call SERVEMOUSE
(Table 9-3) to see if the mouse caused the interrupt. It should
then call READMOUSE to get mouse status and its current

X-Y position. The routine can also change the mouse mode and
position if desired.

The maximum amount of mouse movement that can occur
between successive VBLINT interrupts is limited only by the
distance someone can move a mouse in one sixtieth of a
second.

9.1 Mouse Input [163

164

Button Interrupt Mode

The Apple llc mouse-button hardware location does not
generate interrupts. However, a program can simulate
mouse-button interrupts by polling the button whenever VBLINT
occurs, and acting on the interrupt whenever the button state
has changed. This alleviates the program overhead required to
poll the button constantly to provide fast response.

Movement/Button Interrupt Mode

This is a combination of the two modes just described. It
provides the best response possible without constant polling of
the mouse position and button. Processing of a main task can
be concurrent with cursor and menu updating, as well as
menu-selected command processing.

Vertical Blanking Active Modes

These modes are the same as the four just described except
that they allow VBLINT interrupts to be sent to the user.

9.1.3 Mouse Hardware Page Locations

The soft switches assigned to the mouse interface are shown in
Table 9-2. On power-up or reset, the hardware selects the
rising edge of X0 and Y0 and masks out all mouse interrupts.

Mouse firmware sets interrupts in response to mode settings
under program control. The vertical blanking interrupt (VBLINT)
is armed if the mouse button is pushed or there is a change of
at least a count of 1 in the X0 or YO coordinate. Since VBL
occurs every sixtieth of a second, at most that amount of time
will elapse before the resulting interrupt can be acknowledged
and acted upon. To reset the VBL interrupt, read $C070.

Software can also select which edge of X0 and Y0 information
will cause the XINT or YINT.

Once an interrupt has occurred, you can read the mouse's
X1 and Y1 direction in data-bus bit 7 by reading address $C066
and $C067, respectively.

A program can read the status of the soft switches by reading
one of the locations $C040-$C043 and then testing data bit 7.

Section 11.12 explains what X0, Y0, X1, Y1 are and what they
mean with respect to mouse movement.

Chapter 9: Mouse and Game Input

BT T M T TN AT Ehallall

R

Appendix E explains how the
firmware handles interrupts.

A

Warning

Table 9-2 is included here for your information; however, you
should use the built-in firmware to access the mouse. If you do
write your own mouse interrupt handler, it should enable the
main bank-switched memory, set up its own IRQ vectors at
addresses $FFFE and $FFFF, keep track of video modes and
the alternate stack, and check for the interrupt source in the
same manner as the mouse firmware listed in Volume 2 of this
manual.

Using the built-in firmware is much easier and guarantees
compatibility with all other Apple Il series computers.

9.1 Mouse Input 165

166

Table 9-2. Mouse Hardware Page Locations. (1) When IOUDIS is on,
5C058-8CO5F do not affect mouse, and $CO5E and $CO5F become DHIRES

(Table 5-8). (2) Read or write to $C07x also resets VBLINT and triggers padale
timers. (3) These work only if IOUDIS is off. (4) This location is also the (4] key

(Table 4-1). (5) This is also the location of the shift-key mod (Appendix F).

Action

w

R7

R/W

AW

R7

R/W

R/W

R7

R/W

R/W

R7

R/W
AW
R7

R/wW

Hex

$CO7E

SCO7F

$CO7E
$CO58

$C059

§C040

5C048
$C05C

$C05D

$C042

$C015
$CO5E

BCO5F

$C043

3C017

$CO5A
$C058B
$C0M1

5C019

BCO70

10UDIS

[ouUDIS

RDIOUDIS

DISXY

ENBXY

RDXYMSK

RSTXY

XOEDGE

XOEDGE

ADXOEDGE

ASTXINT

YOEDGE

Y¥OEDGE

RDYDEDGE

RSTYINT

DISVBL
ENVBL
RDVBLMSK

RSTVBL

PTRIG

Function

On: disable 10U access for
addresses $C058 to $CO05F;
enable access to DHIRES switch

Off: enable IOU access for
addresses $CO058 to SCO5F;
disable access to DHIRES
switch

Read IOUDIS switch (1 = off)

Disable (mask) X0 and Y0
movement interrupts

Enable (allow) X0 and ¥0
movement interrupts

Read status of X0/Y0 interrupt
mask (1 = mask on)

Reset X0/Y0 interrupt flags

Select rising edge of X0 for
interrupt

Select falling edge of X0 for
interrupt

Read status of X0 edge selector
(1 = falling)

Reset mouse X0 interrupt flag

Select rising edge of Y0 for
interrupt

Select falling edge of Y0 for
interrupt

Read status of Y0 edge selector
(1 = falling)

Reset mouse YO interrupt flag
Disable (mask) VBL interrupts
Enable (allow) VEL interrupts

Read status of VBL interrupt
mask (1 = mask on)

Read and then reset VBLINT
flag

Reset VBLINT flag; trigger
paddie timer

Chapter 9: Mouse and Game Input

Notes

m

1

(2)
(3)

(3)

(3)

(3)

3

3

3)
3)

(3

FLOELELIEL TR L TEL TR ML ETERTELTEL B

T\

ki

1T AT T T AT T T I % T ¥ % 4

Table 9-2—Continued. Mouse Hardware Page Locations

Action Hex Name Function Notes
R7 §C061 RDBTNOD Read hand control button status (4}
(1 = pressed)
R7 $C063 RDB3 Read mouse button status (5)
(0 = pressed)
R7 $C066 MOUX1 Read status of X1 (mouse
X direction) (1 = high)
R7 $CO67 MOUY1 Read status of Y1 (mouse

Y direction) (1 = high)

9.1.4 I/O Firmware Support

The Apple llc supports the mouse with firmware starting at
address $C400. This firmware is necessary because the mouse
requires fast, transparent interrupt processing to work
effectively.

In assembly language, which you might need to use for
sophisticated mouse applications, you can use direct firmware
support. To enable the mouse, first load a mode byte into the
accumulator (and $C4 in X, $40 in Y), and then do a JSR to the
firmware routine called SETMOUSE (Table 9-3). Valid mode
bytes are:

$00 Turn mouse off

$01 Set transparent mode

§03 Set movement-interrupt mode

$05 Set button-interrupt mode

807 Set movement- or button-interrupt mode

$08 Turn mouse off, VBLINT active

$09 Set transparent mode, VBLINT active

$0B Set movement-interrupt mode, VBLINT active

$0D Set button-interrupt mode, VBLINT active

$OF Set movement- or button-interrupt mode, VBELINT active

The firmware will then initialize the mouse. To read the current
position and status of the mouse, first load $C4 into the

X register, load $40 into the Y register, save processor status,
disable interrupts, and then JSR to the firmware routine called
READMOUSE (Table 8-3), which stores the information in the
port 4 screen holes (Table 9-5).

Table 9-3 lists the mouse port firmware routine offsets. Each
address contains the low byte of the entry point of the routine
described. The calling setup for all routines (except
SERVEMOUSE) is the same: the X register must contain $C4,
and the Y register must contain $40. When the routine has
finished, the A, X, and Y register contents are undefined.

9.1 Mouse Input 167

1681

Table 9-3. Mouse Firmware Routings

Location Offset For
$C412 SETMOUSE
$C413 SERVEMOUSE
$C414 READMOUSE
$C415 CLEARMOUSE
$C416 POSMOUSE
$C417 CLAMPMOUSE
$C418 HOMEMOUSE

Chapter 9: Mouse and Game Input

Description

Sets the mouse mode to the value
in the accumulator

Input: A register contains mode
(see $7FC, Table 9-5).

Output: Carry bit = 0 means mode
was legal; carry bit = 1 means
mode was not legal.

Services mouse interrupt if needed
Input: X, ¥, A registers—doesn’t
matter

Output: Carry bit = 0 means
mouse caused the interrupt; carry
bit = 1 means something else
caused it.

This routine updates $77C to show
which event caused the interrupt
(values in Table 9-5).

Updates screen holes to show
current mouse X-Y position and
button status; clears VBLINT,
button and movement interrupt bits
in the status byte. Don't re-enable
interrupts until after retrieving
position values.

Output: Carry bit = 0

Sets the mouse position to 0,
though not necessarily within
clamping boundaries; leaves button
and interrupt bits in status byte
unchanged.

Output: Carry bit = 0

Sets the mouse coordinates to new
values.

Input: X and Y screen holes
contain new X and Y positions.
Output: Carry bit = 0

Sets new clamping boundarias (see
Table 9-5). Does not affect mouse
position or update mouse position
screen holes; use READMOUSE to
do that.

Input: A register = 0 means set
new X boundaries; A register = 1
means set new Y boundaries.
Output: Carry bit = 0

Sets the internal mouse position to
the upper-left corner of the
clamping window. Does not update
mouse position screen holes; use
READMOUSE to do that,

T Y Y W L YA W W WD o WO T o e vy e -

Tl '

7 VY Y ¥ Y I

—
I

Table 9-3—Continued. Mouse Firmware Routines

$C419 INITMOUSE Sets startup internal values; does
not update mouse-position screen
holes.
Output: Carry bit = 0

Here is a sample sequence of events and calls.

1. Four screen holes contain the mouse's X and Y coordinates,
and one contains the status of the last mouse movement
(Table 9-5).

2. Call INITMOUSE.

3. Inhibit interrupts, set up the boundaries you want, then call
CLAMPMOUSE.

4. Use POSMQUSE, HOMEMOUSE or CLEARMOUSE to
position the mouse where you want it.

5. Put the mode (see address $7FC in Table 9-5) in the
accumulator, then call SETMOUSE.

6. If you have set one of the interrupt modes, then when an
interrupt arrives, call SERVEMOUSE to determine the source
of the interrupt.

7. Disable interrupts and call READMOUSE. Retrieve the
position values, then re-enable interrupts.

9.1 Mouse Input [169

170

Pascal Support

Table 9-4 lists the locations and values of the I/O firmware
protocol that Pascal 1.1 and 1.2 use. However, Pascal must use
a special attach driver to support the mouse.

Table 9-4. Mouse Port IO Firmware Protocol

Address Value Description

$C405 538 Pascal ID byte

SC407 18 Pascal ID byte

£C408 $01 Generic signature byte of firmware
cards

$C40C 520 2 = X-Y pointing device;
0 = identification code

$C40D Initialization routine (not
implemented; returns error code}

FC40E Standard read routine (not
implemented; returns error code)

SC40F Standard write routine (not
implemented; returns error code)

$C410 Standard status routine (not
implemented; returns error code)

$C411 500 Optional routines follow.

$C4rB $D6 A mouse identification byte

Chapter 8: Mouse and Game Input

W W Y W

T T

| T W

Ehe B BN

T

ErEr i

[

R

BASIC and Assembly-Language Support

In BASIC, before you can get input from the mouse, you must
turn it on by printing PR#4 and then CHR$(1). This sets
transparent mode. After that, re-enable video output with PR#3,
and take subsequent input from the mouse by issuing IN#4.
The first input statement after that (INPUT X,Y,S) initializes and
enables the mouse, and returns a three-element string:

+xxxx, +yyyy, +st
representing the x-coordinate, y-coordinate and status digits.

The coordinates will be integers between 0 and +1023. These
are called the clamping boundaries of the mouse.

The sign preceding the status digits is normally positive; it
becomes negative when you press a key on the keyboard.

The first digit, s, of the status is 0. The second digit, f, of the
status is 1 if the mouse button is still pressed, 2 if it was just
pressed, 3 if it was just released, and 4 if it is still released.

To disable the mouse:

FRINT CHR$(4)"™PR#4"
PRINT CHR$C0)
PRINT CHR(4)"PR#3"

9.1.5 Screen Holes

Table 9-5 lists the screen holes that the mouse firmware uses.
Note that the mouse firmware reserves port 5 screen holes for
its own use. Also, the auxiliary-page counterparts of the port 4
addresses are reserved for startup values.

Note: Some screen holes are different for the Apple lle
mouse. Refer to Appendix F.

9.1 Mouse Input [171

Table 9-5. Mouse Peripheral Card RAM Locations

$478
B4F8
5578
§5F8

$47C
B4FC
§57C
B5FC
$67C
B6FC
§77C

§7FC

Scratch Area:
Location

Description

Low byte of clamping minimum
Low byte of clamping maximum
High byte of clamping mimimum

High byte of clamping maximum

Port 4 Screen Holes:
Location

Description

Low byte of X coordinate
Low byte of Y coordinate
High byte of X coordinate

High byte of ¥ coordinate

Reserved

Reserved

Status byte

Bit 1 Equals

7 Button down

6 Button was down on last read and still
down.

5 Movement since last read

4 Reserved

3 Interrupt from VBLINT

2 Interrupt from button

1 Interrupt from movement

0 Reserved

Mode byte (current mode; mask out bits 4-7 when testing)

Bit 1 Equals

7-4 Reserved

3 VBLINT active

2 VBLINT interrupt on button

1 VBLINT interrupt on movement
0 Mouse active

Port 5 Screen Holes:

Reserved

1721 Chapter 9: Mouse and Game Input

BB ‘B BN EAER " T e e e e e e e

i

1%

i {1

170 Y BT T T S 1 ST 1 T T T S 1 ' ' 8

9.1.6 Using the Mouse as a Hand Control

This section describes how to use the mouse as if it were a set
of hand controls, or an X-Y pointing device in port 4. If you
turn the mouse on, the Monitor hand-control (game paddle)
routines will take input from the mouse. This is possible
because the mouse and the hand controls all use the same
back-panel connector.

You can run a BASIC program that uses the PDL function to
read from the mouse by doing this:

1. Start up the system with the BASIC program that uses
paddles.

2. Type PR#4 and press to turn on the mouse.
3. Press (CONTROL H A) (RETURN) to initialize the mouse.

4. Type PR#0 and press (RETURN) to restore output to the
SCreen.

5. RUN the program.
Play the game using the mouse instead of the paddles.
Note: Many copy-protected games will not work with a

mouse. Also, many games don't use built-in firmware for the
paddles.

9.1 Mouse Input [173

W 5.2 Game Input

Complete electrical specifications
of these inputs are given in
Chapter 11; Table 11-22 shows the
connector pin numbers.

174]

The Apple lic supports game paddles, joysticks, and other hand
controls connected to the DB-9 connector on its back panel.

Table 9-6 is a summary of game input characteristics.

Table 9-6. Game Input Characteristics

Port Number
Commands

Initial
Characteristics

Hardware Page
Locations

$C061
$C062
$C063

$C064
§C065
$C070

Monitor
Firmware
Routines

$FB1E

1/O Firmware
Entry Points

Use of Screen
Holes

None
None

Game inputs cannot be disabled.

Description

Switch input 0 and (&)
Switeh input 1 and (&)

Mouse button. (Sense is opposite that of $C061 to
distinguish it from paddle button}

Analog input (paddle) 0
Analog input (paddie) 1
Trigger paddle timer

Name * Description

PREAD Read a paddle position
None

None

9.2.1 The Hand Control Connector Signals

Several inputs are available on a 9-pin D-type miniature

connector on the back of the Apple lic: two one-bit inputs, or
switches, and two analog inputs. You can access all of these

signals from your programs.

When you connect a pair of hand controls to the 9-pin

connector, the rotary controls use two analog inputs, and the
push-buttons use two one-bit inputs. However, you can also
use these inputs for many other jobs. For example, two analog

inputs can be used with a two-axis joystick.

Chapter 9: Mouse and Game Input

Ehis B/ EhaEha’Ehc 'EA . 'EA B PEL "Eh "Eb) B b bl B b E bt B B .

4 Y

K

Switch Inputs (SWO0 and SWT)

The two one-bit inputs can be connected to the output of
another electronic device that meets the electrical requirements
(Chapter 11), or to a pushbutton. When you read a byte from
one of these locations, only the high-order bit—bit 7—is valid
information; the rest of the byte is undefined. From machine
language, you can do a Branch Plus or Branch Minus on the
state of bit 7. From BASIC, you read the switch with a PEEK
and compare the value with 128. If the value is 128 or greater,
the switch is on.

The memory locations for these switches are $C061, $C062 and
$C063, as shown in Table 9-6. Switch 0 and switch 1 are
permanently connected to (&) and (&) on the keyboard; these
are the ones connected to the buttons on the hand controls.
Location $C063 is a second address for the mouse button, so
that a program can distinguish it from an (&) keypress. When
the mouse button is pressed, $C063 (Bit 7) goes from 1 to 0,
and $C061 (Bit 7) goes from 0 to 1. When the mouse button is
pressed, $C063 (Bit 7) goes from 1 to 0.

9.2 Game Input 175

1761

Analog Inputs (PDLO and PDL1)

The two analog inputs are designed for use with 150K ohm
variable resistors or potentiometers. The variable resistance is
connected between the +5V supply and each input, so that it
makes up part of a timing circuit (refer to section 11.13 for
details). The circuit changes state when its time constant has
elapsed, and the time constant varies as the resistance varies.
Your program can measure this time by counting in a loop until
the circuit changes state, or times out.

Before a program can read the analog inputs, it must first reset
the timing circuits. Accessing memory location $C070 does this.
As soon as you reset the timing circuits, the high bits of the
bytes at locations $C064 through $C067 are set to one. If you
PEEK at them from BASIC, the values will be 128 or greater.
Within about 3 milliseconds, these bits will change back to
zero—Dbyte values less than 128—and remain there until you
reset the timing circuits again. The exact time each of the bits
remains high is directly proportional to the resistance connected
to the corresponding input. If these inputs are open—no
resistances are connected—the corresponding bits may remain
high indefinitely.

Chapter 9: Mouse and Game Input

EAEA'FL BAFL.H

1§

B 'Eb "B 'EN

ICUE A € '€\

14

1T Y Y T Y 1S % Y 1A T A1 T % A3 T ¥ 1 S 4 4

You can read and reread the same
paddle at arbitrarily short intervals.
However, you must wait at least

3 milliseconds between reading
one paddle and reading a different
paddle.

9.2.2 Monitor Support

To read the analog inputs from machine language, you can use
a program loop that resets the timers and then increments a
counter until the bit at the appropriate memory location changes
to zero, or you can use the built-in routine PREAD. BASIC and
other high-level languages also include convenient means of
reading the analog inputs—refer to your language manuals.

PREAD

The Monitor routine PREAD (at address $FB1E) places in the
Y register a number between $00 and $FF that represents the
position of a hand control. You pass the number of the hand

control in the X register.

Warning
If the hand control number you furnish in the X register does
not equal 0 or 1, strange things may happen.

Warning

The paddle and vertical blanking both use $C070. If you are
reading the paddies and using VBL interrupts, disable interrupts
before calling PREAD.

9.2 Game Input 177

lojiuoly ayj buisn

L bl ol kTR T

lajdeyo

0l

The System Monitor is a set of subroutines in the Apple llc
firmware. The Monitor provides a standard interface to the
built-in 1/0 devices described in Chapter 1. Many of the 1/O
subroutines described in Chapters 3 through 9 are part of the
System Monitor.

DOS (but not ProDOS) and the BASIC interpreters (Appendix E)
use these subroutines by direct calls to their starting locations.
The starting addresses for all of the standard subroutines are
listed in Appendix C. If you wish, you can call the standard
subroutines from your programs in the same fashion.

You can perform most of the Monitor functions directly from the
keyboard. This chapter tells you how to use the Monitor

® to look at one or more memory locations
® to change the contents of any location

® to write programs in machine language to be executed
directly by the Apple llc's microprocessor

® to move and compare blocks of memory

® to invoke other programs from the Monitor.

 BTX Invoking the Monitor

The positive and negative decimal
equivalents of Monitor locations
are listed in Appendix C. In
addition, Appendix H contains
conversion tables from one
numbering system to another.

The System Monitor starts at memory location $FF69 (-151). To
invoke the Monitor, you make a CALL statement to this location
from the keyboard or from a BASIC program. When the Monitor
is running, its prompting character, an asterisk (*), appears on
the left side of the display screen, followed by a cursor.

10.1 Invoking the Monitor [179

To use the Monitor, you type commands at the keyboard. When
you have finished using the Monitor, you return to the BASIC
language you were previously using by pressing

(CONTROL H RESET), by pressing and then (RETURN),
or by typing 3D0G, which executes the resident program—
usually Applesoft—whose address is stored in a jump
instruction at location $3D0.

Note: If DOS or ProDOS is connected via the standard I/Q
links (Chapter 3), then you can issue commands to it from
the Monitor. Under this arrangement, errors will return
control to BASIC rather than to the Monitor.

If you want to have (CONTROL HRESET) return you to the Monitor,
load the values $69, $FF, and $5A into the three locations
starting at address $3F2 (the reset-vector address and the
power-up byte).

T Syntax of Monitor Commands

1801

To give a command to the Monitor, you type a line on the
keyboard, then press (RETURN). The Monitor accepts the line
using the standard 1/O subroutine GETLN described in
Chapter 3. A Monitor command can be up to 255 characters in
length, ending with a carriage return.

A Monitor command can include three kinds of information:
addresses, data values, and command characters. You type
addresses and data values in hexadecimal notation.

When the command you type calls for an address, the Monitor

accepts any group of hexadecimal digits. If there are fewer than
four digits in the group, it adds leading zeros; if there are more
than four hexadecimal digits, the Monitor uses only the last four
digits. It follows a similar procedure when the command syntax
calls for two-digit data values.

Each command you type consists of one command character,
usually the first letter of the command name. The Monitor
recognizes 22 different command characters. Some of them are
punctuation marks, some are letters (uppercase or lowercase),
and some are control characters.

Chapter 10: Using the Monitor

‘v 'ELOEALERLTR

‘Ek

FLOELOEAEREL 'RV O'EL 'RV OYEL O'RLO'RM

e e e

Note: Although the Monitor recognizes and interprets them,
control characters typed on an input line do not appear on
the screen.

This chapter contains many examples of the use of Monitor
commands. Some of the data values displayed by your Apple lic
may differ from the values printed in these examples, because
they are variables stored in programmable memory.

i 10.3 Monitor Memory Commands

When you use the Monitor to examine and change the contents
of memory, it keeps track of the address of the last location
whose value you inquired about and the address of the location
that is next to have its value changed. These are called the last
opened location and the next changeable location.

Warning

Because locations $C000 through $COFF contain special
hardware circuits, issuing any command that reads or writes on
this page can have unpredictable, and perhaps disastrous,
results.

10.3.1 Examining Memory Contents

When you type the address of a memory location and press
(ReTuRN), the Monitor responds with the address you typed, a
dash, a space, and the value stored at that location, like this:

*EOOO
E000- 4C
*33
0033- AA

Each time the Monitor displays the value stored at a location, it
saves that address as the last opened location and as the next
changeable location.

10.3 Monitor Memory Commands 181

182

10.3.2 Memory Dump

When you type a period (.) followed by an address, and then
press (RETURN), the Monitor displays a memory dump: the data
values stored at all the memory locations from the one following
the last opened location to the location whose address you
typed following the period. The Monitor saves the last location
displayed as both the last opened location and the next
changeable location. In these examples, the amount of data
displayed by the Monitor depends on how much larger the
address after the period is than the last opened location.

*20

0oz20- 00
*.28

0021- 28 00 18 OF 0C 00 00
0028- AB 06 DO 07
*300

0300- 99
*.315

0301- BS 00 08 0A 0A 0A 99
0308- 00 08 C8 DO F4 AB 2B A9
0310- 08 85 27 AD CC 03

*.32A

0316- 85 41

0318- B84 40 8A 4A 4A 4A 4A 09
0320- CO 85 3F A9 5D 85 3E 20
0328- 43 03 20

#

When the Monitor performs a memory dump, it starts at the
location immediately following the last opened location and
displays that address and the data value stored there. It then
displays the values of successive locations up to and including
the location whose address you typed, but only up to eight
values on a line. When it reaches a location whose address is a

Chapter 10: Using the Monitor

R . P e " e e e i i e,

e e e e

multiple of eight—that is, one that ends with an 8 or a 0—it
displays that address as the beginning of a new line, then
continues displaying more values.

After the Monitor has displayed the value at the location whose
address you specified in the command, it stops the memory
dump and sets that location as both the last opened location
and the next changeable location. If the address specified on
the input line is less than the address of the last opened
location, the Monitor displays only the address and value of the
location following the last opened location.

You can combine the two commands, opening a location and
dumping memory, by simply concatenating them: type the first
address, a period, and the second address. This combination of
two addresses separated by a period is called a memory range.

*300.32F

0300- 99 B9 00 08 0A 0A 0A 99
0308- 00 08 C8 DO F4 AB 2B A9
0310- 09 85 27 AD CC 03 85 41
0318- 84 40 B8A 4A 4A 4A 4A 09
0320- CO 85 3F A9 5D 85 3E 20
0328- 43 03 20 46 03 AS 3D 4D
*30.40

0030- AA 0D FF AA 05 C2 05 C2
0038- 1B FD DO 03 3C 00 40 00
0040- 30

*EO15.E025

E015- 4C ED FD

EO18- A9 20 C5 24 BO 0C A9 8D
E020- AD 07 20 ED FD A9

*

Pressing by itself causes the Monitor to display one
line of a memory dump; that is, a memory dump from the
location following the last opened location to the next
multiple-of-eight boundary. The Monitor saves the address of
the last location displayed as both the last opened location and
the next changeable location.

10.3 Monitor Memory Commands [183

1841

*5
0005- 00
* (RETUAN)

00 00
* (RETUAN)

poos- 00 00 0O 0O 00 OO 00 0O
*32

0032- FF
*(RETURN)

AA 00 C2 05 C2
*(RETURN)

0038- 1B FD DO 03 3C 00 3F 00
-

10.3.3 Changing Memory Contents

Section 10.3.2 showed you how to display values stored in the
Apple lic's memory; this section shows you how to change
these values. You can change any location in RAM; you can
change the characteristics and treatment of an output device by
changing the contents of locations assigned to it; and you can
change a soft switch setting by referencing its set and reset
addresses.

Warning

Use these commands carefully. If you change the zero-page
locations used by the interpreter or operating system
(Appendix B), you may lose programs or data stored in
memaory.

Changing One Byte

The previous commands keep track of the next changeable
location: these commands make use of it. In the next example,
you open location 0, then type a colon followed by a value.

Chapter 10: Using the Monitor

ERrEl b s T S B e B s e,

o 3 o W | e .

e e

*0

0000- 4C
*:SF

The contents of the next changeable location have just been
changed to the value you typed, as you can see by examining
that location:

*0
0000- SF
*

You can also combine opening and changing into one operation
by typing an address followed by a colon and a value. In the
example, you type the address again to verify the change.

*¥302:42
*302
0302- 42

When you change the contents of a location, the value that was
contained in that location is replaced by the new value, which
will remain until you replace it with another value.

Changing Consecutive Locations

You don't have to type a separate command with an address, a
colon, a value, and press for each location you want to
change. You can change the the values of up to eighty-five
consecutive locations at a time—or even more, if you omit
leading zeros from the values—by typing only the initial address
and colon followed by all the values separated by spaces; end
with (RETURN). The Monitor will store the consecutive values in
consecutive locations, starting at the location whose address
you typed. After it has processed the string of values, it takes
the location following the last changed location as the next

10.3 Monitor Memory Commands [185

e

186

changeable location. Thus, you can continue changing
consecutive locations, without typing an address on the next
input line, by typing another colon and more values. In these
examples, you first change some locations, then examine them
to verify the changes.

*300:69 01 20 ED FD 4C 0 3
*300

0300- B9
* (RETUAR)

01 20 ED FD 4C 00 03
*10:0 1 2 3

¥4 5 & 7
*10.17

0010- 00 01 02 03 04 05 06 07

10.3.4 Moving Data in Memory

You can copy a block of data stored in a range of memory
locations from one area in memory to another by using the
Monitor's MOVE command. To move a range of memory, you
must tell the Monitor both where the data is now situated in
memory—the source locations—and where you want the copy
to go—the destination locations. You give this information to
the Monitor by means of three addresses: the address of the
first location in the destination and the addresses of the first
and last locations in the source. You specify the starting and
ending addresses of the source range by separating them with
a period. You separate the destination address from the range
addresses with a less-than character (<), which you may think
of as an arrow pointing in the direction of the move. Finally, you
tell the Monitor that this is a MOVE command by pressing (m).
The format of the complete MOVE command looks like this:

idestination| < |start] . lend| (M)

Chapter 10: Using the Monitor

‘ T FLOTLOELELOERLORLO'ELOMEL'RLORROTEL VRN OPELOELTL ML

e e e

When you type the actual command, replace the words in
braces with hexadecimal addresses, and omit the braces and
spaces. Here are some examples of memory moves. First, you
examine the values stored in one range of memory, then store
several values in another range of memory. The actual MOVE
commands end with (m).

*0.F

o000- SF 00 05 07 00 00 OO0 0O

poos- 00 00 OO OO 0O OO0 OO 0O

*300:A9 8D 20 ED FD A9 45 20 DA FD 4C 00
03

*300.30C

0300- A9 8D 20 ED FD A9 45 20
0308- DA FD 4C 00 03
*0¢300.30C(wW)

*0.C

0000- A9 8D 20 ED FD AS 45 20
0008- DA FD 4C 00 03
*310<8. A(W)

®310.312

0310- DA FD 4C
*2¢7.9(W)

*0.C

0000- A9 8D 20 DA FD AS 45 20
oo08- DA FD 4C 00 03
L]

The Monitor moves a copy of the data stored in the source
range of locations to the destination locations. The values in the
source range are left undisturbed. The Monitor remembers the

10.3 Monitor Memory Commands [187

See section 10.6 for an interesting
application of this feature.

1881

last location in the source range as the last opened location,
and the first location in the source range as the next
changeable location. If the second address in the source range
specification is less than the first, then only one value (that of
the first location in the range) will be moved.

If the destination address of the MOVE command is inside the
source range of addresses, then strange things happen: the
locations between the beginning of the source range and the
destination address are treated as a sub-range and the values
in this sub-range are replicated throughout the source range.

10.3.5 Comparing Data in Memory

You can use the VERIFY command to compare two ranges of
memory using the same format you use to move a range of
memory from one place to another. In fact, the VERIFY
command can be used immediately after a MOVE to make sure
that the move was successful.

The VERIFY command, like the MOVE command, needs a

range and a destination. The syntax of the VERIFY command is:

\destination| < |start] . jend|

The Monitor compares the values in the source locations with
the values in the locations beginning at the destination address.
If any values don't match, the Monitor displays the address at

which the discrepancy was found and the two values that differ.

In the example, you store data values in the range of locations
from 0 to $D, copy them to locations starting at $300 with the
MOVE command, and then compare them using the VERIFY
command. When you use the VERIFY command after you
change the value at location 6 to $E4, it detects the change.

Chapter 10: Using the Monitor

E T EinnEhmsfThan T . Tl e ¥ hosT oo/ Ehal Tl FlanTlakl

*0:D7 F2 E9 F4 F4 ES5 EE AD E2 F9 A0 C3 CH4
Cc5

*300<0.D(W)
#300<0.D()
*6:E4
*300<0.D)
0006-E4 C(EE)
.

If the VERIFY command finds a discrepancy, it displays the
address of the location in the source range whose value differs
from its counterpart in the destination range. If there is no

Like the MOVE command, the discrepancy, VERIFY displays nothing. The VERIFY command
VEFITY COmmAn 130 dhea leaves the values in both ranges unchanged. The last opened
unusual things if the destination | 2 is the last | : in th h

address is within the source range; ocation is the ast location in the source range, and the next
see section 10.6. changeable location is the first location in the source range, just

as in the MOVE command. If the ending address of the range is
less than the starting address, the values of only the first
locations in the ranges will be compared.

B 70.4 Monitor Register Commands

Even though the actual contents of the 65C02's internal
registers are changing as you use the Monitor, you can
examine the values that the registers contained at the time the
Monitor gained control, either because you called it or because
the program you are debugging stopped at a break (BRK). You
can also store new register values that will be used when you
execute a program from the Monitor using the GO command,
described below.

10.4 Monitor Register Commands 189

e e e

10.4.1 Changing Registers

When you call the Monitor, it stores the contents of the 65C02
registers in memory. The registers are stored in the order A, X,
Y, P (processor status register), and S (stack pointer), starting
at location $45. When you give the Monitor a GO command, the
Monitor loads the registers from these five locations before it
executes the first instruction in your program.

10.4.2 Examining Registers

Pressing and then invokes the Monitor's
EXAMINE command, which displays the stored register values

and sets the location containing the contents of the A register
as the next changeable location. After using the EXAMINE
command, you can change the values in these locations by
typing a colon and then typing the new values separated by
spaces. In the following example, you display the registers,
change the first two, and then display them again to verify the
change.

*(CONTROL H E)

A=0A X=FF Y=D8 P=B0 S5=F8
*:B0 02

*(conTROL HE)

A=B0 X=02 Y=D8 P=B0 S=F8
*

Chapter 10: Using the Monitor

| {8 { W { T 4 S, { B, 4

LT T TR T TS RT R

B e E e e e E T B e

. 10.5 Miscellaneous Monitor Commands

The COUT subroutine is described
in Chapter 3.

These Monitor commands enable you to change the video
display format from normal to inverse and back, and to assign
input and output to external devices.

10.5.1 Display Inverse and Normal

You can control the setting of the inverse-normal mask location
used by the COUT subroutine from the Monitor so that all the
Monitor's output will be in inverse format. The INVERSE
command | sets the mask such that all subseguent inputs and
outputs are displayed in inverse format. To switch the Monitor's
output back to normal format, use the NORMAL command N.

*0.F

0o00- 0A OB 0OC 0D OE OF DO 04
0008- Ce 01 FO 08 CA DO F& A6

ooo0- 0A OB OC OD OE OF DO 04
0008- Ce 01 FO 08 CA DO FG6 AB

™)
*0.F

0000- 0A OB 0C OD OE OF DO 04
0008- Ce 01 FO 08 CA DO F& Ab

10.5 Miscellaneous Monitor Commands 191

See Appendix D.

192

10.5.2 Back to BASIC

If you are using one of the Apple disk operating systems
(ProDOS or DOS), press (CONTROL H RESET) or type

3D0G

to return to the language you were using, with your program
and variables intact.

Note: If you type the latter command, make sure that the
third character you type is a zero, not a letter O. The letter G
is the Monitor's GO command, described below in

section 10.7.

If there is no operating system in RAM, use the BASIC
command to leave the Monitor and enter the
BASIC interpreter that was active when you entered the
Monitor. (Normally this is Applesoft BASIC.) Any program or
variables that you had previously in BASIC will be lost. If you
want to re-enter BASIC with your previous program and
variables intact, use the CONTINUE BASIC command

CONTROL .

Chapter 10: Using the Monitor

ThacTha/Tndiadthallh Th Th Th Tho Bl T EhalTh Fhon Tl Cl

e e e

Chapter 3 lists the Apple llc port
numbers available.

For more information on the way
those commands work, refer to
section 3.1,

10.5.3 Redirecting Input and Output

The CONTROL-P command diverts all output normally destined
for the screen (port 0) to a device attached to one of the other
ports, from 1 to 7. The format of the command is

{port number, (CONTROL -(P)

A CONTROL-P command to port number 0 will switch the
stream of output characters back to the Apple llc's video

display. However, use (ESC) (CONTROL (@) if the enhanced video
firmware is active (solid-block cursor).

In much the same way that the CONTROL-P command switches
the output stream, the CONTROL-K command substitutes a
device connected to a specified port for the Apple lic's normal
input device, the keyboard. The format for the command is:

port number| (CONTROL +(K)

Pressing (0) (CoONTROL -(K) directs the Monitor to accept input
from the Apple lic's built-in keyboard.

The CONTROL-P and CONTROL-K commands are the exact
equivalents of the BASIC (but not DOS and ProDOS) commands
PR# and IN#.

10.5.4 Hexadecimal Arithmetic

The Monitor will also perform one-byte hexadecimal addition
and subtraction. Just type a line in one of these formats
followed by

lvalue! + |value| (RETURN
lvalue| - value (RETURN

The Apple llc performs the arithmetic and displays the result, as
shown in these examples.

*20+13
=33
*4A-C
=3E
*FF+4
=03
*3-4
=FF

*

10.5 Miscellaneous Monitor Commands 193

B 10.6 Special Tricks With the Monitor

This section describes some more complex ways of using the
Monitor commands.

10.6.1 Multiple Command Lines

You can put as many Monitor commands on a single line as
you like, as long as you separate them with spaces and the
total number of characters in the line is less than 254. Adjacent
single-letter commands such as (L), (8). (1). and (N) need not
be separated by spaces.

You can freely intermix all of the commands except the

STORE () command. Since the Monitor takes all values
following a colon and places them in consecutive memory
locations, the last value in a STORE must be followed by a
letter command before another address is encountered. You
can use the NORMAL command as the required letter command
in such cases; it usually has no effect and can be used
anywhere.

In the following example, you display a range of memory,
change it, and display it again, all with one line of commands.

#300.307 300:18 69 1 (n)300.302

0300- 00 00O 00 OO OO0 00 00 OO
0300- 18 69 01

*

If the Monitor encounters a character in the input line that it
does not recognize as either a hexadecimal digit or a valid
command character, it executes all the commands on the input
line up to that character, then grinds to a halt with a noisy beep
and ignores the remainder of the input line.

Chapter 10: Using the Monitor

L S i T L. T T TR P P TR TR TR B KL

T

10.6.2 Filling Memory

The MOVE command can be used to replicate a pattern of
values throughout a range of memory. To do this, first store the
pattern in the first locations in the range:

*300:11 22 33

Remember the number of values in the pattern: in this case, it
is 3. Use the number to compute addresses for the MOVE
command, like this:

|start+number| < |start, . lend-number, (M)

This MOVE command will first replicate the pattern at the
locations immediately following the original pattern, then
replicate that pattern following itself, and so on until it fills the
entire range.

*303¢300.32D(W)
*300.32F

0300- 11 22 33 11 22 33 11 22
0308- 33 11 22 33 11 22 33 11
0310- 22 33 11 22 33 11 22 33
0318- 11 22 33 11 22 33 11 22
0320- 33 11 22 33 11 22 33 11
0328- 22 33 11 22 33 11 22 33
*

10.6 Special Tricks With the Monitor 195

1961

You can do a similar trick with the VERIFY command to check
whether a pattern repeats itself through memory. This is
especially useful to verify that a given range of memory
locations all contain the same value. In this example, to see the
VERIFY command detect the discrepancy, you first fill the
memory range from $300 to $320 with zeros and verify it, then
change one location and verify again:

*300:0
*301¢300.31F(W)
*301¢300.31F(V)
*304:02
*301¢300.31F(V)

0303-00 €02)
0304-02 (00D

*

10.6.3 Repeating Commands

You can create a command line that repeats one or more
commands over and over. You do this by beginning the part of
the command line that you want to repeat with a letter
command, such as (N), and ending it with the sequence 34 :n,
where n is a hexadecimal number that specifies the position in
the line of the command where you want to start repeating; for
the first character in the line, n=0. The value for n must be
followed with a space in order for the loop to work properly.

This trick takes advantage of the fact that the Monitor uses an
index register to step through the input buffer, starting at
location $200. Each time the Monitor executes a command, it
stores the value of the index at location $34; when that
command is finished, the Monitor reloads the index register with
the value at location $34. By making the last command change
the value at location $34, you change this index so that the
Monitor picks up the next command character from an earlier
point in the buffer.

Chapter 10: Using the Monitor

T b s B e BB TED. B b B T B (B B b b b el e,

|

Y Y Y

—
!

The only way to stop a loop like this is to press
(CONTROL - RESET); that is how this example ends.

*() 300 302 34:0 (W)

0300- 11
0302- 33
0300- 11
0302- 33
0300- 11
0302- 33
0300- 11
0302- 33
0300- 11
0302- 33
0300- 11
0302- 33
030

*

10.6.4 Creating Your Own Commands

The USER command, (ConTRoL <Y), forces the Monitor to jump
to memory location $3F8. You can put a JMP instruction there
that jumps to your own machine-language program. Your
program can then examine the Monitor's registers and pointers
or the input buffer itself to obtain its data. For example, here is
a program that displays everything on the input line after the
(CONTROL H¥). The program starts at location $300; the
command line that starts with $3F8 stores a jump to $300 at
location $3F8.

*300:A4 34 B9 00 02 20 ED FD C8 C3 8D DO
F5 4C 69 FF

*3F8:4C 00 03

*(ContROL){(Y) THIS 1S A TEST
THIS IS A TEST

10.6 Special Tricks With the Monitor 197

 BTX, Machine-Language Programs

The main reason to program in machine language is to get
more speed. A program in machine language can run much
faster than the same program written in high-level languages
such as BASIC or Pascal, but the machine-language version
usually takes a lot longer to write. There are other reasons to
use machine language: you might want your program to do
something that isn't included in your high-level language, or you
might just enjoy the challenge of using machine language to
work directly on the bits and bytes.

Note: If you have never used machine language before, you'll
need to learn the 65C02 instructions listed in Appendix A. To
become proficient at programming in machine language,
you'll have to spend some time at it, and study one of the
books on 65C02 programming listed in the Bibliography.

You can get a hexadecimal dump of your program or move it
around in memory using the commands described in the
previous sections. The Monitor commands in this section are
intended specifically for you to use in creating, writing, and
debugging machine-language programs.

10.7.1 Running a Program

The Monitor command to start execution of your
machine-language program is the GO command. When you type
an address and press (G), the Apple lic starts executing
machine-language instructions starting at the specified location.
If you just press (G), execution starts at the last opened
location. The Monitor treats this program as a subroutine: it
should end with an RTS (return from subroutine) instruction to
transfer control back to the Monitor.

The Monitor has some special features that make it easier for
you to write and debug machine-language programs, but before
you get into that, here is a small machine-language program
that you can run using only the simple Monitor commands
already described. The program in the example merely displays
the letters A through Z: you store it starting at location $300,
examine it to be sure you typed it correctly, then type 300G to
start it running.

198 Chapter 10: Using the Monitor

I 1 O N { W O W W W O {5 S O

B

Since programs that translate
assembly language into machine
language are called assemblers, a
program like the Monitor's LIST
command that translates machine
language into assembly language is
called a disassembler.

The word mnemonic comes from
the same root as memory and
refers to short acronyms that are
easier to remember than the
hexadecimal operation codes
themselves. For example, for clear
carry you write CLC instead

of $18.

*300:A9 C1 20 ED FD 18 69 1 C9 DB DO F6 60

*300.30C

0300- A9 C1 20 ED FD 18 69 01
0308- C2 DB DO F6 60

*300(8)

ABCDEFGHI JKLMNOPGRSTUVWXYZ

*

10.7.2 Disassembled Programs

Machine-language code in hexadecimal isn't the easiest thing in
the world to read and understand. To make this job a little
easier, machine-language programs are usually written in
assembly language and converted into machine-language code
by programs called assemblers.

The Monitor's LIST command displays machine-language code
in assembly-language form. Instead of unformatted hexadecimal
gibberish, the LIST command displays each instruction on a
separate line, with a three-letter instruction name, or mnemonic,
and a formatted hexadecimal operand. The LIST command also
converts the relative addresses used in branch instructions to
absolute addresses.

The Monitor LIST command has the format:

llocation (L)

10.7 Machine-Language Programs [199

2001

The LIST command starts at the specified location and displays
as much memory as it takes to make up a screenfull (20 lines)
of instructions, as shown in the following example:

*300D
0300- A9
0302- 20
FD
0305- 18
0306~ (Z}=)
0308- c9
030A- DO
030C- 60
030D- 00
030E- 00
030F - 00
0310- 0o
0311~ 00
0312- 00
0313- 00
0314- 00
0315- 00
0316- 00
0317- 00

Chapter 10: Using the Monitor

c1

ED

01
DB

Fe

LDA

JSR

CLC

ADC

CMP

BNE

RTS

BRK

BRK

BRK

BRK

BRK

BRK

BRK

BRK

BRK

BRK

BRK

#$C1

$FDED

#$01

#$DB

$0302

3 S o S { S o Lo W { W O YO Y O W { Y 5 5

R

0318- 00 BRK

0319- 00 BRK

The first seven lines of this example are the assembly-language
form of the program you typed in the previous example. The
rest of the lines are BRK instructions only if this part of memory
has zeros in it: other values will be disassembled as other
instructions.

The Monitor saves the address that you specify in the LIST
command, but not as the last opened location used by the other
commands. Instead, the Monitor saves this address as the
program counter, which it uses only to point to locations within
programs. Whenever the Monitor performs a LIST command, it
sets the program counter to point to the location immediately
following the last location displayed on the screen, so that if
you type another LIST command it will display another
screenfull of instructions, starting where the previous display
left off.

(N 10.8 Summary of Monitor Commands

Here is a summary of the Monitor commands, showing the
syntax diagram for each one.

Examining Memory

adrs, (RETURN) Displays the value contained in one
location.
adrs1|.|adrs2| (RETURN) Displays the values contained in all
locations between adrs1! and adrs2..
(RETURN Displays the values in up to eight
locations following the last opened
location.
adrs (L) Lists disassembled code starting at
adrs, and continuing until the screen
is full,
10.8 Summary of Monitor Commands 201

Changing the Contents of Memory

ladrs!:|val| val ...

:jvalllval...

STORE command. Stores the values
in consecutive memory locations
starting at (adrs|.

Stores values in memory starting at
the next changeable location.

Moving and Comparing

|dest| < start).|end /(W)

|dest| < |start|./end

MOVE command. Copies the values in
the range |start,.|end into the range
beginning at |dest|.

VERIFY command. Compares the
values in the range |start]. end| to
those in the range beginning at |dest’.

The Register Command

CONTROL HE

EXAMINE command. Displays the
locations where the contents of the
65C02's registers are stored and
opens them for changing.

Miscellaneous Monitor Commands

@
®

(CoNTRGLHT)

wval! + [val)

val -jval

Chapter 10: Using the Monitor

INVERSE command. Sets inverse
display mode.

NORMAL command. Sets normal
display mode.

BASIC command. Enters the language
currently active (normally Applesoft).

CONTINUE BASIC command. Returns
to the language currently active
{normally Applesoft).

Adds the two values and prints the
hexadecimal result.

Subtracts the second value from the
first and prints the result.

H

TOTLTLOTLOTVOTODV T ORYOTRLOROR TR TR T THL

[Cr LI

e

|port| (ConTROL HF)

port| (CoNTROL HK)

(ConTROLHY)

Redirects output to the device
connected to port number |port. If
port, =0, sends output to the video
display. Use only when the enhanced
video firmware is not active
(checkerboard cursor).

Redirects output to video display
when enhanced video firmware is
active (solid block cursor).

Takes input from the device
connected to port number |port!. If
port! =0, accepts input from the
keyboard.

USER command. Jumps to the
machine-language subroutine at
location $3F8.

Running and Listing Programs

|adrs (G)

adrs /(L)

Transfers control to the machine
language program beginning at |adrs,.

Disassembles and displays

20 instructions starting at |adrs|.
Subsequent (L)'s display 20 more
instructions each.

10.8 Summary of Monitor Commands 203

uoijejuawajduy arempiey

15 BT S 5 1 4 4

kI LI

148

1914

13 T ST

14

|

la1deyo

L

Most of this manual describes functions—what the Apple llc
does. This chapter, on the other hand, describes objects: the
pieces of hardware the Apple llc uses to carry out its functions.
If you are designing a device to connect to the Apple llc back
panel, or if you just want to know more about how the Apple lic
is built, you should study this chapter.

. TR, Environmenial Specifications

The Apple llc is quite sturdy when used in the way it was
intended—as a transportable computer, made for use in an
indoor environment. You can carry it by its handle from room to
room, but for longer trips Apple recommends that you use its
carrying case or some other protective container (such as an
attache case).

Table 11-1 defines the conditions under which the Apple lic is
designed to function properly.

Table 11-1. Summary of Environmental Specifications

Operating Temperature: 10% to 40° C (50° to 104° F)

Relative Humidity: 20% to 95%

Line Voltage: 105 to 129 VAC (normal USA voltage
range)

You should treat the Apple llc with the same kind of care as
any other electrical appliance. You should protect it from
physical abuse, and be careful not to bump it against furniture
when you move it around. Put it in an attache case or other

11.1 Environmental Specifications 205

protective covering if you carry it outside. You should also
protect the mechanical keyboard and the electrical connectors
inside the case from spilled liquids.

In normal operation {(with the handle locked in its down
position), enough air flows through the openings in the case to
keep the insides from getting too hot. If you manage to
overheat your Apple llc—for example, by blocking the upper or
lower ventilation openings—the first symptom will be erratic
operation, such as unexpectedly changed data. The memory
devices in the Apple llc are especially sensitive to heat.

Disks are another heat-sensitive element of the system. If the
built-in drive becomes too hot, a disk within can warp or even
melt.

W 1.2 Power Requirements

The electrical power that the Apple llc, and everything that
draws power from it, is limited by the tolerances of its power
supply and internal voltage converter. This section describes
these limits for the USA external power supply. Appendix G
describes them for models built for other countries. The internal
voltage converter is the same on all models.

11.2.1 The External Power Supply

If you purchased your Apple llc outside the USA, consult
Appendix G for external power supply characteristics.

The external power supply operates on normal household AC
power and provides DC power to the Apple lic internal
converter. The basic specifications of the external power supply
are listed in Table 11-2. The Apple llc external power supply's
cord must be plugged into a three-wire 115-volt (nominal) outlet.
The line voltage must be in the range given in Table 11-2.

Chapter 11: Hardware Implementation

i W W W o WO { W O 0

- —

— me— e m— e,

D, W | W | WO W o W W o W

R

Warning

Important Safety Instructions: This product is equipped with a
three-wire grounding-type plug—a plug having a third
{grounding) pin. This plug will only fit into a grounding-type
AC outlet. This is a safety feature.

If you are unable to insert the plug into the outlet, contact a
licensed electrician to replace the outlet and, if necessary, install
a grounding conductor.

Do not defeat the purpose of the grounding-type plug.

Table 11-2. Power Supply Specifications

Line Voltage: 105 to 129 VAC, 60 Hz
Maximum Input Power Consumption: 25 W

Supply Voltage: +15 VDC (nominal)
Supply Current: 1.2 A (nominal)

11.2.2 The External Power Connector

The external power supply is attached to the internal converter
by means of a 7-pin DIN connector. The connector pins are
identified in Figure 11-1 and Table 11-3.

Figure 11-1. External Power Connector

Pin Signal

1 Not connected

2.3 Signal ground

4 Shield ground

5.6 F15 VDG

7 Not connected

11.2 Power Requirements [207

208

Table 11-3. External Power Connector Signals

Pin Mumber Name Description

1.7 Not connected

23 Ground Commeon electrical ground

4 Chassis Chassis ground

5,6 +15V +15 volt DC input to converter

11.2.3 The Internal Converter

The internal converter in the Apple llc operates on from 9 to
20 volts DC as provided by the external power supply or its
equivalent. The internal converter provides enough low-voltage
electrical power for the built-in electronics plus an external disk
drive attached via the 19-pin connector. The basic
specifications of the internal converter are listed in Table 11-4.
Listed amperages are those available in addition to the current
drawn by the Apple lic itself. Minus 5 volts is derived from the
-12 volts provided by the voltage converter.

Table 11-4. Internal Converter Specifications

Input Voltage: +9 to 20 VDC
Maximum Power 25 W
Consumption:
Supply Voltages: +5V +5%
+12V +10%
-12v +10%
Maximum Supply Currents: +5V: 1.5 A
+12V: 0.6 A continuous

0.9 A intermittent
1.5 A surge (for = 100 ms)

-12V: 100 mA
(-5V: 50 mA)
Maximum Case Temperature: 60°C {140°F)

The Apple llc uses a switching-type internal voltage converter. It
is small and lightweight, and it generates less heat than other
types of voltage converters do.

The Apple lic's voltage converter works by using the

DC voltage input to power a variable-frequency oscillator. The
oscillator drives a small transformer with several separate
windings to produce the different voltages required. A circuit
compares the voltage of the +5 volt supply with a reference
voltage and feeds an error signal back to the oscillator circuit.

Chapter 11: Hardware Implementation

i 0 S {] {] WL W Y Y W O 9 {

NEEE R

The oscillator circuit uses the error signal to control the duty
cycle of its oscillation and keep the output voltages in their
normal ranges.

The converter includes circuitry to protect itself and the other
electronic parts of the Apple lic by limiting all three output
voltages whenever it detects one of the following malfunctions:

& any supply voltage short-circuited to ground
& any output voltage outside the normal range.

Any time one of these malfunctions occurs, the protection
circuit varies the duty cycle of the oscillator, and all the output
voltages drop to zero.

11.2 Power Requirements [209

B 11.3 Apple Iic Overall Block Diagram

A full set of schematic diagrams of Figure 11-2 is an overall block diagram of the Apple llc. The
T rin Lo Appearpin following sections contain more detailed diagrams of the major
o parts of the machine.

Figure 11-2. Apple lic Block Diagram

m ,I’E = 5 lines to/from bus

(low-order unless
8 otherwisa noted)

CHARGEN

&

| Port 1 < Video Bus (VIDDO-5) > | Port 2 I

&
3 8 BOLATCH 8 ka3
VIDDE,7 T
M&mum Data Bus lALTl:I;?><
D7
3 K8 B 8 f8 ra P g &3 8
a0
DIA
Main Auxlliary
RAM RAM
& 2 %
g & £]
@ z g =
g ke TMG 8 @ z
< RAM Address Bus (RAD-7) >
Fa
16 14 4
I GLU] I WML] Iou
AD, 1.4
#0374 8 ‘?'E AR AD, 1.5
< Address Bus [AD-15) >
Data Bus (DO-7)

I Keyboard

Mouse ll

o7
ML

210 Chapter 11: Hardware Implementation

| W { {9 W o W W WO O 8 8,

B

B 11.4 The cMOS 65C02 Microprocessor

These instructions are described in
Appendix A.

The Apple llc uses a CMOS 6502 (designated as 65C02)
microprocessor as its central processing unit (CPU). The 65C02
in the Apple llc runs at a clock rate of 1.023 MHz and performs
up to 500,000 eight-bit operations per second.

Note: You should not use the clock rate as a criterion for
comparing different types of microprocessors. The 65C02
has a simpler instruction cycle than most other
microprocessors and it uses instruction pipelining for faster
processing. The speed of the 65C02 with a 1 MHz clock is
equivalent to many other types of microprocessors with clock
rates up to 5 MHz.

In addition to requiring lower power than earlier NMOS 6502
processors, the 65C02 in the Apple lic provides the
programmer with 27 new instructions. However, programs that
use these additional instructions will not be backward
compatible with other Apple Il series computers that are not
equipped with a CMOS 6502.

11.4 The CMOS 65C02 Microprocessor 211

Address
Bus ™

2121

11.4.1 65C02 Block Diagram

Figure 11-3 is a block diagram of the 65C02 microprocessor.
Table 11-5 contains the general specifications of this chip.

- ——— Register Section

Figure 11-3. 65C02 Block Diagram. Copyright 1982, NCR Corporation.
Used by permission of NCR Corporation, Dayton, Ohio.

Control Seclion ———— ==

RES IRGQ MNMI

(| e <::/ Intermupt
AD] Registar Logic
[[] ——] * * i
B] —
ind .
DD Hanq'l::ﬁr \— lg— RDY
[Ed] e _l
A== e 3 Stack Painter <::':) e e LU
P . ‘; o —rp Register 5 ML
e . % = = L instruction —
"= | <:::> ALU PR Pty
A7 - - g -
' § f - L A
8
l'— kc:u:':‘t:lalol I E
AB ~eti [L
AG é {‘ = PGL P e Clock et < fI11)
AND 2 <L" _> PCH —% ! ,]:v [Pracessor m:’::::
] L | Status
AT — E <£|‘ Reglsier (P) L 001}
it R Input Data [wgoul
ATZ] =<: Latch (DL} <:> e Ryt
A1 - ——— = :?w
Al
Data Bus ::: »J Instruction 1
Ll —— Register
_] Bulter | | gl
L L
i] [oom
Legend: l — 3;
| i Data Bus
T\r = 8-8it Line _— gg
D7
= 1-Bit Line
The 65C02 has a sixteen-bit address bus, giving it an address
space of 64K (two to the sixteenth power or 65536) bytes. The
Apple lic uses special techniques to address a total of more
than 64K: for details, refer to Chapter 2.
Chapter 11: Hardware Implementation

L TR T T P T T 0 "W e T P T s TR

[_If'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂﬂI'IHEH[!'II'II'

Table 11-5. 65C02 Microprocessor Specifications

Type: 65C02

Register Complement: 8-bit Accumulator (A)
8-bit Index Registers (X.Y)
8-bit Stack Pointer (S)
8-bit Processor Status (P)
16-bit Program Counter (PC)

Data Bus: Eight bits wide
Address Bus: Sixteen bits wide
Address Range: 65,536 (64K)
Interrupts: IRQ (maskable)

NMI (non-maskabile)
BRK (programmed)

Operating Voltage: +5V (+ 5%}

Power Dissipation: 5 mW (at 1 MHz)

11.4.2 65C02 Timing

The operation of the Apple llc is controlled by a set of
synchronous timing signals, sometimes called clock signals.
The frequency of the oscillator that generates the master timing
signal is 14.318 MHz. Circuitry in the Apple llc uses this clock
signal, called 14M, to produce all the other timing signals.
These timing signals perform two major tasks: controlling the
computing functions, and generating the video display. The
timing signals directly involved with the operation of the 65C02
are described in this section. Other timing signals are
described in sections 11.6.2, 11.9.3, and 11.9.4.

The main 65C02 timing signals are listed in Table 11-6, and
their relationships are diagrammed in Figure 11-4. The 65C02
clock signals are ¢1 and ¢0, complementary signals at a
frequency of 1.0227 MHz. The Apple llc signal named ¢0 is
equivalent to the signal called ¢2 in Appendix A (it isn't
identical—it's a tiny bit early).

11.4 The CMOS 65C02 Microprocessor 213

214

Figure 11-4. 65C02 Timing Signals

i Sptpigtpligigliglylygl

=W Iy S|

F—— 490 ns ——

‘i’ﬂ—l

280 ns |

-

| 210ns

41 _I

—_— |-<—1 10 ns (max) 15 ns (min)—

|

CPU Phase I

—— 490 ns ——

—

ADDR
from 65C02 X

75 ns (max)

30 ns (min)

p—

L,

DATA from 65C02 (write) >

e
b
|-._
X

DATA to 65C02 (read)

50 ns {min}—-»-l f«—

X
10 ns (min)

Chapter 11: Hardware Implementation

X
S

B B B B B TR T TR T T e T T e W i e [e B L

R

Table 11-6. 65C02 Timing Signal Descriptions

Signal Name Description

14M Master oscillator, 14.318 MHz; also 80-column dot clock

VIDTM Intermediate timing signal and 40-column dot clock

Q3 Intermediate timing signal, 2.045 MHz with asymmetrical duty
cycle

¢0 Phase 0 of 65C02 clock, 1.0227 MHz: complement of 41

@l Phase 1 of 65C02 clock, 1.0227 MHz; complement of 40

The operations of the 65C02 are related to the clock signals in
a simple way: internal during ¢1, external during ¢0. The 65C02
puts an address on the address bus during ¢1. This address is
valid not later than 110 nanoseconds after ¢#1 goes high and
remains valid through all of ¢0. The 65C02 reads or writes data
during «0. If the 65C02 is writing, the read/write signal is low
during ¢0 and the 65C02 puts data on the data bus. The data is
valid not later than 75 nanoseconds after ¢0 goes high. If the
65C02 is reading, the read/write signal remains high. Data on
the data bus must be valid no later than 50 nanoseconds before
the end of ¢0.

B 71.5 The Custom Integrated Circuits

Most of the circuitry that controls memory and I/O addressing in
the Apple lic is in five custom integrated circuits

e the Memory Management Unit (MMU)
¢ the Input-Cutput Unit (IOU)

e the Timing Generator (TMG)

¢ the General Logic Unit (GLU)

e the Disk Controller Unit (IWM)

The soft switches used for controlling the various 1/O and
addressing modes of the Apple llc are addressable flags inside
the MMU, 10U, and GLU. The functions of the MMU and 10U
are not as independent as their names suggest; working
together, they generate all of the addressing signals. For
example, the MMU generates the RAM address signals for the
CPU, while the IOU generates similar RAM address signals for
the video display and most I/O hardware addresses.

11.5 The Custom Integrated Circuits 215

e e ——

2161

11.5.1 The Memory Management Unit (MMU)

The circuitry inside the MMU implements these soft switches,
which are described in the following chapters:

® Page 2 display (PAGE2): Chapter 5

® High-resolution mode (HIRES): Chapter 5

e Store to 80-column display (BOSTORE): Chapter 5
& Select bank 2 (BANK2): Chapter 2

® Enable bank-switched RAM (ENLCRAM): Chapter 2
® Read auxiliary memory (RAMRD): Chapter 2

e \Write auxiliary memory (RAMWRT): Chapter 2

Auxiliary stack and zero page (ALTZP): Chapter 2
® Reset mouse Y interrupt (RSTYINT): Chapter 9
® Reset mouse X interrupt (RSTXINT): Chapter 9

These switches are available on MMU pin 21, which is
connected to bit 7 on the data bus. Figure 11-5 shows the
MMU pinouts; Table 11-7 describes the signals.

Note: A signal name followed by an asterisk is active low,
that is, it is true when not asserted.

The 64K dynamic RAMs used in the Apple lic use a multiplexed
address, as described below in the section Dynamic-RAM
Timing (in section 11.6.2). The MMU generates this multiplexed
address for memory reading and writing by the 65C02 CPU.

Chapter 11: Hardware Implementation

T T LI

T\

N W

T Th EL B B B\ R\

Th

GND

AD

+0

Q3

PRAS*
RAOD

RA1

RAZ2

RA3

RA4

RAS

RAG

RA7

R/W*
INH*
CoBx"
ENBO*
KBD*
ROMEN2*
ROMENT*®

RIS

1 N 40
2 39
3 38
! a7
5 36
] 35
7 34
8 33
9 32
10 N
11 30
12 29
13 28
14 27
15 26
16 25
17 24
18 23
19 22
20 21

Figure 11-5. The MMU Pinouts

Al

A2

A3

Ad

A5

AB

AT

A8

A9

A10

A1

A12

A13

Al4

A15
+5V

SELIO*

CASEN*

covx*

MD7

Table 11-7. The MMU Signal Descriptions

Pin Number

1

B W M

6-13
14
15

17
18
19
20
21

22

23

24

25
26-40

Name

GND
AD

Q3
PRAS®
RAO-RAT
R/W*
INH*

coex*

ENBO”
KBD*

ROMENZ2*
ROMEN1"

MD7

CO7X

CASEN®

SELIO"

5V
A15-A1

11.5 The Custom Integrated Circuits

Description

Power and signal common
65C02 address input

Clock phase 0 input

Timing signal input

Memory row-address strobe
Multiplexed address output
65C02 read-write control signal

Inhibits main memaory (tied
to 45 V)

Causes $C06x outputs togo to D
during 0

Enables auxiliary RAM

Enables keyboard data bits 0-6
Enables ROM (tied to ROMEN1")
Enables ROM (tied to ROMEN2")

State of MMU flags on data bus
bit 7

Causes $C07x outputs to go to 0
during #0

Enables main RAM

Goes to 0 during 40 for any access
to $C0 page except $C0Bx, Bx, Cx
or Fx

Power

65C02 address input

217

Figure 11-6. The IOU Pinouts

GND
GH
SEGA
SEGH
VG
socoL*®
CASS0
SPKA
MD7
YMOVE
NG}
NG
PDLO/XMOVE
RAW*
RESET*
IRQ*
RAQ

A&
RAAZ
RAZ

218

W~ DR -

HO
SYNC*®
WHNDW
CLRGAT"
RA10"
RAS*®
VIDDE
vIDD7
KSTRB
AKD

IOUSELIO®

A
+BY
Q3
0
PRAS"
RAT
RAG
RAS
RA4

11.5.2 The Input/Output Unit (IOU)

The circuitry inside the Input/Output Unit (IOU) implements the
following soft switches, all described in Chapters 2 and 3:

Table 11-8 describes the signals.

Page 2 display (PAGE2)
High-resolution mode (HIRES)

Text mode (TEXT)

Mixed mode (MIXED)
80-column display (80COL)
Character-set select (ALTCHAR)
Any-key-down (AKD)

Mouse movement (X0, Y0)

Vertical blanking interrupt (VBLINT)

These switches are available on IOU pin 9, which is connected
to bit 7 on the data bus. Figure 11-6 shows the MMU pinouts;

The 64K dynamic RAMs used in the Apple llc require a
multiplexed address, as described in the section Dynamic-RAM
Timing (in section 11.6.2). The 10U generates this multiplexed
address for the data transfers required for display and memory
refresh during clock phase 1. The way this address is
generated is described in section 11.8.1.

Table 11-8. The /OU Signal Descriptions

Pin Number Name
i GND
2 GR

3 SEGA
4 SEGB
5 VC

Description

Power and signal common
Graphics mode enable

In text mode, works with VC (see
pin 5) and SEGB to determine
character row address

In text mode, works with VC (see
pin 5) and SEGA: in graphics
mode, selects high-resolution when
low, low-resolution when high

Display vertical counter bit: in text
mode, SEGA, SEGB and VC
determine which of the eight rows
of a character's dot pattern to
display; in low-resolution, selects
upper or lower block defined by a
byte.

Chapter 11: Hardware Implementation

Thc Tha WhaThae Tho T Th "Eh T T B e b TR S e B

AR

Table 11-8—Continued. The IOU Signal Descriptions

Pin Number Name Description

6 gocoL® 80-column video enable

7 CASSO Reserved

8 SPKR Speaker output signal

9 MD7 Internal 10U flags for data bus
{bit 7)

10 YMOVE Detects mouse movement along
Y axis

1 N.C. Not used

12 N.C. Not used

13 PDLO/XMOVE Detects mouse movement along
X axis

14 R/w* 65C02 read-write control signal

15 RESET* Power on and reset output

16 IRQ" Maskable interrupt line to 65C02

17-24 RAD-RAT Video refresh multiplexed RAM
address (phase 1)

25 PRAS" Row-address strobe (phase 0)

26 @0 Master clock phase 0

27 Q3 Intermediate timing signal

28 5V Power

29 AB Address bit 6 from 65C02

30 IOUSELIO* Derived from the SELIO® output for
MMLU pin 24

3 AKD Any-key-down signal

32 KSTRB Keyboard strobe signal

3334 VIDD7.VIDDB Video display data bits

35,36 RA9° RA10" Video display control bits

37 CLRGAT" Color-burst gate (enable)

38 WNDW* Display blanking signal

39 SYNC* Display synchronization signal

40 HO Display horizontal timing signal
(low bit of character counter)

11.5 The Custom Integrated Circuits 219

Figure 11-7. The TMG Finouts

14M

™
CREF
HO
vIDD7
SEGB
TEST
CASEN"
socoL-
GND

2201

O W= B W =

-

[\

19
18
17
16
15
14
13
12
11

+ 5V
PRAS*
(N.C.)
PCAS*
Q3
&0
41
VIDTM
LDPS*
TMGEN*

11.5.3 The Timing Generator (TMG)

A custom timing generator chip (TMG) generates several timing
and control signals in the Apple llc. The TMG pinouts are
shown in Figure 11-7; the signals are listed in Table 11-9.

Table 11-9. The TMG Signal Descriptions

Pin Number

1

[o5]

0w o ~ @ ¢ A

1
12
13

14
15
16

17
18
19
20

Name

14M

M
CREF

HO
VIDD7
SEGB
TEXT

CASEN®
gocoL:

GND

TMGEN*

LDPS"
VIDTM

@1
&l
Q3

PCAS"

N.C.

PRAS®
-5V

Description

14.318 MHz master timing signal
nput

7.159 MHz timing signal

3.5795 MHz color reference timing
signal

Harizontal video timing signal
Video data bit 7

Video timing signal

Video display text-modes enable
RAM enable (CAS enable)
Enable 80-column display mode
Power and signal common
Enable master timing

Video shift-register load enable

Video dot clock enable, 7 MHz or
continuous 0

Phase 1 system clock
Phase 0 system clock

Intermediate timing and strobe
signal

RAM column-address strobe
Reserved for testing
RAM row-address strobe

FPower

Chapter 11: Hardware Implementation

T Ehaflenll.

L f

1

TheThe ThaTlaalfhe Th T Th T T T

19

Rl

)
i

|-

14

13

li— '

|

L&

[

L

-

»

L=

" |
|

=l

14

-FFFFFFF-

=

11.5.4 The General Logic Unit (GLU)

The General Logic Unit is a single-chip version of the
miscellaneous logic required for the system. It provides all RAM
read/write timing, double-high-resolution enable/disable, soft
switch status registers and write command registers. It also
provides |I0U control for mouse interrupts and
double-high-resolution soft-switches. Its pin assignments are
shown in Figure 11-8 and its signals are listed in Table 11-10.

Figure 11-8. The GLU Finouts Table 11-10. The GLU Signal Descriptions
jam | 1 S\ o4 | +5v Pin Number Name Description
AD| 2 23 | SER® 1 14M Master clock (14.318 MHz)
A3l 3 22 |(N.C.)
Ad| 4 21 |DISK* 237 AD,A3-AT Address lines to select least
as| s 20 | 7m significant byte of addresses on
I 19 | CREF C0 page
AT T 18 | (N.C.) 8 PHO Phase 0 of 1.0227 MHz processor
0| 8 17 | (N.C.) sync clock
SELIO*| 9 16 | TEXT)
GR| 10 15 | R/W* 9 SELIO" Device select for selecting most
RESET* | 11 14 | D7 significant byte of the address
GND | 12 13 | GLUEN® 10 GR Graphics mode select line
1 RESET® Master reset for system; resets
GLU
12 GND Ground reference and negative
supply
13 GLUEN® Enables GLU
14 MD7 Indicates status of MMU flags on
data bus bit ¥
15 R/W* Read/write qualifier input from
processor
16 TEXT Signal used to generate video

timing in double-high-resolution or
not-graphics

17.18 N.C. Not used

19 CREF Color reference signal

20 M 7 MHz clock output

21 DISK® Disk controller device select output

22 IOUHOLE Controls IOUSELIO

23 SER* Serial controller device select
output

24 Vee +5 volt supply

11.5 The Custom Integrated Circuits 221

For further information on group
code recording, refer to
section 11.10.

Figure 11-9. The IWM Pinouts

SEEKPHO | 1 w 28 | SEEKPH1
SEEKPHZ | 2 27 | SEEKPH3
ADL 3 26 | +5V
A1l 4 25 | Q3
A2l 5 24 | TM
A3| 8 23 | RESET"
DISK* | 7 22 | RDDATA
WRDATA | 8 21 | WRPROT
WRREQ" | 9 20 |DR1*
D@ | 10 19 | DR2*
o1 18 | D7
D2 | 12 17 | D6
D3] 13 16 | D5
GND | 14 15 | D4
222

11.5.5 The Disk Controller Unit (IWM)

The IWM is an integrated GCR (group code recording) disk
drive controller in its state right after reset. In addition, it has a
status register, mode register, and multiple operating modes. It
provides both synchronous and asynchronous modes, and a

fast mode with a data rate twice that of normal disk 1/O speeds.

Figure 11-9 shows the IWM pin assignments; Table 11-11
describes the IWM signals.

Table 11-11. The WM Signal Descriptions
Pin Number Name Description

1 SEEKPHOD Stepper motor control phase 0.
One of four programmable disk
drive motor phase outputs.

2 SEEKPH2 Stepper motor control phase 2

3 AD The data input to the state bit
selected by Al to A3

4-6 A1-A3 These three inputs select one of
the eight bits in the state register
to be updated.

7 DISK® Device enable. The falling edge of
DISK* latches information
on A1-A3. The rising edge of
either Q3 or DISK* qgualifies write
register data.

8 WRDATA The serial data output. Each 1-bit
causes a transition on this output.

g WRREQ"® This signal is a programmable
buffered output line.

10-13 D0O-D3 DO0-D7 make up the bidirectional
data bus.

14 GND Ground reference and negative
supply

15-18 D4-D7 The remaining bits of the
bidirectional data bus

19 DR2* Drive 2 select

20 DR1* Drive 1 select

21 WRPROT Write-protect input; this can be
polled via bit 7 of the status
register.

Chapter 11: Hardware Implementation

LT TR T W OEN TR T T T T EesEheelhe

NEEEEEEEEEEE R

Table 11-11—Continued. The IWM Signal Descriptions

Pin Number

22

23

24
25

26
27
28

Name

RDDATA

RESET®

™
Q3

Vee
SEEKPH3
SEEKPH1

Description

Serial data input line. The IWM
synchronizes the falling transition
of each pulse.

WM reset: places all IWM outputs
in their inactive state and sets all
state and mode register bits to
zero.

7 MHz clock input

A 2.0 MHz clock input used to
qualify the timing of the serial data
being written or read.

The +5 volt supply
Stepper motor control phase 3

Stepper motor control phase 1

M6 Memory Addressing

The 65C02 microprocessor can address 65,536 locations. The
Apple llc uses this entire address space, and then some: some
areas in memory are used for more than one function. The
following sections describe the memory devices used in the
Apple llc and the way they are addressed. Input and output
also use portions of the memory address space; refer to

Chapter 2 for information.

11.6 Memory Addressing

[223

2241

Figure 11-10 illustrates the overall memory bus organization and

memory selection signals.

Figure 11-10. Memory Bus Organization

4\ N\

16

8
K 85C02 —

14 8
e— MONROM [3

ROMEN]
RAS* = +0 1
/\ Hmw-l CAS* 2 I 'E_l
2 tv ¥
3 \%
3 8 8 N VIDED
o) Mainmam [—— N
5 LATGH
L4
8
w
=
(73] ‘!; :
16 8 # | R/WBD ug:
LY] . o
A MmML)ﬁ ENBQ® | BODIR 'E
-
2 1 t:)s g
o a
b
=
LI- Auxillary 8 E 8
— S CZD g :> 80 LATGH
5 A
<
I

<

v \/] H.rw';g_T :HAS'
a3

$0 1

Note: Some Apple lic's have ROMs with 27xx designations,
some have 23xx. They are functionally equivalent.

(See Fig. 11-21)

11.6.1 ROM Addressing

In the Apple llc the following programs are permanently stored
in a type 23128 16K by 8-bit ROM (Figure 11-11).

® Applesoft editor and interpreter
e Monitor

® Enhanced video firmware.

Chapter 11: Hardware Implementation

T BT T T T T T T T T BBl

Pinouts
-6V 1 7 28
A2 2 27
ATl 3 26
AG| 4 25
AS| & 24
Ad| B 23
A3 T 22
AZ2| 8 21
Al 9 20
A0 | 10 19
Do 11 18
D1] 12 17
D213 16
GND | 14 15

Pinouts

KAT| 1
KAGE| 2
KAS| 3
KAad4| 4
KA3| 5
KAZ| 6
KA1 7
Kao| 8

pDoj s

D1| 10

D21 11
GND | 12

23
22
21
20
19
18
17
16
15
14
13

Finouts

5V
A12
AT
AB
AD
Ad
A3
A2
Al
AQ
00
o1
02
GND

o= oW & R -

[R gy
W= 0Wu

(

27
26
25
24
23
22
21
20
19
18
17
16
15

N EEE

Figure 11-11. The 23128 ROM

4 5'\.'
(N.C)
A13
AB
Al
Al
OE*
A10
CE*
D7
D&
D5
D4
D3

Figure 11-12. The 2316 ROM

+5V
KA8
CAPS
+5V
KBD*
LANGSW
GND
(N.C.)
D6
D5
D4
D3

Figure 11-13. The 2364 ROM

+5V
+ 5V
+ 5V
AB
A9
Al
GND
A10
WNDW*
o7
(8]3]
05
04
03

The ROM is enabled by two signals called ROMEN1 and
ROMEN2. (In the Apple lic, ROMEN1 and ROMEN2 are
electrically connected.) The segment of the ROM enabled by
ROMEN1 occupies the memory address space from $C100

to $DFFF. The address space from $C300 to $C3FF and much
of $C800 to $CFFF contains the enhanced video firmware.

These ROM address allocations are approximately true (some
space sharing takes place):

e ROM addresses $C000 to $COFF are never available.

¢ ROM addresses $C100 and $C200 are entry points to
firmware for serial ports 1 and 2, respectively.

¢ ROM address $C400 is entry point to mouse interface
support.

¢ ROM addresses $C500 to $C5FF are reserved.

e ROM address $C600 is entry point to firmware for the
built-in and external disk drives. The built-in drive is
considered slot 6 drive 1 or its equivalent. The external drive
is considered slot 6 drive 2.

® ROM addresses starting at $C700 support (from the Monitor)
the external drive as if it were slot 7 drive 1, for
external-drive startup only.

Addresses $D000 to $F7FF contain the Applesoft BASIC
interpreter; addresses $FB00 through $FFFF contain the Maonitor
firmware.

The other ROMs in the Apple lic are a type 2316 ROM
(Figure 11-12) used for the keyboard character decoder, and a
type 2364 ROM (Figure 11-13) used for character sets for the
video display. This 2364 ROM is rather large because it
includes a section of straight-through bit-mapping for the
graphics modes. This way, graphics display video can pass
through the same circuits as text without additional switching
circuitry.

11.6 Memory Addressing 225

11.6.2 RAM Addressing

The RAM (programmable) memory in the Apple lic is used both
for program and data storage and for the video display. The
areas in RAM that are used for the display are accessed both
by the 65C02 microprocessor and by the video display circuits.
In some computers, this dual access results in addressing
conflicts (cycle stealing) that can cause temporary dropouts in
the video display. This problem does not occur in the Apple llc,
thanks to the way the microprocessor and the video circuits
share the memory.

The memory circuits in the Apple llc take advantage of the
two-phase system clock described in section 11.4.2 to
interleave the microprocessor memory accesses and the display
memory accesses so that they never interfere with each other.
The microprocessor reads or writes to RAM only during 0, and
the display circuits read data only during ¢1.

Dynamic-RAM Refreshment

The image on a video display is not permanent; it fades rapidly
and must be refreshed periodically. To refresh the video display,
the Apple lic reads the data in the active display page and
sends it to the display. To prevent visible flicker in the display,
and to conform to standard practice for broadcast video, the
Apple llc refreshes the display sixty times per second.

The dynamic RAM devices used in the Apple llc also need a
kind of refreshment, because the data is stored in the form of
electric charges which diminish with time and must be
replenished every so often. The Apple llc is designed so that
refreshing the display also refreshes the dynamic RAMs. The
next few paragraphs explain how this is done.

The job of refreshing the dynamic RAM devices is minimized by
the structure of the devices themselves. The individual data
cells in each RAM device are arranged in a rectangular array of
rows and columns. When the device is addressed, the part of
the address that specifies a row is presented first, followed by
the address of the column. Splitting informaticn into parts that
follow each other in time is called multiplexing. Since only half
of the address is needed at one time, multiplexing the address
reduces the number of pins needed for connecting the RAMs
(Figure 11-14).

Chapter 11: Hardware Implementation

TN AR TTT T TN U T el

R

Figure 11-14. The 64K RAM
Pinouts

GV | 1 bt 16 | GND
MDx | 2 15 | CAS®
R/W* | 3 14 | MDx
RAS® | 4 13 | RA1
RAT| 5 12 | RA4
RAS | 6 11 | RA3
RAG | 7 10 | RAZ
+5V | 8 9 | RAD

Different manufacturers’ 64K RAMs have cell arrays of either
128 rows by 512 columns or 256 rows by 256 columns. Only
the row portion of the address is used in refreshing the RAMs.

Now consider how the display is refreshed. As described in
section 11.9.1, the display circuitry generates a sequence of
8,192 memory addresses in high-resolution mode; in text and
low-resolution modes, this sequence is the 1,024 display-page
addresses repeated eight times. The display address cycles
through this sequence 60 times a second, or once every

17 milliseconds. The way the low-order address lines are
assigned to the RAMs, the row address cycles through all
256 possible values once every two milliseconds (see

Table 11-12). This more than satisfies the refresh requirements
of the dynamic RAMSs.

Table 11-12. RAM Address Multiplexing

Mux'd Address Row Address Column
Address

RAD AD A9

RA1 Al AB

RAZ2 A2 A1D

RA3 A3 A1

RA4 Ad Al12

RAS A5 A13

RAB AT Ald

RA7 AB A15

Dynamic-RAM Timing

The Apple lic's microprocessor clock runs at a speed of

1.023 MHz, but the interleaving of CPU and display cycles
means that the RAM is being accessed at a 2 MHz rate, or a
cycle time of just under 500 nanoseconds. Data for the CPU is
strobed by the falling edge of ¢0, and display data is strobed
by the falling edge of 1, as shown in Figure 11-15.

11.6 Memory Addressing 227

228

Figure 11-15. RAM Timing Signais

san LTI UL L
S [y 0 T o I 0 i 5 [N

TR S T N

Q3
b0
l [cpuphase L

g | 11 11

S] | | | l [L

RAD-RAT

MDO-MD7

The RAM timing looks complicated because the RAM address
is multiplexed, as described in the previous section. The MMU
takes care of multiplexing the address for the CPU cycle, and
the 10U performs the same function for the display cycle. The
multiplexed address is sent to the RAM ICs over the lines
labeled RAO-RA7Y (Table 11-13). Along with the other timing
signals, the TMG generates two signals that control the RAM
addressing: row-address strobe (RAS) and column-address
strobe (CAS).

Chapter 11: Hardware Implementation

. T " Tl

FLOELOELO'RLORLOMRLOMRLOMRL L TR

Fi

R EE R

Table 11-13. RAM Timing Signals

Signal

Name Description

0 Clock phase 0 (CPU phase)

| Clock phase 1 (display phase)

RAS Row-address strobe

CAS Column-address strobe

Q3 Alternate RAM/Column-address strobe
RAO-RAT Multiplexed address bus

MDO-MD7 Internal data bus

W 1.7 1he Keyboard

The Apple llc's keyboard is a matrix of keyswitches connected
to an AY-3600-type keybeoard decoder via a ribbon cable and a
26-pin connector (Figure 11-16). The AY-3600 scans the array
of keys over and over to detect any keys pressed. The
scanning rate is set by the external resistor-capacitor network
made up of C46 and R6. The debounce time is also set
externally, by C45.

The AY-3600's outputs include five bits of key code plus
separate lines for CONTROL, SHIFT, any-key-down, and
keyboard strobe. The any-key-down and keyboard-strobe lines
are connected to the I10U, which addresses them as soft
switches. The key-code line, along with CONTROL and SHIFT,
are inputs to a separate 2316 ROM. The ROM translates them
to the character codes that are enabled onto the data bus by
signals named KBD" and ENKBD*. The KBD" signal is enabled
by the MMU whenever a program reads location $C000, as
described in Chapter 2.

11.7 The Keyboard 229

Figure 11-16. Keyboard Circuit Diagram

< Address Bus >

CO6X " Data Bus
(MMU} oa 3 PAOAT A2 < >
CAPL _— D7
OAPL
BOCOLSW n 81o 1 MUX
0 DO-6
To: 65C02 (MMU) - gBD
1ou Lahcaw 2716 MAR
WM GAPS
GLU
SER1 Keyboard Address Bus
SER2 i E KAD-8 SER2
GONTROL kSTRB [’ :IDLI: !
SHIFT AY-3600-PRO KEY AKD
{lou)

ﬂ,ﬁ?—sg: ﬂﬂg,-,,.ﬂ.,,r 18 X, ¥ Coordinates / of wae [-
t FLASH
{12 Volt Circuits)
| ISK
DISKACTV {Internal Disk

Connector)

oty

shit Keyboard Grid

230 Chapter 11: Hardware Implementation

i W N O o o W W Y {5 O

N N NN

r
L]

1R

Figure 11-17. Keyboard Signals

Key
pressed

Y

Keyboard strobe

|

Figure 11-17 illustrates the events that occur when a key is
pressed, when the keypress is detected by a program, and
when a key is pressed and held for more than about a second.

Decode of $C01x in 10U If 10U sees AKD too long,
Key clears keyboard strobe Another key it generates own strobe
released (bit 7 at $C00x) pressed for auto-repeat

{ \ Y

to 10U

Latched KSTRB

from 10U on $C00x——
bit 7

\
L]
|
|

= 0.8to 1.07

" }-ﬁ—&econds—p—l

AKD at $C01x ———
bit 7

11.7 The Keyboard [231

B /7.8 The Speaker

AUD is an audio-amplifier hybrid
circuit.

232

The Apple lic's built-in loudspeaker is controlled by a single bit
of output from the Input/Output Unit (I0U), amplified by a hybrid
circuit (Figure 11-18).

Figure 11-18. Speaker Circuit Diagram

10U

SPKR

AUD

+5

v

500 &
Volume
Control

1¥SOUND_ To Video Expansion

" Connector (See Fig. 11-25)

éGND

i| 7 YYYYL EAROUTZ
= A4
B Binaural
4 Jack
.__i c ML A
N EAROUTH
EAROUT[— ‘ GND
ul:l |GE Speaker

11.8.1 Volume Control

There is a 500-ohm variable resistor feeding anywhere from 0
to 5 volts to pin 5 of AUD to control the speaker volume. This
potentiometer controls the volume of both the built-in speaker
and whatever is plugged into the output jack.

11.8.2 Output Jack

Next to the volume control, along the lower-left side of the
Apple llc case, there is a 3.5 mm stereo miniphone jack.
Although speaker output is monaural, the jack accommodates
stereo headphone plugs (as well as monaural, of course),
providing sound to both channels. Inserting a headphone plug
disconnects the internal Apple llc speaker.

Chapter 11: Hardware Implementation

T

. Tl .. A

Fi

‘h

F\. R L TR

Fi

FL L FL IR

4 2

€

AL I

B 71.9 The Video Display

The Apple llc produces a video signal that creates a display on
a standard video monitor or, if you add an RF modulator, on a
black-and-white or color television set. The video signal is a
composite made up of the data that is being displayed plus the
horizontal and vertical synchronization signals that the video
monitor uses to arrange the lines of display data on the screen.

Note: Apple llc computers manufactured for sale in the USA
generate a video signal that is compatible with the standards
set by the NTSC (National Television Standards Committee).
Apple llcs used in European countries require an external
adapter to provide video that is compatible with the standard
used there, which is called PAL (for phase alternating lines).
This manual describes only the NTSC version of the video
circuits.

The display portion of the video signal is a time-varying voltage
generated from a stream of data bits, where a 1 corresponds to
a voltage that generates a bright dot, and a 0 to a dark dot. The
display bit stream is generated in bursts that correspond to the
horizontal lines of dots on the video screen. The signal named
WNDW?* is low during these bursts.

During the time intervals between bursts of data, nothing is
displayed on the screen. During these intervals, called the
blanking intervals, the display is blank and the WNDW"* signal
is high. The synchronization signals, called sync for short, are
produced by making the signal named SYNC* low during
portions of the blanking intervals. The sync pulses are at a
voltage equivalent to blacker-than-black video and don't show
on the screen.

11.9.1 The Video Counters

The address and timing signals that control the generation of
the video display are all derived from a chain of counters inside
the 10U. Only a few of these counter signals are accessible
from outside the 10U, but they are all important in
understanding the operation of the display generation process,
particularly the display memory addressing described in the
next section.

11.9 The Video Display 233

The horizontal counter is made up of seven stages: HO, H1,

H2, H3, H4, H5, and HPE*. The input to the horizontal counter
is the 1 MHz signal that controls the reading of data being
displayed. The complete cycle of the horizontal counter consists
of 65 states. The six bits HO through H5 count normally from 0
to 64, then start over at 0. Whenever this happens, HPE" forces
another count with HO through H5 held at zero, thus extending
the total count to 65.

The 10U uses the forty horizontal count values from 25

through 64 in generating the low-order part of the display data
address, as described in section 11.9.3. The QU uses the count
values from 0 to 24 to generate the horizontal blanking, the
horizontal sync pulse, and the color-burst gate.

When the horizontal count gets to 65, it signals the end of a line
by triggering the vertical counter. The vertical counter has nine
stages: VA, VB, VC, V0, V1, V2, V3, V4, and V5. When the
vertical count reaches 262, the 10U resets it and starts counting
again from zero. Only the first 192 scanning lines are actually
displayed; the IOU uses the vertical counts from 192 to 262 to
generate the vertical blanking and sync pulse. Nothing is
displayed during the vertical blanking interval. (The vertical line
count is 262 rather than the standard 262.5 because, unlike
normal television, the Apple lic's video display is not interlaced.)

11.9.2 Display Memory Addressing

As described in section 5.7, data bytes are not stored in
memory in the same sequence in which they appear on the
display. You can get an idea of the way the display data is
stored by using the Monitor to set the display to graphics
mode, then storing data starting at the beginning of the display
page at hexadecimal $400 and watching the effect on the
display. If you do this, you should use the graphics display
instead of text to avoid confusion: the text display is also used
for Monitor input and output.

If you want your program to display data by storing it directly
into the display memory, you must first transform the display
coordinates into the appropriate memory addresses, as shown
in Chapter 2. The descriptions that follow will help you
understand how this address transformation is done and why it
is necessary.

Chapter 11: Hardware Implementation

moreomemoTOmOmOTROM TR T T TR

Y ¢ ¢ ¥ ¥ Y A A

The requirements for RAM
refreshing are discussed in
section 11.6.2.

The address transformation that folds three rows of forty
display bytes into 128 contiguous memory locations is the same
for all display modes, so it is described first. The differences
among the different display modes are described in

section 11.9.4.

11.9.3 Display Address Mapping

Consider the simplest display on the Apple lic, the 40-column
text mode. To address forty columns requires six bits, and to
address twenty-four rows requires another five bits, for a total
of eleven address bits. Addressing the display this way would
involve 2048 (two to the eleventh power) bytes of memory to
display a mere 960 characters. The 80-column text mode would
require 4096 bytes to display 1920 characters. The leftover
chunks of memory that were not displayed could be used for
staring other data, but nat easily, because they would not be
contiguous.

Instead of using the horizontal and vertical counts to address
memory directly, the circuitry inside the 10U transforms them
into the new address signals described below. The transformed
display address must meet the following criteria:

® Map the 960 bytes of 40-column text into only 1024 bytes
® Scan the low-order address to refresh the dynamic RAMs
@ Continue to refresh the RAMs during video blanking.

The transformation involves only horizontal counts H3, H4,

and H5, and vertical counts V3 and V4. Vertical count bits

VA, VB, and VC address the lines making up the characters,
and are not involved in the address transformation. The
remaining low-order count bits, HO, H1, H2, V0, V1, and V2 are
used directly, and are not involved in the transformation.

The 10U performs an addition that reduces the five significant
count bits to four new signals called S0, 51, S2, and S3, where
S stands for sum. Figure 11-19 is a diagram showing the
addition in binary form, with V3 appearing as the carry in and
H5 appearing as its complement H5*. A constant value of cne
appears as the low-order bit of the addend. The carry bit
generated with the sum is not used.

11.9 The Video Display 235

Figure 11-18. Display Address Transformation

V3 Carry in
H5* va H4 H3 Augend
V4 H5* V4 1 Addend
S3 s2 81 S0 Sum

If this transformation seems terribly obscure, try it with actual
values. For example, for the upper-left corner of the display,
the vertical count is zero and the horizontal count is 24:

HO, H1, H2, and H5 are zeroes, and H3 and H4 are ones. The
value of the sum is zero, so the memory location for the first
character on the display is the first location in the display page,
as you might expect.

Horizontal bits HO, H1, and H2 and sum bits S0, S1, and S2
make up the transformed horizontal address (AQ through A6 in
Table 11-14). As the horizontal count increases from 24 to 63,
the value of the sum (S3 S2 S1 S0) increases from zero to four
and the transformed address goes from 0 to 39, relative to the
beginning of the display page.

The low-order three bits of the vertical row counter are V0, V1,
and V2. These bits control address bits A7, A8, and A9, as
shown in Table 11-14, so that rows 0 through 7 start on
128-byte boundaries. When the vertical row counter reaches 8,
V0, V1, and V2 are zero again, and V3 changes to one. If you
do the addition in Figure 11-19 with H equal to 24 (the
horizontal count for the first column displayed) and V equal

to 8, the sum is 5 and the horizontal address is 40: the first
character in row 8 is stored in the memory location 40 bytes
from the beginning of the display page.

Chapter 11: Hardware Implementation

T BT

A A T T T A A

L TL TL T\

Ty

i

I LI

oot

Figure 11-20. 40-Column Text Display Memory. Memory locations marked with a
double asterisk (*°) are screen holes, described in section 2.5.1.

$400
$480
$500
$580
$600
$680
$700

3780

—-— 128 Bytes 25-
B
l-4—— 40 Bytes——{-+—40 Bytes —=t-4—— 40 Bytes —{-—p
Bytes

Row 0 Row 8 Row 16 8
Row 1 Row 9 Row 17 ™
Row 2 Row 10 Row 18 ey
Row 3 Row 11 Row 19 e
Row 4 Row 12 Row 20 o
Row 5 Row 13 Row 21
Row & Row 14 Row 22 ‘
Row 7 Row 15 Row 23

Figure 11-20 shows how groups of three forty-character rows
are stored in blocks of 120 contiguous bytes starting on
128-byte address boundaries. This diagram is another way of
describing the display mapping shown in Figure 5-5. Notice that
the three rows in each block of 120 bytes are not adjacent on
the display.

11.9 The Video Display

237

Table 11-14. Display Memory Addressing. ""For these address bits, see text and

Tahle 11-15.

Memory Display

Address Bit Address Bit

AD HO

Al H1

A2 H2

A3 S0

Ad 51

AS s2

AB S3

A7 VO

AB V1

A9 V2

A10

A1 =

Al2 a

A13 .

Al4 e

A15 GND
Address bits marked with double Table 11-14 shows how the signals from the video counters are
asterisks (*) are different for assigned to the address lines. HO, H1, and H2 are

different modes: see Table 11-15

il aaation 4.6 4 horizontal-count bits, and V0, V1, and V2 are vertical-count bits.

S0, 81, S2 and 33 are the folded address bits described above.

Table 11-15. Memory Address Bits for Display Modes. (. means logical AND;
" means fogical NOT.)

Display Modes

Text and High-Resolution and
Address Bit Low-Resolution Double-High-Resolution
A10 80STORE+ PAGEZ VA
A1l 80STORE'.PAGE2 VB
A12 0 Ve
A13] BOSTORE + PAGE2'
Al4 0 BOSTORE .PAGE2

238 Chapter 11: Hardware Implementation

1L L L W W W W W W 5 5

11.9.4 Video Display Modes

The different display modes all use the address-mapping
scheme described in section 11.9.3, but they use
different-sized memory areas in different locations.

Section 11.9.4 describes the addressing schemes and the
methods of generating the actual video signals for the different
display modes. Figure 11-21 illustrates the video display
circuits discussed in this section.

¢ A

11.9 The Video Display 239

Figure 11-21. Video Display Circuits

10}08UU05) uoisuedx3 08pIA

VIDD7 _
Ly {To TMG)
80COL_ (1o TMG) —" RAM
VIDD7 _ PRAS -
i SYNC* .
10U » -
VIDD6 WNDW, >
GR _
SEGB 25
SEROUT _
= p 22
- [2(8l2]. 2
LaNGsw _ (512121218 (8 |3 s
tKayboard}} rYYITVYTY OV VID VIDOUT
CHARGEN
PHO PHO s e M [}
F 'Ll . High-Resolution GND
2 Graphics
Vv c_,‘oc’ c SPI
:> VIDEO
LATGH i o
i Q’C?Q’ Low-Resu_IuiiDn -
Q 2 Graphics g
3 L= e
n) ng /s 01
a Video Bus = *
e 7 N 44 }—__.
TR V] Apple I Apple Il g
o &| | (primary) | (primary) i
-2'?' sat set Ll o
:> 80 <G \
LATCH w i
Fal Applelle | Applelle
&| | (aiternate) | (alternate) Parallel =
g1 3 ¥ Load
Pe) set set
PHO PH1 EOR / |
+ 11 shin
LANGSW LANGSW
Out
up down
VIDD6 LDPS*
&
VID7M &
VIDDT . T)
TMG =
F
{1ou) -——Hﬂi- GRE *~—>»
i TEXT ol
1VSOUND_
AUD a1
GND
/
240 | Chapter 11: Hardware Implementation

J0)98uu0n uojsuedxg capip

§
y
]
e
]
.
.
.
]
e
|
a

A i

|

Text Displays

The text and low-resolution graphics pages begin at memory
locations $400 and $800. Table 11-15 shows how the
display-mode signals control the address bits to produce these
addresses. Address bits A10 and A11 are controlled by the
settings of PAGE2 and 80STORE, the display-page and
80-column-video soft switches. Address bits A12, A13, and A14
are set to zero. Notice that 80STORE active inhibits PAGEZ2:
there is only one display page in 80-column mode.

The low-order six bits of each data byte reach the character
generator directly, via the video data bus VIDO-VID5. The two
high-order bits are modified by the IOU to select between the
primary and alternate character sets and are sent to the
character generator on lines RA9 and RA10.

The data for each row of characters are read eight times, once
for each of the eight lines of dots making up the row of
characters. The data bits are sent to the character generator
along with VA, VB, and VC, the low-order bits from the vertical
counter. For each character being displayed, the character
generator puts out one of eight stored bit patterns selected by
the three-bit number made up of VA, VB, and VC.

The bit patterns from the character generator are loaded into
the 74166 parallel-to-serial shift register and output as a serial
bit stream that goes to the video output circuit (Figure 11-21).
The shift register is controlled by signals named LDPS* (for load
parallel-to-serial shifter) and VID7M (for video 7 Mhz). In
40-column mode, LDPS* strobes the output of the character
generator into the shift register once each microsecond, and
VID7M shifts the bits out at 7 MHz (Figure 11-22).

The addressing for the 80-column display is exactly the same
as for the 40-column display: the 40 columns of display memory
in auxiliary memory are addressed in parallel with the

40 columns in main memory. The data from these two
memories reach the video data bus (lines VIDO-VID7) via
separate 74L5374 three-state buffers. These buffers are loaded
simultaneously (at the rising edge of ¢0), but their outputs are
sent to the character generator alternately by the falling edge
of 0 and ¢1. In 80-column mode, LDPS" loads data from the
character generator into the shift register twice during each
microsecond, once during ¢0 and once during ¢1, and VID7M
remains low, enabling the clock continuously at 14M

(Figure 11-23).

11.8 The Video Display 241

242

Low-Resolution Display

In the graphics modes, VA and VB are not used by the
character generator, so the 10U uses lines SEGA and SEGB to
transmit HO and HIRES®, as shown in Table 11-16.

Table 11-16. Character-Generator Control Signals

Display Mode SEGA SEGB SEGC
Text VA vB Ve
Graphics HO HIRES® vC

The low-resolution graphics display uses VC to divide the eight
display lines corresponding to a row of characters into two
groups of four lines each. Each row of data bytes is addressed
eight times, the same as in text mode, but each byte is
interpreted as two nibbles. Each nibble selects one of sixteen
colors. During the upper four of the eight display lines, VC is
low and the low-order nibble determines the color. During the
lower four display lines, VC is high and the high-order nibble
determines the color.

The bit patterns that produce the low-resolution colors are read
from the character-generator ROM in the same way the bit
patterns for characters are produced in text mode. The 74166
parallel-to-serial shift register converts the bit patterns to a
serial bit stream for the video circuits (Figure 11-21).

The video signal generated by the Apple llc includes a short
burst of 3.58 MHz signal that is used by an NTSC color menitor
or color TV set to generate a reference 3.58 MHz color signal.
The Apple lic's video signal produces color by interacting with
this 3.58 MHz signal inside the monitor or TV set. Different bit
patterns produce different colors by changing the duty cycles
and delays of the bit stream relative to the 3.58 MHz color
signal. To produce the small delays required for so many
different colors, the shift register runs at 14 MHz and shifts out
14 bits during each cycle of the 1 MHz data clock. To generate
a stream of fourteen bits from each eight-bit pattern read from
the ROM, the output of the shift register is connected back to
the register's serial input to repeat the same eight bits; the last
two bits are ignored the second time around.

Each bit pattern is output for the same amount of time as a
character: 1.02 microseconds. Because that is exactly enough
time for three and a half cycles of the 3.58 MHz color signal,
the phase relationship between the bit patterns and the signal

Chapter 11: Hardware Implementation

|8

Tl
L]

L o W | < U J ol WO o WO o o o ol o ol WO o o Y W Y ¢ O 4 S S

Lt

I o eI

changes by a half cycle for each successive pattern. To
compensate for this, the character generator puts out one of
two different bit patterns for each nibble, depending on the
state of HO, the low-order bit of the horizontal counter.

High-Resolution Display

The high-resolution graphics pages begin at memory locations
$2000 and $4000 (decimal 8192 and 16384). These page
addresses are selected by address bits A13 and A14. In
high-resolution mode, these address bits are controlled by
PAGE2 and BOSTORE, the signals controlled by the
display-page (PAGEZ2) and 80-column-video (80COL) soft
switches. As in text mode, BOSTORE inhibits addressing of the
second page because there is only one page of 80-column text
available for mixed mode.

In high-resolution graphics mode, the display data are still
stored in blocks like the one shown in Figure 11-20, but there
are eight of these blocks. As Tables 11-14 and 11-15 show,
vertical counts VA, VB, and VC are used for address bits
A10, A11, and A12, which address eight blocks of 1024 bytes
each. Remember that in the display VA, VB, and VC count
adjacent horizontal lines in groups of eight. This addressing
scheme maps each of those lines into a different 1024-byte
block.

It might help to think of this scheme as a kind of eight-way
multiplexer: it's as if eight text displays were combined to
produce a single high-resolution display, with each text display
providing one line of dots in turn, instead of a row of
characters.

The high-resolution bit patterns are produced by the
character-generator ROM. In this mode, the bit patterns simply
reproduce the seven bits of display data. The low-order six bits
of data reach the ROM via the video data bus VIDO-VID5. The
IOU sends the other two data bits to the ROM via RAS and
RA10.

The high-resolution colors described in Chapter 2 are produced
by the interaction between the video signal the bit patterns
generate and the 3.58 MHz color signal generated inside the
monitor or TV set. The high-resolution bit patterns are always
shifted out at 7 MHz, so each dot corresponds to a half-cycle of
the 3.58 MHz color signal. Any part of the video signal that
produces a single white dot between two black dots, or vice

11.9 The Video Display 243

= e e

P e e ———

versa, is effectively a short burst of 3.58 MHz and is therefore
displayed as color. In other words, a bit pattern consisting of
alternating ones and zeros gets displayed as a line of color. The
high-resolution graphics subroutines produce the appropriate bit
patterns by masking the data bits with alternating ones and
Zeros.

To produce different colors, the bit patterns must have different
phase relationships to the 3.58 MHz color signal. If alternating
ones and zeros produce a certain color, say green, then
reversing the pattern to zeros and ones will produce the
complementary color, purple. As in the low-resolution mode,
each bit pattern corresponds to three and a half cycles of the
color signal, so the phase relationship between the data bits
and the color signal changes by a half cycle for each
successive byte of data. Here, however, the bit patterns
produced by the hardware are the same for adjacent bytes: the
color compensation is performed by the high-resolution
software, which uses different color masks for data being
displayed in even and odd columns.

To produce other colors, bit patterns must have other timing
relationships to the 3.58 MHz color signal. In high-resolution
mode, the Apple llc produces two more colors by delaying the
output of the shift register by half a dot (70 ns), depending on
the high-order bit of the data byte being displayed. (The
high-order bit doesn't actually get displayed as a dot, because
at 7 MHz there is only time to shift out seven of the eight bits.)

As each byte of data is sent from the character generator to the
shift register, high-order data bit D7 is also sent to the TMG.

If D7 is off, the TMG transmits shift-register timing signals
LDPS*® and VID7M normally. If D7 is on, the TMG delays LDPS*
and VID7M by 70 nanoseconds, the time corresponding to half
a dot. The bit pattern that formerly produced green now
produces orange; the pattern for purple now produces blue.

A Note About Timing: For 80-column text, the shift register is
clocked at twice normal speed. When 80-column text is used
with graphics in mixed mode, the TMG controls shift-register
timing signals LDPS* and VID7M so that the graphics portion
of the display works correctly even when the text window is
in 80-column mode.

Chapter 11: Hardware Implementation

i

S 4 T T T A T A T A T { T A A A A TR A T A W !

i

[
L

(i

|
I

[

RGB stands for red, green and
blue and identifies a type of color
monitor that uses independent
inputs for the three primary colors

For further information about
double-high-resolution graphics
display, refer to the Bibliography.

Double-High-Resolution Display

Double-high-resolution graphics mode displays two bytes in the
time normally required for one, but it uses High-resolution
Graphics Pages 1 and 1X instead of Text and Low-resolution
Pages 1 and 1X.

Note: There is a second pair, HRP2 and HRP2X, which can
be used to display a second double-high-resolution page.

Double-high-resolution graphics mode displays each pair of data
bytes as 14 adjacent dots, seven from each byte. The
high-order bit (color-select bit) of each byte is ignored. The
auxiliary-memory byte is displayed first, so data from auxiliary
memory appears in columns 0-6, 14-20, and so on, up to
columns 547-552. Data from main memaory appears in

columns 7-13, 21-27, and so on, up to 553-559.

As in 80-column text, there are twice as many dots across the
display screen, so the dots are only half as wide. On a TV set
or low-bandwidth (less than 14 MHz) monitor, single dots will be
dimmer than normal.

Note: Except for some expensive RGB-type color monitors,
any video monitor with a bandwidth as high as 14 MHz will
be a monochrome monitor. Monochrome means one color: a
monochrome video monitor can have a screen color of white,
green, orange, or any other single color.

The main memory and auxiliary memory are connected to the
address bus in parallel, so both are activated during the display
cycle. The rising edge of ¢0 clocks a byte of main memory data
into the video latch, and a byte of auxiliary memory data into
the 80 latch (Figure 11-21).

Phi 1 enables output from the (auxiliary) 80 latch, and

0 enables output from the (main) video latch. Output from both
latches goes to CHARGEN, where GR and SEGB* select
high-resolution graphics. LDPS operates at 2 MHz in this mode,
alternately gating the auxiliary byte and main byte into the
parallel-to-serial shift register. VID7M is active (kept true) for
double-high-resolution display mode, so when it is ANDed

with 14M, the result is still 14M. The 14M serial clock signal
gates shift register output to VID, the video display hybrid
circuit, for output to the display device.

11.9 The Video Display 245

Figure 11-22. 7 MHz Video Timing Signals (40-Column, Low-Resolution and High-Resolution Display)

™

" -] (]}_cr-u Phase é B |

o1 —J VideoPhase | [| [

patagus X X

l

VIDEO LATGH X e

LDPS* AND ENB0" 1

VIDEO BUS into CHARGEN) 4

OUTPUT BUS into SPI (Shift Register)

SPI Serlal Output (VID7M and 14M) | | | | | | I ‘ | I l | | | l ‘

246 Chapter 11: Hardware Implementation

[hEiatRhe.

I

TOT B TATL TR T I TR TN

i

Figure 11-23. 14 MHz Video Timing Signals (80-Column and Double-High-Resolution Display)

wa [TUTUUUUTUU UL Urrinrunuururuuy

41 — Video Phase

—

|

2= T CPU Phase é [|
I
'

DATA BUS
VIDEQ LATCH X D, T,
ALTERNATE BUSX_ALT, X
1 Y
80 LATCH X ALT, S ALT,
LDPS"
(ENBO* always on) U —ll_l U
VIDEO BUS into CHARGEN 4 Dy X AT, XD,
OUTPUT BUS inte SPI (Shift Register) X Do > ALTy D,

SPI Serial Qutput (14M Clock)

11.9 The Video Display

247

VID is a video-amplifier hybrid
circuit.

@ O EE

11.9.5 Video Output Signals

The stream of video data generated by the display circuits
described above goes to a hybrid circuit (VID) that adjusts the
signals to the proper amplitudes and conditions the color burst.

The resulting video signal is an NTSC-compatible
composite-video signal that can be displayed on a standard
video monitor. The signal is similar to the EIA (Electronic
Industries Association) standard positive composite video. This
signal is available in two places in the Apple llc (Figure 11-24):

e at the phono jack on the back of the Apple llc

¢ at the video expansion connector (pin 12) on the back panel.

(Table 11-17).

Figure 11-24. Video Output Back Panel Connectors

IIB .| | ® ® ® 2 ® @ & @ ;'.Lbﬁﬁ'ilt?ﬂ!-ﬂﬁ'!
9 * e e o 0 0 0 @ , ® ¢ & 8 8 s 09 |
— - | - S w— . 4
| VIDOUT
Back Panel Video Video Output Connector
Expansion Connector (For a Monitor)

248

(For an RF Modulator
or Special Adaptor)
(See Fig. 11-25)

Monitor Output

The sleeve of the phono jack at the center of the Apple llc
back panel is connected to ground and the tip is connected to
the video output through a resistor network that attenuates it to
about 1 volt and matches its impedance to 75 ohms. This
arrangement is suitable for most video monitors.

Chapter 11: Hardware Implementation

0 Y W W Y W Y O O O O 1

L
L
L
L
I
-

Video Expansion Output

The back panel of the Apple lic has a DB-15 connector for
sophisticated video interfaces external to the computer.
Figure 11-25 shows the pin assignments for this connector;
Table 11-17 describes the signals.

In Table 11-17, the column labeled Deriv indicates what clock
signals the video signals are derived from. LDPS, CREF and
PRAS have a maximum delay of 30 ns from the appropriate
14 MHz rising edge. SEROUT is clocked out of a 74L5166 by
the rising edge of 14M and has a maximum delay of 35 ns.
VIDD7 is driven from a 74L5374 and has a maximum delay of
28 ns from the rising and (if 80-column) falling edges of ¢1.

To align CREF so it is in the same phase at the beginning of
every line, certain clock signals must be stretched. This stretch
is for one 7M cycle (140 ns), and occurs at the end of each
video line. All timing signals except 14M, 7M and CREF are
stretched.

Warning

The signals at the DB-15 on the Apple llc are not the same as
those at the DB-15 on the Apple Ili. Do not attempt to plug a
cable intended for one into the other.

Warning

Several of these signals, such as 14 MHz, must be buffered
within about four inches (10 cm) of the back panel connector—
preferably inside a container directly connected to the back
panel. For technical information, contact Apple Technical
Support.

11.9 The Video Display 249

250

Figure 11-25. The Video Expansion Connector Pinouts

a 7 6 5 4 3 2 1
® o @ & & & B @
15 14 13 12 11 10 9
" o ® & & @& @

Pin Signal Pin Signal

1 TEXT 9 PRAS"®

2 14MH 10 GR

3 SYNC* 11 SEROUT*
4 SEGB 12 NTSC

5 1VSOUND 13 GND

6 LDPS* 14 vIDD7

T WNDW* 15 CREF

8 +12V

Chapter 11: Hardware Implementation

WG WL W VL VL W VL 5 W B 9 S

l

[

R RN

[

1

- ..

i

Table 11-17. The Video Expansion Connector Signals

Pin

13
14

11.9 The Video Display

Deriv

|,'Iﬂ

Q3

PRAS

14M

PRAS

14MH

PRAS

0

14M

Name

TEXT

14M

SYNC*

SEGB

1VSOUND

LDPS*

WNDW*

+12 V

PRAS*

GR

SEROUT*

NTSC

GND
VIDD7

CREF

Description

Video text signal from TMG; set
to inverse of GR, except in
double-high-resolution mode

14 MHz master timing signal from
the system oscillator

Display horizontal and vertical
synchronization signal from 10U
pin 39

Display vertical counter bit from
10U pin 4, in text mode indicates
second low-order vertical counter;
in graphics mode indicates
low-resolution

One-volt sound signal from pin 5
of the audio hybrid circuit (AUD)

Video shift-register load enable
from pin 12 of TMG

Active area display blanking;
includes both horizontal and
vertical blanking

Regulated +12 volts DC.; can
drive 350 mA

RAM row-address strobe from
TMG pin 19

Graphics mode enable from 10U
pin 2

Serialized character-generator
output from pin 1 of the 74LS166
shift register

Composite NTSC video signal
from VID hybrid chip

Ground reference and supply

From 74L5374 video latch, causes
half-dot shift if high

Color reference signal from TMG
pin 3; 3.58 MHz

251

Warning

Use caution—The maximum allowable current drain of +12 V
regulated power at the video expansion connector is

300 milliamps. If the external device draws more than this, it
can damage the computer or cause the power supply to shut
down.

M 11.10 Disk 170

252

Disk I/O—for both the built-in and the external drive—is
supported by the IWM disk controller unit. The external drive is
attached via a DB-19 connector. Figure 11-26 shows this
connector. Table 11-18 describes the pin assignments. Supply
voltages come from the power supply. all other signals come
from the IWM, described in section 11.5.5.

Figure 11-26. Disk Drive Connector

Pin Signal Pin Signal
1,2,3.4 GND 13 SEEKPH2
5 —12V 14 SEEKPH3
6 + 5V 15 WRREQ*
7.8 + 12V 16 N.C.

9 EXTINT® 17 DR2*

10 WRPROT 18 RDDATA

11 SEEKPHO 19 WRDATA

12 SEEKPH1

Warning

The power available at this connector is for a Disk Il or similar
drive only. Do not use power from the external disk connector
for any other purpose—you may damage the internal voltage
converter. To derive external power for an attached device, use
one of the other connectors and observe the current limits
given in this manual.

Chapter 11: Hardware Implementation

W 1Y Y W 1 W W W O 5 1

Table 11-18. Disk Drive Connector Signals. **Refer to the warning preceding this

table

Connector
Pin Number

1,234
B

7.8

9

10
11-14
15

17

18

Name

GND
+5v
12
EXTINT®
WRPROT
PHO-4
WRREQ"
DR1®
RDDATA
WRDATA

Description

Ground reference and supply
+5 volt supply*

+12 volt supply**

External interrupt
Write-protect input

Motor phase 0-4 output
Write Request

Drive 1 select

Read data input

Write data output

W 11.11 serial 1/0

The RS-232 signals are defined in
the Glossary.

Apple lic has built into it two 6551 Asynchronous
Communication Interface Adapters (ACIA) and supporting input
and output buffers for full-duplex serial communication.

Figure 11-27 is a block diagram of the Apple llc serial ports.
ACIA outputs are buffered by a 1448 quad line driver. Similarly,
ACIA inputs are buffered by a 1489 quad line receiver.

Figure 11-28 is a detail block diagram of the 6551 ACIA. The
registers are described in sections 11.11.1 through 11.11.4.

11.11 Serial I/O

[253

Figure 11-27. Serial Fort Circuits

£\

EXTINT®

{From External Disk Drive Connector)

sNng ss8IPPY

sng eleq

254

(0 5

RESET* {7

Chapter 11: Hardware Implementation

2.5 DSR* .._[
Al
= Pin - |
i T*D - TDIB_ 5
= DTR1B i
/1\‘: : s 1488 -1 13
DO-7 ACIA | RxD me . B
SER1 _"DCD‘ (Serial DSR1B 5
R/W ~ SER* i 2w - S . |
_'_410 _ | Buffer) -
> =
IRQ BCLK BN =
CTS5* |
e
RESET*
il
et
]
1aM T4ALS161 || | GLU g
- |
et
-y
|
J—
ek
IRQ* - .
+0 BCLK b
AW SEH" 1489 .
= (Serial TO2B_ >
AGiA ATs Input DIRZB_ ¢ |v
ACIA p . T —
DOo-7 ,HID Butfer) RD2B 4 o ek
SER2 _DCD-* DSRZB s
AD |
Al ;—‘
A5 . ol
- g?g‘ lKSTHB (From Keyboard) -
,.‘
i
i
et
..‘
[
=i

Figure 11-28. 6551 ACIA Block Diagram. Copyright 1978, Synertek Inc.
Used by permission of Synertek Inc., 3001 Stender, Santa Clara, CA 95052.

2 —p]
R/W*® ———p] Sel
cs, elect
and
CS* —
Control
RSy ———p] Logi
RS, ogic
RES*
DBy +—
5 Data
: Bus
1 Buffers

DB; <t

Transmit .
Control cTS
Transmit Transmit
p. Data . Shift — TxD
Register Register
— RO
Status Interrupt H
Register Logic DCD
[+—————— DSR"
—i Hx
Control Baud Rate
:> Register Generator XTAL1
[e——— XTAL2
Receive Receive
Data Shift RxD
Register : Register
Command Receive
Register Control
DTR*
RTS"

11.11 Serial 1/O

[255

Figure 11-29. The 6551 Pinouts

GND
AS
SER*
RESET*
N.C.
BCLK
N.C.
RTS*
GND
T=D
N.C.
RxD
AD

Al

256 |

[- T = S R R R

(

28
27
26
25
24
23
22
21
20
19
18
17
16
15

R/W*
¢0
IRGQ"
D7
D6
D5
D4
D3
D2
D1
Do
DsSR*
Dco*
+5V

The 6551 pin assignments are shown in Figure 11-29 and
described in Table 11-19. Note that the two 6551s are not used
in exactly the same way—each one supports a different set of
interrupts.

Port 1 reads external interrupts (EXTINT") on its Data Set
Ready (DSR) pin. This input is tied to +5 V through a 3.3 Kohm
pullup resistor.

Table 11-19. The 6551 Signal Descriptions

Pin Number Name Description

1 GND Power and signal commaon ground

2 A4 Address line 4 to select serial
port 1

A5 Address line 5 to select serial

port 2

3 SER* Serial device select from GLU

4 RESET* Resets both serial ports

5 No connection

6 BCLK Baud rate clock from GLU

7 No connection

B RTS" Reguest to Send output

] cTS" Clear to Send input

10 TXD Transmit Data output

1 - No connection

12 RXD Receive Data input

13,14 ADA1 Address lines 0 and 1

15 +5V +5 volt supply

16 DSR Data Set Ready input

17 EXTINT® External interrupt (port 1 ACIA)

KSTRE Keyboard strobe input (port 2

ACIA; Appendix E)

18-25 DO-D7 Eight-bit data bus

26 IRQ" Interrupt Regueast input

27 PHO Phase O clock pulse

28 R/wW* Read/write select input

Chapter 11: Hardware Implementation

TLOFLO'EAOELO'ENO'ELOPENO'ENOCEN YRR O'ENOCEACEY PRRERER

The back panel connectors for both serial ports are 5-pin DIN
jacks. The pin assignments are shown in Figure 11-30 and
described in Table 11-20.

Figure 11-30. Serial Port Connectors

Pin Port 1 Port 2

DTR1B DTR2B
TD1B TD2B
GND GND
RD1B RD2B
DSR1B DSR2B

L5 I - &

Table 11-20. Serial Port Connector Signals

Pin Number Name Description

i DTR1B Data Terminal Ready output
DTR2B

2 TD1B Transmit Data output
TD2B

3 GND Power and signal common

4 RD1B Read Data input
RD2B

5 DSR1B Data Set Ready input
DSR2B

11.11 Serial 1/O 257

258

11.11.1 ACIA Control Register

Figure 11-31 shows the bit assignments for the ACIA Control
Register, which the hardware locates at address $C09B for
serial port 1, and $COAB for serial port 2. This register
determines the number of data and stop bits the ACIA will
transmit and receive, and the clock source and baud rate to use
for data transfer.

The receiver clock source is derived from the Apple lic’'s TMG
chip; the resulting baud rates are equal to or up to 2% lower
than the nominal rate. (The EIA standard allows plus or

minus 2% variation.) If an Apple llc serial port is used with a
modem that is 2% above the nominal rate, framing errors can
occur, especially at 1200 baud and above, when using eight
data bits. It may be necessary to select a lower baud rate for
8-bit binary data transfers.

Chapter 11: Hardware Implementation

tt

‘T Tl

'L 'Ev 'L

3 W Y O O O W O W Y Y

Ll Lr Lr ol

Figure 11-31. ACIA Control Register. Copyright 1978, Synertek Inc.
Used by permission of Synertek Inc., 3001 Stender, Santa Clara, CA 95052.

Port 1 = $C09B
Port 2 = $COAB
Control Reglster

.'Ll

& Y 5 Y 5 1 Y Y 8 Y Y L T A

Ll

[7lelsJals]2]1T0]

Stop Bits L ! Baud Rate Generator
0= 1 stop bit ojlo|lo]o 16x% External Clock
1= 2stop bits oJofo]1 50 baud

1 stop bit if word length
= B bits and parity** 010 1 0 5
1% stop bits if word length o 108.92
= 5 bits and no parity 0 1 0 0 134.58
Word Length g L 0 ! il
300
Bit Data Word g : : U
6|5 Length 0 1 1 1 600
0|0] 1 0 0 0 1200
K 7 1 0 0 1 1800
1o P 1] 0] 0 2400
111 5 1 0 1 1 3600
1 1 0 0 4800

Receiver Clock Source 11110l 7200
0 = External receiver clock 1 1 1 0 9600
1 = Baud rate generator 1 1 1 1 19200

**This allows for 9-bit transmission (B data plus parity).

7 3 0
Hardware Reset 0 0 0|0

Program Reset - | -

11.11 Serial I/O

259

11.11.2 ACIA Command Register

Figure 11-32 shows the bit assignments for the ACIA Command
register, which the hardware locates at address $CO9A for
serial port 1, and at $COAA for serial port 2. This register
controls specific transmit and receive functions: parity checking,
echoing input to output, allowing transmit and receive interrupts,
and setting levels for Data Terminal Ready and Request to
Send.

Figure 11-32. ACIA Command Register. Copyright 1978, Synertek Inc.
Used by permission of Synertek Inc., 3001 Stender, Santa Clara, CA 95052.

Port 1 = SCOBA
Port 2 = $C0AA
Command Register

[7e]s]afala]i1fo]

—
Parity Check Gaontrols Data Terminal Ready
Bit Operation 0 Disable recelver and all
71615 interrupts (DTR* high)
Parity disabled—no parity bit 1 Enable receiver and all
= N 0 generated, no parity bit received intarrupts (DTR* low)
d i itt
o|o] Odd parity received and transmitted Receiver Interrupt Enable
o 1 1 Even parity received and transmitted 0 — IRQ" interrupt enabled from bit 3
1 0 1 MARK parity bit transmitted; of status register
received parity check disabled 1 IRQ" interrupt disabled
3 4 5 SPAGE parity bit transmitted,
received parity check disabled Transmitter Controls
Bit Transmit RIS Transmitter
3| 2 Interrupt Level
o| o0 Disabled High ot
Normal Echo Mode of 1 Enabled Low On
for Receiver 1T o Disabled Tow O
0= Normal 1 1 Disabled Low Transmit BAK
1= Echo (bits 2 and 3 must be zero)
& 4 3 2 1 o
HardwareReset |0 (O | O J OO |0]JO| D
Program Resel = |.= - ojojofo0

260 Chapter 11: Hardware Implementation

T Y W W YW W O W W O 0 O

11.11.3 ACIA Status Register

Figure 11-33 shows the bit assignments for the ACIA Status
Register, which is hard-wired to address $C099 for serial
port 1, and $COAS for serial port 2. This register reports the
condition of the transmit/receive register, errors detected
during data transfer, and the level of the Data Carrier Detect,
Data Set Ready and interrupt request lines.

r

Figure 11-33. ACIA Status Register. Copyright 1978, Synertek Inc.
Used by permission of Synertek Inc., 3001 Stender, Santa Clara, CA 95052

t FIs[s[T] Port2 - 3G0AS

| Status Set By Cleared By
= Parityerrort |° _ NOEMOT | it clearing**
4 1 = Error e 9
0 = No error T
T . Framing errort 1 = Efioe Self-clearing
r— 0 = No error e
Overrunt Self-clearing
1 = Error
Receive Data, |0 = Not full Reading receive
Register full 1= Full data register
Transmit Data, |0 = Not empty Writing to transmit
Register empty |1 = Empty data register
o 1 = DCD* high
state
" . Not resettable;
DSR* 1 ben. o™ | reflects DsR"
'9 state
0 = No interrupt | Reading status
IRQ : .
1 = Interrupt register

T No interrupt generated for these conditions.
** Cleared automatically after a read of RDR
and the next error-free receipt of data.

Hardware Reset | 0 | 0 0|0 |Oo|O0O|O|O
Program Reset - | - - | = . = 2 =

11.11 Serial 1/O 261

11.11.4 ACIA Transmit/Receive Register

Each ACIA uses the same address—$C098 for serial port 1,
$COAS8 for serial port 2—as temporary data storage for both
transmission and reception of data.

When the register is used for transmitting data, bit 0 is the
leading bit to be transmitted; unused data bits are the
high-order bits, which are ignored.

When the register is used for receiving data, bit 0 is the first bit
received: unused data bits are the high-order bits, which are set
to 0. Parity bits never appear in the receive data register; they
are stripped off after being used for external parity checking.

. 11.12 Mouse Input

2621

The mouse is a hand-held X-Y pointing device that can be rolled
along a flat surface. It has an attached pushbutton. This section
describes how mouse movement and direction can be detected
and interpreted.

A mouse has a ball inside its housing that protrudes a small
distance so that its turning corresponds to mouse movements
across a tabletop. Two wheels inside the housing, set at
90-degree angles to each other, follow movements of the ball;
this causes two disks to rotate. The disks have rectangular
holes arranged near their edges, making them resemble circular
slide mounts used with stereoscopic slide viewers.

The light from a tiny infrared emitter reaches a photoreceptor
whenever one of the holes on the disk lies between them. An
internal circuit in the mouse causes the resulting voltage to
swing quickly to a 1 or a 0 value as soon as a certain threshold
is crossed. The result is something approximating a square
wave (Figure 11-34) that varies directly with the speed of mouse
movement. One of these indicates the X component (X0) of
mouse movement; the other, the Y component (Y0).

Under program control, either the rising edge or the falling edge
of each square wave can cause an interrupt, which the firmware
handles by updating a counter. However, the program needs to

know whether to add or to subtract 1 from a counter; that is, it

needs to know the direction of X or Y movement.

T O O W W W O 0 50 5

b
-

Chapter 11: Hardware Implementation

-

Figure 11-34. Sample Mouse Waveform

[. Movement
Waveform

=

&

19

Mouse
Speed

There is a second infrared emitter/photoreceptor pair almost
180 degrees opposite the first pair for each disk. These pairs
are positioned in such a way that the square waves they
generate are approximately a quarter-wave offset from their
respective movement waves (Figure 11-35). These waveforms
are called X1 (X direction) and Y1 (Y direction).

[

F
i

When a rising edge of X0 causes an interrupt, a mouse-driver
program can immediately check whether X1 is 0 (indicating a
movement to the right) or 1 (indicating a movement to the left).
Similarly, the mouse driver can read Y1 immediately after a

A

. Y0 interrupt to determine whether the mouse moved up or
- down one count along the Y axis.
=3 Figure 11-35. Mouse Movement and Direction Waveforms

| &

4=

Mouse
\anemenl

+X

X0
(XMOVE)

5

—_— X
X1
(XDIR)
Y0
{YMOVE)
-— Y
Y1
(YDIR)

11.12 Mouse Input 263

264

Figure 11-36 shows the pin assignments for the mouse DB-9
connector on the back panel. Table 11-21 gives the signal

names and descriptions.

Figure 11-36. Mouse Connector

Pin Signal

MOUSEID*
+5V

GND

XDIR
XMOVE
(N.C.)
Msw*
¥DIR
¥YMOVE

Wm~ ;oW =

Table 11-21. Mouse Connector

DB-9 Signal
Pin Number Name
1 MOUSEID®
2 +5V
3 GND
El X1

5 X0

5]

7 MSw*
8 ¥1

9 Y0

Description

Mouse identifier: when active,
disables NE556 hand controller
timer.

Total current drain from this pin
must not exceed 100 mA.

System ground

Mouse X-direction indicator
Mouse X-movement interrupt
Mouse button

Mouse button

Mouse Y-direction indicator

Mouse Y movement interrupt

Chapter 11: Hardware Implementation

L L W WL W W W W W W W 5 {

L

Figure 11-37 shows the mouse and hand control circuitry with
the mouse circuits highlighted. Figure 11-38 illustrates the
values of the mouse-button circuit when the button is pressed
or not pressed. Pressing the button disables the NE556 by
pulling the reset comparator threshold value up so that it cannot
reset the flip flop. As a result the mouse-button input value
remains at a TTL level.

Figure 11-37. Mouse Circuits

AD §
Al ﬁ
COo6X Az |@
m
R I T
In ODF_
3 XDIR 8
+5 SJKa + 5
. 2 240 16 F 22kn i@
' 3249 ~
' l -
: [T
. GAMESWO/MSW | ; Bto 1
490 . 14j MUX
220-470 0 +5 ey
248 ~ -
- 2a0d4___ _13] OAPL{[&))
1 150 K 1t 1K @ =]
. g BDLY/YDIR o D7 |2
150 K {L PDLO/XMOVE 55 g
5 DISGHARGE ‘5 "
L tS s ——— 'E-f-‘"‘ THRESHOLD A
L] 1
+5 g YMOVE Lol - 5 i 12] 4 COTX o our = -
| X rem
+5 & 1
e GAMESW1/MOUSEID" Z 374 LelcraL JL T 1KD
: 1 B —»{ TRIG ouT 7]
= 4 0T IS CHARGE
10 ISCHARGE
220-470 11 L5 - L P RESHOL D
|- 5Y 254 s =
a7l g KR
SJKb CAPL([s))
2 1K i}
3 ¥ 10
470 1! 3 B0/40 Column
GND Switch

11.12 Mouse Input 265

Figure 11-38. Mouse Button Signals

Input Current 25

(mA)

Chapter 11: Hardware Implementation

20

15

10

15

10

1
(5V,21.4mA)

5 5

Input Voltage
{Volts)

(5V,14.3mA)

(Volts)

L L L L Y 4 Y (L { T L Y O W Y 9

B 17.13 Hand Controller Input

Several input signals that are individually controlled via soft
switches are collectively referred to as the hand controller
(game) signals. These signals arrive in the Apple llc via the
same DB-9 connector as the one used for the mouse
(section 11.12), but the Apple llc interprets these signals
differently.

The DB-9 connector pin assignments and signal descriptions,
as used for hand control input, appear in Figure 11-39 and
Table 11-22.

Even though they are normally used for hand controls, these
signals can be used for other simple |/O applications. There are
two one-bit switch inputs, labeled SWO0 and SW1, and two
analog inputs, called paddles and labeled PDLO and PDL1.
Figure 11-40 shows how to connect the one-bit switch inputs
for compatibility with all other Apple Il series computers.

The switch inputs are multiplexed by a 74LS251 8-to-1
multiplexer enabled by the CO6X* signal from the MMU.
Depending on the low-order address, the appropriate game
input is connected to bit 7 of the data bus. Figure 11-41 shows
the mouse and hand control circuitry with the hand control
circuits highlighted. Figure 11-42 illustrates the values of the
hand-control switch inputs when the switch is open or closed.

Figure 11-39. Hand Controfier Connector

Pin Signal

GAMESW1

+ 5V

GND

Not used for
hand controls

PDLO

(N.C.)

GAMESWO

PDL1

Mot used for
hand controls

B R -

00~

11.13 Hand Controller Input [267

Table 11-22. Hand Control Connector Signals

Connector Signal

Pin Number Name Description

1 GAMESWA Switch input 1 {sometimes called
paddle button 1)

2 + 5V +5 V power supply. Total current
drain from this pin must not
exceed 100 mA.

3 GND System ground

4.9 . Not used for hand controls

58 PDLO and PDL1 Hand control inputs. Each of these
must be connected to a 150 Kohm
variable resistor connected
to +5V.

5] N.C. Not connected

GAMESWOD Switch input 0 (sometimes called

paddle button 0)
Figure 11-40. How to Connect Switch Inputs

+5

:

S

Vee =0.3V

470
=30mA
Switch: OK Saturated: OK
1 I_l I_l
— > e ’ ‘M—V w—ﬁ_
Schottky: NO Ground Level: Emitter Follower: NO

268 Chapter 11: Hardware Implementation

gL L W W 1 W W W W O W W

1
I

Famc

1

-

!E'J?

Figure 11-41. Hand Control Circuits

11.13 Hand Controller Input

Ia
470 0 % 80/40 Column
Switch

a0 |&
(=%
Al |13
g
CO8X ey b
m
| il =
n QE
XDIR "
- b5
g 22K
- 13
r5
GAMESWO/MSW* 3 279 s
34% MUX
5
i
oaPL{[G]}
1K 11
PDL1/YDIR - o7
POLO/XMOVE S5
5 : DISCHARGE LB
: THRESHOLD -
854 [£— — 53] - i
Lol ——— . 12 [ELLESS BTN ouT — 5
7 o CTAL 55
. pmem. | "
h 5 1 | S :
f + 3 ar4 1K @
| GAMESW1/MOUSEID" 2 7 il s i
512 COTX
7 10 DISCHARGE
+5 *--‘ ¥— riresnoln
LEY as4 e i
g71 18)
SJKbD
2

B

270

Figure 11-42. Hand Control Signals

Input Current 25 1
(mA) (5V,21.4mA)
20

15

.3V,6.2mA)

— (5V,14.3mA)
10}
| (3.3v.19

Input Voltage
(Volts)

T W O L L W Y L W W Y Y O W Y O

Chapter 11: Hardware Implementation

l

The hand-control inputs are connected to the timing inputs of
an NE556 dual analog timer. Addressing $C07X sends a signal
from MMU pin 22 that resets both timers and causes their
outputs to go to 1 (high). A variable resistance of up to

150 Kohms connected between one of these inputs and the
+5 V supply controls the charging time of one of the two
0.022 microfarad capacitors.

When the voltage on the capacitor passes a certain threshold,
the output of the NE556 changes back to 0 (low). Programs can
determine the setting of a variable resistor by resetting the
timers and then counting time until the selected timer input
changes from high to low. The resulting count is proportional to
the resistance.

A Warning

The only way to ensure correct paddle values is to make sure
the output of the paddle you intend to read is low before you
trigger the timer. Triggering the timer starts the charging cycle
for the capacitor in each paddle circuit; the cycle for one may
not be completed by the time you have read the other. If you
retrigger or read the other paddle too soon (that is, in less than
3 ms), you will get a false value for it

M 11.14 schematic Diagrams

The following pages contain schematic diagrams for the
Apple lic.

11.14 Schematic Diagrams 271

BB R R U

| . . _ v
=/, _ -E600-050 [o[INON | simwd -
I I @ :ﬁ w0, = m
LT i o :% #l .ldm\l 51 [ol %. il 1
.......... Nkﬁﬁ 2 mﬂu hﬂq mﬂﬂ 1 i
=== L R ; ; g : : [J i B, 0
Ll el i __ o ._._ o W | L — o L VBT i
- = L — i L — i L L
s EITENELD, . L .-n_ ”.. B [1] EY L] [l Loy
3 T il L]] B | L] nﬂs?..
= L T W L - v |7 — . ¥
bl ;1 bl L e T e] A G
- [[= 1 3 ‘ £ [sy
a ¥ L] L 5 L 5 LI L iy
m L3 T | T T L] . I | T 1 L] Ty 8 —
I E T 1 € T 1 T L3 .
m 3
_huq a
LT [
- C e AL
_I'...i T
_ i
F_ P
uﬂnn-::n.-'uﬂl‘.lﬁ. My
T
10 W] s
...... s E w1 L o=
- e S— ey i .
______ T I 173 rad =] [b
18- | L ey S I
AW o (BT e T
e T L ™ am |
e o |
R gy M .-__....m__l. T o IM/
@ Ty L bt |y
w1 gy - G el T
121 gy et i - b [y
......... ol H T v =g
12| T ' kad T
R o] L Li 1)
......... £ ®|] L ta) .
g | M
] .:__.‘g _ P -
| LTt
: _I 2 T
wl ;
——_——
T
ﬂ:.. ."._ s irn.._:.w..“._inaﬂ_:f.n:..@.
. i T e syemrard ! h L3NG WO
o btu%:..wu_-_._.ﬂ.._._....-..._uu—ﬁl-h_. CLEEE e 1] "h:nl,_-. vl N
R P 1t a e g NN 7 Lz et ST TR TN
...—..-ﬂw _-:"u"i L _n...“ b ST WS D D B
R O 0L WIRIAT T T WA EISIEE T
mid GMCAAREIEIT | 300 J
4 FNEA A8 71 QR lEnD5 | R e T T8
| ISTITIN Vi] P
== — =
_ : t

272

|
[|
i Y ¥ . _ ¥
m\N T-EE00-050 |a|INON | swwa T
: = o e Pt A
o3diay CTE A | 5 £ > l_._ e L L
il T I A " P - A l_l ._1 Fa A
pIPL L ED ; A) N T
.] =T e\ b y e ATTTT; g TR
s Vil Yin et 4" FLLLL bt
22l it = | L} [HLLLLITT
= = T Lo L _in_ i = W
o : | WEAZEs
2 smgncweo odadll e, e |
[—— ==

g A S PR A PO D P O D PR PR PR B P

|

d} _ v-i600-050 [a]3NON | siwaa
_E.: o834
u___..-!u Um i
]
" L]

4
& e

L

QTE_—H l..'.'-.'.“m.q

h -l o8

g

qi5-8"
S vxI-_D_n*
ol (5 IR
™ = LD
e J“.P.'.‘.
3 Fr s

s
r e e
L1 ot
o -

2y

o ﬂlll._ = E..“ -

¥

=
mu

g 13|
=T Wl..-_:.!
Ll am o v
o TEL
sl
— |
T VS s
B 11 B
T
......
i AL
.y__ h
g 13128
‘-Ul—_-a—n.«
— e
O, =gt

|EPRRAE PR AP S TR R P S

274

. ¥ s T
i,
0 _._. L
‘e e
: = ST
v "
I " * =
" v Al
.. 1 A — !
&
i S
te
%]
i &
= L q
1 I E—— #| [.
L S |
| | — e
£
5 - &
.- | r 1 | _ t i -
3 -
- = R I FE E |
1] LR] Lo | _
= 4 ' y _ .\
™ | o] T
L] T - Y |
0 - - |
[E & |
= |
=
|
—_ e T T
2 P | 1n
- [} | _l—l.....]) .
® =7 il i far |
=T —s s it
e | = h
T =T e i
Fal Lo 3 =]
= - v y Ee i il
| 1 ! mee - - oo e ..|.n\“”q
o . o W g | new (4] T
L B —] ¥ [n_ ik _ |
P L J | = ETW
! LY MO0 [[
= Y : - v
' o T skl = EY
- .__ —a
- s ™
W _G -
Py I e
v— re I
- i = i] &
VL B — _———
e Bl = 4 — h - |
ﬁl .

276

(2 M gfappia computar nc

B - g
§+-fyg| reso | (CONMECTQRS)
[Feunis | NONE |0]| 050-co93-0 | 56)
1

L Y 1 W O W O W Y W

7L I =1 S ™1 B S ¥\ N S % B ¥ [% S 4 Sy % S & 't 4

T

L

References to entries in Volume 2 are in square brackets []-

Cast of Characters

* (asterisk) 179
\ (backslash) 59

— (blinking underscore cursor) 154

= (greater than sign) 59
? (question mark) 58, 59
| (right bracket) 59

A

A register 17
accumulator 17
ACIA 134, 148, 253-262, [63]
block diagram 255
interrupts [60]
address bus 12, 213
AKD 218-219
ALTCHAR 104-105, 218, [73]
alternate character set 68, [73]
ALTZP 25, 26, 216, [46)
analog inputs 176, [68]
annunciator outputs [76]
ANSI [84]
any-key-down 79, 229
flag [66]
Apple Extended 80-Column
Text Card [67, 74]
Apple Language Card [64]

Index

Apple |l series differences [60-78]
Apple llc
block diagram 210
care of 205-206
differences from Apple lle [61-78]
expansion 2
Apple lle ROMs [72]
Applesoft & commands 52
Applesoft BASIC 59, [16-18, 40]
BASIC interpreter 24
Applesoft interpreter 21, 224-225
arithmetic, hexadecimal 193
ASCIl [71, 83, 86-87]
character set 79, [97, 114-122]
assemblers 199
assembly language, and mouse 171
asterisk (*) 179
automatic line feed 131, 145
automatic repeat 3
Autostart ROM [69]
auxiliary memory screen holes
135-136, 149-150
See also screen holes
auxiliary RAM 20
AUXMOVE See MOVEAUX
AY-3600-type keyboard decoder 229

279

Xapu.l

280

B

B command 131, 144

back panel 8,9

backslash (1) 59, 62

backspace 62

bank 25

bank-switched memory 22, [64, 69]

BANK2 216

BASIC 130, 163, 175-177, 179, 180,
192, [114]

and assembly language support 171

and hand controls 173
and mouse 163, 172
BASICS disk [39, 69]
baud rate 137, 258
BCLK 256
BELL 84
BELL1 84
BIT instruction [3]
bits [103]
blanking intervals 233
blinking underscore cursor () 154
block diagrams
ACIA 255
Apple lic 210
BREAK 132, 137, 145
break instructions [48]
BREAK signal [75]
BRK 75, 189, [43]
buffer 59
serial I/O [75]
built-in diagnostics [62]
built-in disk drive 8
built-in self-tests [65]
button interrupt mode 164, 167
bypassing firmware [58-60]
byte(s) [103, 104]
power-up 51

C

CO6X 267
co7X 217
C3COUT1 55, 64

Index

C3KEYIN 55

CALL statement 179

Canadian keyboard [91]

cancel line 62

4,79, [84]

card(s) [74. 75]

care of computer 205-206
carriage return 139, 152

carrier 137

CAS (column-address strobe) 228

cassette input and output [67-68, 77]

certifications [99]
CH (cursor horizontal) 63
changing memory contents 184
changing registers 190
character(s)

flashing 68

generator 241

inverse 68

normal 68

sets [71, 73]
chips, custom [78]
clamping boundaries 171
CLAMPMOUSE 168
CLEARMOUSE 168
CLEOLZ 116
clock 211

master 213

system 213
CLREOL 1186
CLRECP 116
CLRSCR 117
CLRTOP 117
code conversions [114-122]
cold-start procedure 49, 50
colors

high-resolution 243

low-resolution 242, [63]
command character 146, [75]
command register 134, 148, 260
Communication Card [74]
communication port 141
comparing data in memory 188-189

mMTMTTTTT T T T T T

7 SUBT S T

14

kI k' k' Al Rl Rl Rl R kI R R

connector(s)
back panel 8-9
game [76]
power 207
serial port 257
CONTINUE BASIC command 192
4,79, 229
transferring 42-43
control characters 64
control register 134, 148, 258-259
CONTROL-A, as command character
143
[53]
62
CONTROL-|, as command character
130, 132
CONTROL-K, as command character
193
56, 126, 142
as command character 193
155
[53]
156, 159
62

197
commands 52

CONTROL RESET 50

conversion, number [106]

COUT 55, 117, 191

COUT1 55, 68, 117

CP/M [40]

CPU See 65C02

CR See carriage return

CREF 220, 221, 251

CROUT 117

CROUT1 117

CSW 56, 70, 104

cursor 58, 130, 143, 193
blinking underscore () 154
flashing checkerboard 55
flashing question mark 130, 143
inverse solid 55

Index

custom chips [78]
custom integrated circuits 215-223
CV 63

D

D command 131, 144
data, transferring 41-42
data bits 137
data bus 213
Data Carrier Detect [60]
data format 137, 138, 144, 151
data inputs 21
Data Set Ready See DSR
Data Terminal Ready See DTR
DCB 261
DCD [60]
decimal, negative [107]
device signature 72
DEVNO [21]
DHIRES 49, 104, 106, 107, 166
diagnostics, built-in [62, 65]
differences among Apple II's [61-78]
disable MouseText 65
DISK 221, 222
disk
controller cards |[74]
controller unit See /WM
input and output 124-126
I/O firmware entry points 20
disk drive 8
connector 252
port [50]
speed 13
disk-use light 6, [71]
display
address mapping 235-238
inverse 191
memory addressing 234
memory switches 43-47
modes 104-108, 239-247
normal 191
page maps 108-114
pages 102-103

281

282

DISVBL 166
DISXY 166
DMA transfers [70]
DOS 126, 130, 143, 179, 180, [39, 69]
interrupts [42]
zero page use [16-18]
double-high-resolution 245
graphics [74]
colors 100-101
drive, external, startup 126
drive motor 49
DSR 256, 261, [60]
DSR1B 257
DSR2B 257
DTR 260
DTR1B 257
DTR2B 257
dumb terminal 159
Dvorak keyboard 6, [88]
dynamic-RAM refreshment and timing
226-229

E

echo 131, 145, 155, 260

EIA standard 258

80 columns 65, 93

80/40 column switch 5

80COL 104, 105, 107, 108, 218, 219,
220

BOSTORE 39, 44, 45, 104, 105, 107,
108, 216, 238, 241

electrical power 206

ENB0 217

enable MouseText 65

ENBVBL 166

ENBXY 166

ENCLCRAM 216

English keyboard [90]

enhanced video firmware 20, 224

enter terminal mode 145

entry points, firmware [31-36]

environmental specifications 205-206

Index

4

@ 61

61

escape codes 60

escape sequences 4
even-parity [114]

EXAMINE command 190
examining memory contents 181
examining registers 190
expansion ROM space 73
Extended 80-Column Text Card [64]
external drive startup 126
external interrupts [55]

external power connector 207
EXTINT 256, |55, 60]

F

FCC [99]
firmware 12
entry points [30-36]
listings [126-215]
locations [30-36]
protocol 71, 134, 148
video routines 115-123
flag inputs 21
FLASH 256
flashing characters 68
flashing checkerboard cursor 55
flashing power light 6
forced cold start 50
14M 215, 220, 221
FORTRAN [41]
40 columns, switching to 80 5
40-column 65, 93
48K memory 34, 35, 39
framing errors 258
French keyboard [91-92]
full duplex 156-158

TTTMTUTTTTTT T T O T DT

kI AR

I =L ™ T

T

kBl Rl Rl

k! ikl

ik

k!

G

GAME I/O connector [76]

game input 267

game paddles See hand controls
GAMESWO0 268

GAMESW1 268

General Logic Unit (GLU) 13
German keyboard [93]

GETLN 58-62, 180

GETLN1 59, 82

GETLNZ 82

GLU 221

GND 257

GO command 189, 190, 192, 198
graphic bits [109]

graphics mode 96-102

greater than sign (=) 59

H

half duplex 155
hand control 8, 173-178
circuits 269
connector 174
input [76]
signals 270
hand controller 267
handle 9, 206
hardware
accesses 21
addresses [66]
locations 181, [15]
page locations 164
headphones 232
heat 206
hexadecimal [106]
arithmetic 193

Index

high-resolution 97
colors 243
display 243
double 245
graphics colors 98-99
Page 1 37
Page 2 38
HIRES 44, 45, 104, 105, 107, 216,
218, [67]
HLINE 117
HOME 118
HOMEMOUSE 168
HRP1 37
HRP1X 37, 45
HRP2 45
HRP2X 38
humidity 205

/
| command 131, 145, 158

I/O firmware, video routines 120-123

I/O links 55

icons 68

identification bytes 71

IEC [99]

IN#2 143, 154

IN#n 56, 70

index registers 17

INH 217

INITMOUSE 169

input and output, disk 124-126

input buffer (page $02) 36

Input/Output Unit (IOU) 13, 215,
218-219, |78]

instruction cycle times [63]

Integer BASIC 59, [16-18, 41, 69]

Integrated Woz Machine (IWM) 13

internal converter 208

internal voltage converter 206

283

interrupt(s) 24, 75, 260, [40-60, 70]

ACIA [49]
Apple Il and [42]
Apple Il Plus and [42]
Apple lle and [43]
disk drive port [49]
DOS and [42]
keyboard [52-53]
Monitor and [42]
mouse [49]
Pascal and [42]
65C02 and [43]
6551 [49]
vertical blanking [49]
interrupt handler(s)
mouse 163
user's [57]
interrupt requests 52
interrupt vector [43-44|
interrupt-handling sequence [45]
inverse 65
characters 68
display 191
solid cursor 55
INVERSE command 191
invoking the monitor 179
IOREST [36]
IORTS [36]
IOSAVE [36]
IOU (Input/Output Unit) 13, 215,
218-219, [78]

IQUDIS 49, 104, 106, 166, [67, 68]

IOUSELIO 219

IRQ 75, 156, 219, [43]
handling routine [34]
vector [36]

ISO [84]
layout [89]

Italian keyboard [94]

IWM (Integrated Woz Machine) 13,

222

Index

J

jack 7

JMP $C600 126

JMP indirect instruction [3]
joysticks See hand controls

K

K (1024) 17
K command 131, 145
KBD 217
keyboard 229-231
buffer [52-53]
character decoder 225
circuit diagram 230
data [66]
input buffer 37
interrupts [52, 53]
layout [71]
ANSI [90]
British See English
Canadian [91-92]
Dvorak [88]
English [90]
French [91-92]
German [93]
ISC [90]
Italian [94-95]
Sholes [85]
Western Spanish [96]
signals 231
strobe 79, 229, [50, 66]
switch 5
standard 5
KEYIN 55, 57, 58
KSTRB 77, 219, 256
KSW 56, 57, 70, 104

L

L command 131, 145
LANGSW 256
LDPS 220, 241, 251

§ LI L O W W W O 50 5

l

RIOR A

B! R R Rl Rl kRl kRl R R Rl K ORI Rl A

r

line feed 145, 152
automatic 131
line length 136, 150

line voltage 205
line width 139, 144
LIST command 199
local 154
low-resolution
colors 242
display 242
graphics 96

M

machine identification [63]
main memory screen holes 135-136,
149, 150
main RAM 20
MARK (1) 132
MARK parity 138, [114]
master clock 213
maximum current drain 252
memory
addressing 223-229
bank-switched 22
bus organization 224
comparing data in 188-189
display switches 43-47
dump 182-184
examining contents 181
48K 34
map 18, [15-28]
moving data in 186-188
organization [64]
state [48]
switches, display 43-47
Memory Management Unit See MMU
microprocessor, 65C02 12, 15
mini-phone jack 7
MIXED 105, 107, 218, [67]
mixed-modes displays 102
MMU 13, 215-217, 267, 271, [78]
mnemonic 199
modem 8, 151
modes, display 239-247

Index

monitor 8, 24, 59, 179-203, 224
entry point [36]
interrupts and [42]
output 248
register commands 189-190
ROM [69]
video routines 115
Zzero page use [15]
mouse 8, 160-174, [49-50]
BASIC and 163, 172
Pascal and 171
button 171
interrupt mode 164
signals 266
clamping boundaries 171
connector 264
direction [59]
firmware 167
firmware entry points 20
hardware locations 164-167
input 262, [76]
interrupt handler 165
interrupts [58]
movement interrupt mode 163
operating modes 163
port 161-174
transparent mode 163
waveform 263
X direction 167
Y direction 167
MOUSEID 264
MouseText 65, 68-69, 90-91, [73, 114]
MOUX1 167
MOUY1 167
MOVE command 186-188, 195, [36]
MOVEAUX 41-42
movement/button interrupt mode 164,
167
movement interrupt mode 163, 167
moving data in memory 186-188
MSLOT [21]
MSW 264

285

286 |

N

N command 131, 145, 156
n CONTROL-K 56

NE556 265, 271, [77]
negative decimal [107]
NEWIRQ [34]

nibble [104]

NMI vector [36, 43]
non-maskable interrupts 52
NORMAL command 191
normal characters 65, 68
normal display 191

NTSC 87, 233, 242, 248, 251
#6 130

#7 143

#8 143

(0

odd-parity [114]

old monitor ROM [62]

1 CONTROL-P 130
1VSOUND 251

(&) 4,82

operand 199

operating systems [39-40]
operating temperature 205

output and input, disk 124-126

output jack 232

P

P command 132, 145
P register 17
paddle(s) 267
button 0 268
button 1 268
inputs [68, 76]
timing circuit [77]
page 18
page $02 (input buffer) 36
page $03 36
page $04 36
page $08 37

Index

page 0 18
page zero 24
page 1 18
PAGE2 44-45, 105, 107-108, 218,
238, 241, [46-48, 67]
page three [19]
page 8, auxiliary RAM [52]
PAL 233
parity 145
bit(s) 138, 262
checking 260
Pascal 67, 126, 130, 134, 170, [114]
ID byte 134, 148
interrupts and [42]
language [41]
operating system [40]
PC (program counter) 16
PCAS 220
PDLO 176
PDLO/XMOVE 219
PDL1 176
PEEK [40]
peripheral identification numbers [112]
peripheral-card memory space [65-66]
peripheral-card ROM space [65]
phone jack 7
PIN numbers [112]
PINIT 72,121, 134, 148
PLOT 118
plotter 8
POKE [40]
ports 70, [70]
POSMOUSE 168
power 8
connector 207
consumption 207, 208
light 6, [71]
requirements 206
supply [100]
power-on light [71]
power-up byte 51

SN W W W 5 5

7 *UN L S *1 B *1 B * S 1 B 1 I 1 B 1 A 1 A LA U '

!

PR#1 130
PR#2 143, 154
PR#6 126
PR#n 56, 70
PRAS 217, 219, 220, 251
PRBL2 118
PRBYTE 118
PREAD 72,121, 134, 148, 177
PRERR 118
PRHEX 118
primary character set 88, [73]
printer 8
PRINTER: 130
processor status register 17
ProDOS 126, 130, 143, 180, [39, 63]
program counter (PC) 16, 201
prompt 58, 154

characters 59
PRTAX 118
PSTATUS 72, 123, 134, 148
PTRIG 166
published entry points [32-36]
pull from stack 17
push onto stack 17
PWRITE 72, 121, 134, 148

Q

Q command 145

Q3 215, 217, 219
guestion mark (?) 58, 59
quit terminal mode 145

R

R command 132
R/W 217, 219, 221, 257
RAD-RA7 217
RAM 17
addressing 226-229
locations [15]
RAMRD 38, 39, 43, 44, 216, [46]
RAMWRT 38, 39, 43, 44, 216, [46]

Index

random number 58
random-access memory (RAM) 17
RAS (row-address strobe) 228
RD1B 257
RD63 167
RDBOCOL 105
RDBOSTORE 105
RDALTCHAR 105
RDALTZP 26
RDBNK2 26
RDCHAR 82
RDCRAM [46]
RDDHIRES 106
RDHIRES 45, 105
RDIOUDIS 106, 166
RDKEY 55, 57
RDLCRAM 26
RDMIXED 105
RDPAGEZ 105
RDRAMRD 39
RDRAMWRT 39
RDTEXT 105
RDTNO 167
RDVBLMSK 166
RDXYMSK 166
RDYOEDGE 166
read-only memory (ROM) 17
READMOUSE 163, 168, [51-52]
receive register 262
registers 15, 213

examining 190
relative humidity 205
REMIN 143
remote 154, 159
remote device 145
REMOUT 143
(REPT) key [71]
Reguest to Send See RTS
key 4,79, B2, 221, 113, 256,

[71]

reset port 1 132
reset port 2 145
reset routine 48
reset vector 49-51, [36]

[84]

287

retype 62

RF modulator 233

RGB monitor 245
rollover 3

ROM 17

ROM addressing 224-225
ROMEN2 217

RS-232 129

RSTVBL 166

RSTXINT 166, 216
RSTXY 166

RSTYINT 166, 216

RTS instruction 260, [36]

S

S command 132

S register 17

safety instructions 207, [99]

schematic diagrams 271-276

scratch-pad RAM [65]

screen holes 36, 73, 74, 133, 134,
136, 149, 171-173, [20-22, 47|

SCRN 119

scroll 65

SEGA 218

SEGB 218, 220, 251

self-tests See diagnostics, built-in

SER 221, 256

serial buffering [55]

serial data transfer [57]

serial firmware [50]

serial /O buffers [75]

serial /O port 128-159

serial input buffer 37

Serial Interface Card [74]

serial interrupts [55, 56]

serial port circuits 254

serial port 1 20, 129-139

Index

serial port 2 20, 141-159
command character 143, 146
command character hardware

locations 130, 132, 134
firmware protocol 147
hardware locations 148
initial characteristics 130, 147

SEROUT 251

SERVEMOUSE 163, 168, [51]

SETCOL 119

SETMOUSE 167-168, [50-51]

SETPWRC 51

7M 220, 223

key 79, 229, [84]

shift-key mod [68]

Sholes keyboard 5

signature byte 134, 148, 170

simplified keyboard (Dvorak) [88]

126

65C02 12, 15, [63]
address bus 213
addressing modes [10]
block diagram 211
clock 211
cycle time [1, 2]
data bus 213
data sheet [5-13]
differences from 6502 211,

[1-3, 6-7]
execution time [1-2]
instruction set [12-13]
opcodes [12]
registers 213
signal descriptions [11]
timing diagram [8]
timing signals 214-215

6502 verus 65C02 211

6551 Asynchronous Communication

Interface Adapters See ACIA

slot 7 drive 1 [74]

SLOTC3ROM [66]

SLOTCXROM [66]

i W W W W O O W A

t

0 {1 T A W

|

7 ST * T L U U

il

I

A

Rl kRl

A

" B E R

slots 70
versus ports [70]
soft switches 22, 215, 218, 221
(@) 82
SPACE (0) 132
SPACE parity 138, [114]
speaker 83-84, [67]
external 7
output jack 232
volume control 232
SPKR 219
stack 24, [42, 46]
stack pointer 17
standard 1/O links 55
standard keyboard 5
start bit 137
status register 134, 148, 261
stop bits 137
stop-list 65
STORE command 194
strobe 79
inputs 21
SUD See System Utilities Disk
Super Serial Cards [74]
SWO0 175
SW1 175
switch inputs 175, [76]
switches, soft 22, 215
SYNC 219, 233, 251
system clock 213
system monitor 179-203

System Utilities Disk 129, 131, 136,

141, 145, 150, [75, 112]

T

T command 145, 154-156, 159
[84]

TD1B 257

telephone jack 7

temperature 205, 208

Index

terminal mode 145, [53]
TEXT 105, 107, 218, 220, 221, 251,

[67]
text

and low-resolution graphics Page 1

36
and low-resolution Page 1X 36

and screen low-resolution Page 2

37

displays 241

modes 90-95

window 63, 66
TLP1 36
TLP1X 36, 45
TLP2X 37
toggle switches 22
transferring control 42-43
transferring data 41-42

transmit/receive data register 134,

148
transmit register 262
transparent mode 163, 167, 171
triggering paddie timers [68]

u

USA standard keyboard 5
USER command 197
user's interrupt handler [57]
utility strobe [67)

v

validity check 49

VBL [67, 73, 76]

VBLINT 1863, 164, 218, [67, 73]
VDE [99]

vectors 55

ventilation 206

VERIFY command 188, 196, [36]
vertical blanking 163, [49, 50, 73]

interrupts [68]

289

VID 248
VID7M 215, 220
video
counters 233-234
display 225
display circuits 240
display modes 239-247
expansion 8
expansion connector 249-252
expansion output 249
output signals 248
routines
firmare 115-123
I/O firmware 120-123
monitor 115-119
VLINE 119
voltage 205
converter 10
volume control 7, 232

w

WAIT [36]

warm-start procedure 50
Western Spanish keyboard [96]
WNDW 219, 233, 251

word [106]

Woz Integrated Machine 13, 222

X

X register 17

X0 215, 218, 262, 264
X1 215, 263, 264
XFER 41, 42

XINT 164, [66, 67]
XOEDGE 166

Index

4

Y register 17

Y0 218, 262, 264
¥1 263, 264
YINT 164, [66, 67]
YMOVE 219
YOEDGE 166

V4

Z command 132, 139
zap 132, 139, 145
zero page 24, 184

{ TARARTTTTTTTT T DI T

B T ———

=0

= e

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

TLX 171-576

030-0814-A
1884 Apple Computer. Inc
Printed in U.S.A

